2024年重庆十一中学数学九年级第一学期开学综合测试试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图所示,在中,分别是的中点,分别交于点.下列命题中不正确的是( )
A.B.
C.D.
2、(4分)某班体育委员对7位同学定点投篮进行数据统计,每人投10个,投进篮筐的个数依次为:5,6,5,3,6,8,1.则这组数据的平均数和中位数分别是( )
A.6,6B.6,8C.7,6D.7,8
3、(4分)要使分式有意义,x 的值不能等于( )
A.-1B.0C.1D.±1
4、(4分)若一个正方形的面积为(ɑ+1)(ɑ+2)+,则该正方形的边长为( )
A.B.C.D.
5、(4分)某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分的中位数是( )
A.9分 B.8分 C.7分 D.6分
6、(4分)如图,边长为1的正方形ABCD绕点A顺时针旋转30°到AB′C′D′的位置,则图中阴影部分的面积为( )
A.B.C.D.
7、(4分)如图,将矩形纸片ABCD沿其对角线AC折叠,使点B落到点B′的位置,AB′与CD交于点E,若AB=8,AD=3,则图中阴影部分的周长为( )
A.11B.16C.19D.22
8、(4分)小明骑自行车到公园游玩,匀速行驶一段路程后,开始休息,休息了一段时间后,为了尽快赶到目的地,便提高了,车速度,很快到达了公园.下面能反映小明离公园的距离(千米)与时间(小时)之间的函数关系的大致图象是()
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,已知在Rt△ABC中,∠ACB=90°,AB=4,分别以AC,BC为直径作半圆,面积分别记为S1,S2,则S1+S2等_________.
10、(4分)如图所示,△ABC中,CD⊥AB于D,E是AC的中点,若DE=5,则AC的长等于_____.
11、(4分)如图,正方形ABCD的面积为,则图中阴影部分的面积为______________ .
12、(4分)如图,在△ABC中,AB=6,点D是AB的中点,过点D作DE∥BC,交AC于点E,点M在DE上,且ME=DM.当AM⊥BM时,则BC的长为____.
13、(4分)如图,在Rt△ABC中,D是斜边AB的中点,AB=2,则CD的长为_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)某商店一种商品的定价为每件50元.商店为了促销,决定如果购买5件以上,则超过5件的部分打七折.
(1)用表达式表示购买这种商品的货款(元)与购买数量(件)之间的函数关系;
(2)当,时,货款分别为多少元?
15、(8分)如图,矩形ABCD中,AB=9,AD=1.E为CD边上一点,CE=2.点P从点B出发,以每秒1个单位的速度沿着边BA向终点A运动,连接PE.设点P运动的时间为t秒.
(1)求AE的长;
(2)当t为何值时,△PAE为直角三角形?
16、(8分)(2013年四川广安8分)某商场筹集资金12.8万元,一次性购进空调、彩电共30台.根据市场需要,这些空调、彩电可以全部销售,全部销售后利润不少于1.5万元,其中空调、彩电的进价和售价见表格.
设商场计划购进空调x台,空调和彩电全部销售后商场获得的利润为y元.
(1)试写出y与x的函数关系式;
(2)商场有哪几种进货方案可供选择?
(3)选择哪种进货方案,商场获利最大?最大利润是多少元?
17、(10分)已知反比例函数(k为常数,k≠0)的图象经过点A(2,3).
(1)求这个函数的解析式;
(2)判断点B(-1,6),C(3,2)是否在这个函数的图象上,并说明理由;
(3)当-3<x<-1时,求y的取值范围.
18、(10分)某个体户购进一批时令水果,20天销售完毕,他将本次的销售情况进行了跟踪记录,根据所记录的数据绘制如图所示的函数图象,其中日销售量y(千克)与销售时间x(天)之间的函数关系如图甲,销售单价P(元/千克)与销售时间x(天)之间的关系如图乙.
(1)求y与x之间的函数关系式.
(2)分别求第10天和第15天的销售金额.
(3)若日销售量不低于24千克的时间段为“最佳销售期”,则此次销售过程中“最佳销售期”共有多少天?在此期间销售单价最高为多少元?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)一组数据,,,,,的方差是_________.
20、(4分)如图,是的角平分线,交于,交于.且交于,则________度.
21、(4分)计算:的结果是_____.
22、(4分)一个不透明的布袋中装有分别标着数字1,2,3,4的四张卡片,现从袋中随机摸出两张卡片,则这两张卡片上的数字之和大于5的概率为_______.
23、(4分)如图,利用函数图象可知方程组的解为______.
二、解答题(本大题共3个小题,共30分)
24、(8分)某养猪场要出售200只生猪,现在市场上生猪的价格为11元/,为了估计这200只生猪能卖多少钱,该养猪场从中随机抽取5只,每只猪的重量(单位:)如下:76,71,72,86,1.
(1)计算这5只生猪的平均重量;
(2)估计这200只生猪能卖多少钱?
25、(10分)在直角坐标系中,反比例函数y=(x>0),过点A(3,4).
(1)求y关于x的函数表达式.
(2)求当y≥2时,自变量x的取值范围.
(3)在x轴上有一点P(1,0),在反比例函数图象上有一个动点Q,以PQ为一边作一个正方形PQRS,当正方形PQRS有两个顶点在坐标轴上时,画出状态图并求出相应S点坐标.
26、(12分)某旅游纪念品店购进一批旅游纪念品,进价为6元.第一周以每个10元的价格售出200个、第二周决定降价销售,根据市场调研,单价每降低1元,一周可比原来多售出50个,这两周一共获利1400元.
(1)设第二周每个纪念品降价元销售,则第二周售出 个纪念品(用含代数式表示);
(2)求第二周每个纪念品的售价是多少元?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
证出四边形AMCN是平行四边形,由平行四边形的性质得出选项B正确,由相似三角形的性质得出选项C正确,由平行四边形的面积公式得出选项D正确,即可得出结论.
【详解】
解:∵四边形ABCD是平行四边形,
∴AB=CD,AB∥CD,∠BAD=∠BCD,
∵M、N分别是边AB、CD的中点,
∴CN=CD,AM=AB,
∴CN=AM,
∴四边形AMCN是平行四边形,
∴AN∥CM,∠MAN=∠NCM,
∴∠DAN=∠BCM,选项B正确;
∴△BMQ∽△BAP,△DPN∽△DQC,
∴BQ:BP=BM:AB=1:2,DP:DQ=DN:CD=1:2,
∴DP=PQ,BQ=PQ,
∴DP=PQ=QB,
∴BP=DQ,选项C正确;
∵AB=2AM,
∴S▱AMCN:S▱ABCD=1:2,选项D正确;
故选A.
此题考查了平行四边形的判定与性质、相似三角形的判定与性质等知识.此题难度适中,注意掌握数形结合思想的应用.
2、A
【解析】
根据中位数和平均数的定义求解即可.
【详解】
解;这组数据的平均数=(5+6+5+3+6+8+1)÷7=6,
把5,6,5,3,6,8,1从小到大排列为:3,5,5,6,6,8,1,
最中间的数是6,
则中位数是6,
故选A.
本题考查了中位数和平均数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数
3、C
【解析】
根据分式有意义的条件:分母不等于0;
【详解】
解:要使分式有意义,则 ,故
故选:C
考查分式有意义的条件,熟练掌握分式有意义的条件:分母不等于0;是解题的关键.
4、B
【解析】
把所给代数式重新整理后用完全平方公式分解因式即可.
【详解】
(ɑ+1)(ɑ+2)+==,
∴正方形的边长为:.
故选B.
本题考查了完全平方公式进行因式分解,熟练掌握a2±2ab+b2=(a±b)2是解答本题的关键.两项平方项的符号需相同;有一项是两底数积的2倍,是易错点.
5、C
【解析】分析: 根据中位数的定义,首先将这组数据按从小到大的顺序排列起来,由于这组数据共有7个,故处于最中间位置的数就是第四个,从而得出答案.
详解: 将这组数据按从小到大排列为:6<7<7<7<8<9<9,故中位数为 :7分,
故答案为:C.
点睛: 本题主要考查中位数,解题的关键是掌握中位数的定义:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.
6、C
【解析】
设D′C′与BC的交点为E,连接AE,利用“HL”证明Rt△AD′E和Rt△ABE全等,根据全等三角形对应角相等∠BAE=∠D′AE,再根据旋转角求出∠BAD′=60°,然后求出∠BAE=30°,再解直角三角形求出BE,然后根据阴影部分的面积=正方形ABCD的面积-四边形ABED′的面积,列式计算即可得解.
【详解】
解:如图,D′C′与BC的交点为E,连接AE,
在Rt△AD′E和Rt△ABE中,
∵,
∴Rt△AD′E≌Rt△ABE(HL),
∴∠BAE=∠D′AE,
∵旋转角为30°,
∴∠BAD′=60°,
∴∠BAE=×60°=30°,
∴BE=1×=,
∴阴影部分的面积=1×12×(×1×)=1.
故选:C.
本题考查了旋转的性质,正方形的性质,全等三角形判定与性质,解直角三角形,利用全等三角形求出∠DAE=∠B′AE,从而求出∠DAE=30°是解题的关键,也是本题的难点.
7、D
【解析】
阴影部分的周长为AD+DE+EA+EB′+B′C+EC,
=AD+DE+EC+EA+EB′+B′C,
=AD+DC+AB′+B′C,
=3+8+8+3
=1.
故选D.
8、C
【解析】
根据匀速行驶,到终点的距离在减少,休息时路程不变,休息后的速度变快,路程变化快,可得答案.
【详解】
A.路程应该在减少,故A不符合题意;
B.路程先减少得快,后减少的慢,不符合题意,故B错误;
C.休息前路程减少的慢,休息后提速在匀速行驶,路程减少得快,故C符合题意;
D.休息时路程应不变,不符合题意,故D错误;
故选C.
本题考查了函数图象,路程先减少得慢,休息后减少得快是解题关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
试题解析:
所以
故答案为
10、1
【解析】
根据直角三角形斜边上的中线是斜边的一半可以解答本题.
【详解】
∵△ABC中,CD⊥AB于D,E是AC的中点,
∴∠CDA=90°,△ADC是直角三角形,
∴AC=2DE,
∵DE=5,
∴AC=1,
故答案为:1.
本题考查直角三角形斜边上的中线,解答本题的关键是明确题意,利用数形结合的思想解答.
11、
【解析】
试题分析:根据正方形的对称性,可知阴影部分的面积为正方形面积的一半,因此可知阴影部分的面积为.
12、1
【解析】
根据直角三角形的性质(斜边上的中线等于斜边的一半),求出DM=AB=3,即可得到ME=1,根据题意求出DE=DM+ME=4,根据三角形中位线定理可得BC=2DE=1.
【详解】
解:∵AM⊥BM,点D是AB的中点,
∴DM=AB=3,
∵ME=DM,
∴ME=1,
∴DE=DM+ME=4,
∵D是AB的中点,DE∥BC,
∴BC=2DE=1,
故答案为:1.
点睛:本题考查的是三角形的中位线定理的应用,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.
13、1
【解析】
根据在直角三角形中,斜边上的中线等于斜边的一半解答.
【详解】
解:在Rt△ABC中,D是斜边AB的中点,
∴CD=AB=1,
故答案为:1.
本题考查的是直角三角形的性质,掌握在直角三角形中,斜边上的中线等于斜边的一半是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1);(2)150元; 425元.
【解析】
(1)分类讨论:购买数量不超过5件,购买数量超过5件,根据单价乘以数量,可得函数解析式.
(2)把x=3,x=10分别代入(1)中的函数关系式即可求出贷款数.
【详解】
(1)根据商场的规定,
当0<x≤5时,y=50x,
当x>5时,y=50×5+(x-5)×50×0.7=35x+75,
所以,货款y (元)与购买数量x (件)之间的函数关系是y= (x是正整数);
(2)当x=3时,y=50×3=150 (元)
当x=10时,y=35×10+75=425(元).
本题考查了一次函数的应用.解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.注意分类讨论.
15、(1)5;(2)当t=2或t=时,△PAE为直角三角形;
【解析】
(1)在直角△ADE中,利用勾股定理进行解答;
(2)需要分类讨论:AE为斜边和AP为斜边两种情况下的直角三角形;
【详解】
解:(1)∵矩形ABCD中,AB=9,AD=1,
∴CD=AB=9,∠D=90°,
∴DE=9﹣2=3,
∴AE==5;
(2)①若∠EPA=90°,t=2;
②若∠PEA=90°,(2﹣t)2+12+52=(9﹣t)2,
解得t=.
综上所述,当t=2或t=时,△PAE为直角三角形;
本题考查了四边形综合题,综合勾股定理,直角三角形的性质,一元二次方程的应用等知识点,要注意分类讨论,以防漏解.
16、解:(1)设商场计划购进空调x台,则计划购进彩电(30﹣x)台,由题意,得
y=(6100﹣5400)x+(3900﹣3500)(30﹣x)=300x+12000。
(2)依题意,得,
解得10≤x≤。
∵x为整数,∴x=10,11,12。∴商场有三种方案可供选择:
方案1:购空调10台,购彩电20台;
方案2:购空调11台,购彩电19台;
方案3:购空调12台,购彩电18台。
(3)∵y=300x+12000,k=300>0,∴y随x的增大而增大。
∴当x=12时,y有最大值,y最大=300×12+12000=15600元.
故选择方案3:购空调12台,购彩电18台时,商场获利最大,最大利润是15600元。
【解析】(1)y=(空调售价﹣空调进价)x+(彩电售价﹣彩电进价)×(30﹣x)。
(2)根据用于一次性购进空调、彩电共30台,总资金为12.8万元,全部销售后利润不少于1.5万元.得到一元一次不等式组,求出满足题意的x的正整数值即可。
(3)利用y与x的函数关系式y=150x+6000的增减性来选择哪种方案获利最大,并求此时的最大利润即可。
考点:一次函数和一元一次不等式组的应用,由实际问题列函数关系式,一次函数的性质。
17、(1)这个函数的解析式为:;(1)点C在函数图象上,理由见解析;(3),-2<y<-1.
【解析】
(1)把点A的坐标代入已知函数解析式,通过方程即可求得k的值;
(1)只要把点B、C的坐标分别代入函数解析式,横纵坐标坐标之积等于2时,即该点在函数图象上;
(3)根据反比例函数图象的增减性解答问题.
【详解】
解:(1)∵反比例函数(k为常数,k≠0)的图象经过点A(1,3),
∴把点A的坐标代入解析式,得,解得,k=2.
∴这个函数的解析式为:.
(1)∵反比例函数解析式,
∴2=xy.
分别把点B、C的坐标代入,得
(-1)×2=-2≠2,则点B不在该函数图象上;
3×1=2,则点C在函数图象上.
(3)∵k>0,
∴当x<0时,y随x的增大而减小.
∵当x=-3时,y=-1,当x=-1时,y=-2,
∴当-3<x<-1时,-2<y<-1.
18、 (1)当;(2)第10天:200元,第15天:270元;(3)最佳销售期有5天,最高为9.6元.
【解析】
(1)分两种情况进行讨论:①0≤x≤15;②15<x≤20,针对每一种情况,都可以先设出函数的解析式,再将已知点的坐标代入,利用待定系数法求解;
(2)日销售金额=日销售单价×日销售量.由于第10天和第15天在第10天和第20天之间,当10≤x≤20时,设销售单价p(元/千克)与销售时间x(天)之间的函数关系式为p=mx+n,由点(10,10),(20,8)在p=mx+n的图象上,利用待定系数法求得p与x的函数解析式,继而求得10天与第15天的销售金额.
(3)日销售量不低于1千克,即y≥1.先解不等式2x≥1,得x≥12,再解不等式﹣6x+120≥1,得x≤16,则求出“最佳销售期”共有5天;然后根据.(10≤x≤20),利用一次函数的性质,即可求出在此期间销售时单价的最高值.
【详解】
解:(1)①当0≤x≤15时,设日销售量y与销售时间x的函数解析式为y=k1x,
∵直线y=k1x过点(15,30),∴15k1=30,解得k1=2.
∴y=2x(0≤x≤15);
②当15<x≤20时,设日销售量y与销售时间x的函数解析式为y=k2x+b,
∵点(15,30),(20,0)在y=k2x+b的图象上,
∴,解得:.
∴y=﹣6x+120(15<x≤20).
综上所述,可知y与x之间的函数关系式为:.
.
(2)∵第10天和第15天在第10天和第20天之间,
∴当10≤x≤20时,设销售单价p(元/千克)与销售时间x(天)之间的函数解析式为p=mx+n,
∵点(10,10),(20,8)在z=mx+n的图象上,,
解得:.
∴.
当x=10时,,y=2×10=20,销售金额为:10×20=200(元);
当x=15时,,y=2×15=30,销售金额为:9×30=270(元).
故第10天和第15天的销售金额分别为200元,270元.
(3)若日销售量不低于1千克,则y≥1.
当0≤x≤15时,y=2x,
解不等式2x≥1,得x≥12;
当15<x≤20时,y=﹣6x+120,
解不等式﹣6x+120≥1,得x≤16.
∴12≤x≤16.
∴“最佳销售期”共有:16﹣12+1=5(天).
∵(10≤x≤20)中<0,∴p随x的增大而减小.
∴当12≤x≤16时,x取12时,p有最大值,此时=9.6(元/千克).
故此次销售过程中“最佳销售期”共有5天,在此期间销售单价最高为9.6元
考核知识点:一次函数在销售中的运用.要注意理解题意,分类讨论情况.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
先求得数据的平均数,然后代入方差公式计算即可.
【详解】
解:数据的平均数=(2-3+3+6+4)=2,
方差.
故答案为.
本题考查方差的定义,牢记方差公式是解答本题的关键.
20、
【解析】
先根据平行四边形的判定定理得出四边形AEDF为平行四边形,再根据平行线的性质及角平分线的性质得出∠1=∠3,故可得出▱AEDF为菱形,根据菱形的性质即可得出.
【详解】
如图所示:
∵DE∥AC,DF∥AB,
∴四边形AEDF为平行四边形,
∴OA=OD,OE=OF,∠2=∠3,
∵AD是△ABC的角平分线,
∵∠1=∠2,
∴∠1=∠3,
∴AE=DE.
∴▱AEDF为菱形.
∴AD⊥EF,即∠AOF=1°.
故答案是:1.
考查的是菱形的判定与性质,根据题意判断出四边形AEDF是菱形是解答此题的关键.
21、
【解析】
逆用积的乘方运算法则以及平方差公式即可求得答案.
【详解】
=
=
=(5-4)2018×
=+2,
故答案为+2.
本题考查了积的乘方的逆用,平方差公式,熟练掌握相关的运算法则是解题的关键.
22、
【解析】
根据题意先画出树状图,求出所有出现的情况数,再根据概率公式即可得出答案.
【详解】
根据题意画树状图如下:
共有12种情况,两张卡片上的数字之和大于5的有4种,
则这两张卡片上的数字之和大于5的概率为;
故答案为:.
此题考查列表法与树状图法,解题关键在于题意画树状图.
23、
【解析】
观察函数的图象y=2x与x+ky=3相交于点(1,2),从而求解;
【详解】
观察图象可知,y=2x与x+ky=3相交于点(1,2),
可求出方方程组的解为,
故答案为:
此题主要考查一次函数与二元一次方程组,关键是能根据函数图象的交点解方程组.
二、解答题(本大题共3个小题,共30分)
24、(1)78.4(千克);(2)172480(元).
【解析】
(1)根据平均数的计算可得这5只生猪的平均重量;
(2)根据用样本估计总体的思想可估计这200只生猪每只生猪的平均重量,由(1)中的平均数可得.
【详解】
解:(1)这5只生猪的平均重量为千克;
(2)根据用样本估计总体的思想可估计这200只生猪每只生猪的平均重量约为千克;
根据题意,生猪的价格为11元,
故这200只生猪能卖元.
本题主要考查的是通过样本估计总体.统计的思想就是用样本的信息来估计总体的信息.
25、(1);(2)当时,自变量的取值范围为;(3)①,②,③,④,.
【解析】
(1)把A的坐标代入解析式即可
(2)根据题意可画出函数图像,观察函数图象的走势即可解答
(3)根据题意PQ在不同交点,函数图象与正方形的位置也不一样,可分为四种情况进行讨论
【详解】
(1)反比例函数,过点,
,
.
(2)如图,
时,,
观察图象可知,当时,自变量的取值范围为.
(3)有四种情况:
①如图1中,
四边形是正方形,
,
,
,
,
,
,
.
②如图2中,
四边形是正方形,
、关于轴对称,
设代入中,,
或(舍弃),
,
.
③如图3中,作轴于.
四边形是正方形,
,易证,
,
,
,
,
④如图4中,作轴于,轴于.
四边形是正方形,可得,
,,
设,则,,
,,设,
则有,,
,,
,.
此题考查反比例函数综合题,解题关键在于在于利用已知点代入解析式求值
26、(1);(2)8元。
【解析】
(1)根据题设条件计算即可.
(2)根据利润的计算公式,首先表示利润即可,再求解方程.
【详解】
解:(1)
(2)依题意,得:
整理,得
解之,得(不符合题意,舍去)
(元)
答:第二周每个纪念品的销售价为8元。
本题主要考查一元二次方程在利润计算中的应用,关键在于根据题意列方程.
题号
一
二
三
四
五
总分
得分
空调
彩电
进价(元/台)
5400
3500
售价(元/台)
6100
3900
2024年永州市重点中学数学九年级第一学期开学综合测试模拟试题【含答案】: 这是一份2024年永州市重点中学数学九年级第一学期开学综合测试模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年四川省广安友谊中学数学九年级第一学期开学综合测试模拟试题【含答案】: 这是一份2024年四川省广安友谊中学数学九年级第一学期开学综合测试模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年洛阳市重点中学数学九年级第一学期开学综合测试模拟试题【含答案】: 这是一份2024年洛阳市重点中学数学九年级第一学期开学综合测试模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。