终身会员
搜索
    上传资料 赚现金

    2024年重庆市涪陵区涪陵第十九中学数学九上开学学业水平测试模拟试题【含答案】

    立即下载
    加入资料篮
    2024年重庆市涪陵区涪陵第十九中学数学九上开学学业水平测试模拟试题【含答案】第1页
    2024年重庆市涪陵区涪陵第十九中学数学九上开学学业水平测试模拟试题【含答案】第2页
    2024年重庆市涪陵区涪陵第十九中学数学九上开学学业水平测试模拟试题【含答案】第3页
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年重庆市涪陵区涪陵第十九中学数学九上开学学业水平测试模拟试题【含答案】

    展开

    这是一份2024年重庆市涪陵区涪陵第十九中学数学九上开学学业水平测试模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。


    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,四边形和四边形都是正方形,反比例函数在第一象限的图象经过点,若两正方形的面积差为12,则的值为
    A.12B.6C.D.8
    2、(4分)下列各式中,能用完全平方公式分解的个数为( )
    ①;②;③;④;⑤.
    A.1个B.2个C.3个D.4个
    3、(4分)使得式子有意义的x的取值范围是( )
    A.x≥4B.x>4C.x≤4D.x<4
    4、(4分)在中,斜边,则的值为( )
    A.6B.9C.18D.36
    5、(4分)方程的根的情况是( )
    A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.只有一个实数根
    6、(4分)如图,正方形ABCD中,AB=6,G是BC的中点.将△ABG沿AG对折至△AFG,延长GF交DC于点E,则DE的长是 ( )
    A.1B.1.5C.2D.2.5
    7、(4分)数据2,4,3,4,5,3,4的众数是( )
    A.4B.5C.2D.3
    8、(4分)△ABC中,若AC=4,BC=2,AB=2,则下列判断正确的是( )
    A.∠A=60°B.∠B=45°C.∠C=90°D.∠A=30°
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,在平面直角坐标系中,点A(0,4),B(3,0),连接AB,将△AOB沿过点B的直线折叠,使点A落在x轴上的点A′处,折痕所在的直线交y轴正半轴于点C,则直线BC的解析式为 .
    10、(4分)如图,在菱形ABCD中,AB=5,对角线AC=1.若过点A作AE⊥BC,垂足为E,则AE的长为_________.
    11、(4分)使有意义的x的取值范围是_____.
    12、(4分)计算的结果是__________.
    13、(4分)已知函数,当= _______ 时,直线过原点;为 _______ 数时,函数随的增大而增大 .
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,正方形的边长为8,在上,且,是上的一动点,求的最小值.
    15、(8分)如图:在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线交BC于点E(尺规作图的痕迹保留在图中了),连接EF.
    (1)求证:四边形ABEF为菱形;
    (2)AE,BF相交于点O,若BF=6,AB=5,求AE的长.
    16、(8分)在平行四边形ABCD中,∠BAD的平分线交线段BC于点E,交线段DC的延长线于点F,以EC、CF为邻边作平行四边形ECFG.
    (1)如图1,证明平行四边形ECFG为菱形;
    (2)如图2,若∠ABC=90°,M是EF的中点,求∠BDM的度数;
    (3)如图3,若∠ABC=120°,请直接写出∠BDG的度数.
    17、(10分)在图中网格上按要求画出图形,并回答问题:
    (1)如果将三角形平移,使得点平移到图中点位置,点、点的对应点分别为点、点,请画出三角形;
    (2)画出三角形关于点成中心对称的三角形.
    (3)三角形与三角形______(填“是”或“否”)关于某个点成中心对称?如果是,请在图中画出这个对称中心,并记作点.
    18、(10分)如图,, 点分别在线段上,且
    求证:
    已知分别是的中点,连结
    ①若,求的度数:
    ②连结当的长为何值时,四边形是矩形?
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)在菱形ABCD中,对角线AC=30,BD=60,则菱形ABCD的面积为____________.
    20、(4分)若正多边形的每一个内角为,则这个正多边形的边数是__________.
    21、(4分)某公司需招聘一名员工,对应聘者甲、乙、丙从笔试、面试、体能三个方面进行量化考核,甲、乙、丙各项得分如下表:
    该公司规定:笔试、面试、体能得分分别不得低于80分、80分、70分,并按60%,30%,10%的比例计入总分,根据规定,可判定_____被录用.
    22、(4分)若分式的值为零,则x的值为_____
    23、(4分)如图,一根垂直于地面的木杆在离地面高3m处折断,若木杆折断前的高度为8m,则木杆顶端落在地面的位置离木杆底端的距离为________m.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,已知在△ABC中,D为BC的中点,连接AD,E为AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.
    (1)求证:四边形ADCF为平行四边形.
    (2)当四边形ADCF为矩形时,AB与AC应满足怎样的数量关系?请说明理由.
    25、(10分)关于的一元二次方程
    求证:方程总有两个实数根
    若方程两根且,求的值
    26、(12分) (1)计算:
    (2)解方程: .
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、A
    【解析】
    设正方形OABC、BDEF的边长分别为a和b,则可表示出D(a,a-b),F(a+b,a),根据反比例函数图象上点的坐标特征得到E(a+b,),由于点E与点D的纵坐标相同,所以=a-b,则a2-b2=k,然后利用正方形的面积公式易得k=1.
    【详解】
    解:设正方形OABC、BDEF的边长分别为a和b,则D(a,a-b),F(a+b,a),
    所以E(a+b,),
    所以=a-b,
    ∴(a+b)(a-b)=k,
    ∴a2-b2=k,
    ∵两正方形的面积差为1,
    ∴k=1.
    故选:A.
    本题考查了反比例函数比例系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.也考查了正方形的性质.
    2、B
    【解析】
    分别利用完全平方公式分解因式得出即可
    【详解】
    ①=,符合题意;
    ②;不能用完全平方公式分解,不符合题意
    ③;不能用完全平方公式分解,不符合题意
    ④=-,符合题意;
    ⑤,不可以用完全平方公式分解,不符合题意
    故选:B.
    本题考查因式分解,熟练掌握运算法则是解题关键.
    3、D
    【解析】
    直接利用二次根式有意义的条件分析得出答案.
    【详解】
    解:使得式子有意义,则:4﹣x>0,
    解得:x<4
    即x的取值范围是:x<4
    故选D.
    此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.
    4、C
    【解析】
    根据勾股定理即可求解.
    【详解】
    在Rt△ABC中,AB为斜边,∴==9
    ∴=2=18
    故选C.
    此题主要考查勾股定理的应用,解题的关键是熟知勾股定理的性质.
    5、C
    【解析】
    把a=1,b=-1,c=3代入△=b2-4ac进行计算,然后根据计算结果判断方程根的情况.
    【详解】
    ∵a=1,b=-1,c=3,
    ∴△=b2-4ac=(-1)2-4×1×3=-11<0,
    所以方程没有实数根.
    故选C.
    本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2-4ac.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.
    6、C
    【解析】
    连接AE,根据翻折变换的性质和正方形的性质可证Rt△AFE≌Rt△ADE,在直角△ECG中,根据勾股定理求出DE的长.
    【详解】
    连接AE,
    ∵AB=AD=AF,∠D=∠AFE=90°,
    由折叠的性质得:Rt△ABG≌Rt△AFG,
    在△AFE和△ADE中,
    ∵AE=AE,AD=AF,∠D=∠AFE,
    ∴Rt△AFE≌Rt△ADE,
    ∴EF=DE,
    设DE=FE=x,则CG=3,EC=6−x.
    在直角△ECG中,根据勾股定理,得:
    (6−x)2+9=(x+3)2,
    解得x=2.
    则DE=2.
    熟练掌握翻折变换、正方形的性质、全等三角形的判定与性质是本题的解题关键.
    7、A
    【解析】
    根据众数的定义求解即可.
    【详解】
    ∵4出现的次数最多,
    ∴众数是4.
    故选A.
    本题考查了众数及中位数的定义,众数是一组数据中出现次数最多的那个数.
    8、A
    【解析】
    先利用勾股定理的逆定理得出∠B=90°,再利用三角函数求出∠A、∠C即可.
    【详解】
    ∵△ABC中,AC=4,BC=2,AB=2,
    ∴=2+,即=+,
    ∴△ABC是直角三角形,且∠B=90°,
    ∵AC=2 AB,
    ∴∠C=30°,
    ∴∠A=90°-∠C=60°.
    故选:A.
    本题考查了勾股定理的逆定理、含30度角的直角三角形的性质,如果三角形的三边长满足,那么这个三角形就是直角三角形.求出∠B=90°是解题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、y=﹣x+
    【解析】
    在Rt△OAB中,OA=4,OB=3,用勾股定理计算出AB=5,再根据折叠的性质得BA′=BA=5,CA′=CA,则OA′=BA′﹣OB=2,设OC=t,则CA=CA′=4﹣t,在Rt△OA′C中,根据勾股定理得到t2+22=(4﹣t)2,解得t=,则C点坐标为(0,),然后利用待定系数法确定直线BC的解析式
    【详解】
    解:∵A(0,4),B(3,0),
    ∴OA=4,OB=3,
    在Rt△OAB中,AB==5,
    ∵△AOB沿过点B的直线折叠,使点A落在x轴上的点A′处,
    ∴BA′=BA=5,CA′=CA,
    ∴OA′=BA′﹣OB=5﹣3=2,
    设OC=t,则CA=CA′=4﹣t,
    在Rt△OA′C中,
    ∵OC2+OA′2=CA′2,
    ∴t2+22=(4﹣t)2,解得t=,
    ∴C点坐标为(0,),
    设直线BC的解析式为y=kx+b,
    把B(3,0)、C(0,)代入得,解得
    ∴直线BC的解析式为y=﹣x+
    故答案为y=﹣x+.
    【考点】
    翻折变换(折叠问题);待定系数法求一次函数解析式.
    10、
    【解析】
    设BE=x,则CE=5-x,在Rt△ABE和Rt△ACE中,由勾股定理表示出AE的平方,列出方程求解并进一步得到AE的长.
    【详解】
    设BE=x,则CE=5-x,在Rt△ABE和Rt△ACE中,由勾股定理可得:
    所以
    解得,
    所以AE=.
    考点:1.菱形的性质;2.勾股定理.
    11、x≥2
    【解析】
    根据题意可得2x﹣4≥0,然后求解关于x的一元一次不等式即可.
    【详解】
    解:∵有意义,
    ∴2x﹣4≥0,
    解得:x≥2.
    故答案为x≥2.
    本题考查了算术平方根有意义,解一元一次不等式,解此题的关键在于熟练掌握其知识点.
    12、9
    【解析】
    根据二次根式的性质进行化简即可.
    【详解】
    =|-9|=9.
    故答案为:9.
    此题主要考查了二次根式的化简,注意:.

    13、 m>0
    【解析】
    分析:(1)根据正比例函数的性质可得出m的值;
    (2)根据一次函数的性质列出关于m的不等式,求出m的取值范围即可.
    详解:直线过原点,则 ;即,解得: ;
    函数随的增大而增大 ,说明 ,即 ,解得:;
    故分别应填:;m>0 .
    点睛:本题考查的是一次函数的图象与系数的关系,熟知一次函数的定义及增减性是解答此题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、的最小值是1.
    【解析】
    连接,,根据点与点关于对称和正方形的性质得到DN+MN的最小值即为线段BM的长.
    【详解】
    解:∵四边形是正方形,
    ∴点关于的对称点是点.
    连接,,且交于点,与交于点,此时的值最小.
    ∵,正方形的边长为8,
    ∴,.
    由,知.
    又∵点与点关于对称,
    ∴且平分.∴.
    ∴.
    ∴的最小值是1.
    本题考查轴对称的应用和勾股定理的基本概念.解答本题的关键是读懂题意,知道根据正方形的性质得到DN+MN的最小值即为线段BM的长.
    15、(1)见解析;(2)1.
    【解析】
    (1)先证四边形ABEF为平行四边形,继而再根据AB=AF,即可得四边形ABEF为菱形;
    (2)由四边形ABEF为菱形可得AE⊥BF,BO=FB=3,AE=2AO,在Rt△AOB中,求出AO的长即可得答案.
    【详解】
    (1)由尺规作∠BAF的角平分线的过程可得AB=AF,∠BAE=∠FAE,
    ∵四边形ABCD是平行四边形,
    ∴AD∥BC,
    ∴∠FAE=∠AEB,
    ∴∠BAE=∠AEB,
    ∴AB=BE,
    ∴BE=FA,
    ∴四边形ABEF为平行四边形,
    ∵AB=AF,
    ∴四边形ABEF为菱形;
    (2)∵四边形ABEF为菱形,
    ∴AE⊥BF,BO=FB=3,AE=2AO,
    在Rt△AOB中,AO==4,
    ∴AE=2AO=1.
    本题考查了平行四边形的性质,菱形的判定与性质,熟练掌握相关知识是解题的关键.
    16、(1)证明见解析;
    (2)∠BDM的度数为45°;
    (3)∠BDG的度数为60°.
    【解析】
    (1)平行四边形的性质可得AD∥BC,AB∥CD,再根据平行线的性质证明∠CEF=∠CFE,根据等角对等边可得CE=CF,再有条件四边形ECFG是平行四边形,可得四边形ECFG为菱形;
    (2)首先证明四边形ECFG为正方形,再证明△BME≌△DMC可得DM=BM,∠DMC=∠BME,再根据∠BMD=∠BME+∠EMD=∠DMC+∠EMD=90°可得到∠BDM的度数;
    (3)延长AB、FG交于H,连接HD,求证平行四边形AHFD为菱形,得出△ADH,△DHF为全等的等边三角形,证明△BHD≌△GFD,即可得出答案.
    【详解】
    (1)∵AF平分∠BAD,
    ∴∠BAF=∠DAF,
    ∵四边形ABCD是平行四边形,
    ∴AD∥BC,AB∥CD,
    ∴∠DAF=∠CEF,∠BAF=∠CFE,
    ∴∠CEF=∠CFE,
    ∴CE=CF,
    又∵四边形ECFG是平行四边形,
    ∴四边形ECFG为菱形.
    (2)如图,连接BM,MC,
    ∵∠ABC=90°,四边形ABCD是平行四边形,
    ∴四边形ABCD是矩形,
    又由(1)可知四边形ECFG为菱形,
    ∠ECF=90°,
    ∴四边形ECFG为正方形.
    ∵∠BAF=∠DAF,
    ∴BE=AB=DC,
    ∵M为EF中点,
    ∴∠CEM=∠ECM=45°,
    ∴∠BEM=∠DCM=135°,
    在△BME和△DMC中,

    ∴△BME≌△DMC(SAS),
    ∴MB=MD,
    ∠DMC=∠BME.
    ∴∠BMD=∠BME+∠EMD=∠DMC+∠EMD=90°,
    ∴△BMD是等腰直角三角形,
    ∴∠BDM=45°;
    (3)∠BDG=60°,
    延长AB、FG交于H,连接HD.
    ∵AD∥GF,AB∥DF,
    ∴四边形AHFD为平行四边形,
    ∵∠ABC=120°,AF平分∠BAD,
    ∴∠DAF=30°,∠ADC=120°,∠DFA=30°,
    ∴△DAF为等腰三角形,
    ∴AD=DF,
    ∴平行四边形AHFD为菱形,
    ∴△ADH,△DHF为全等的等边三角形,
    ∴DH=DF,∠BHD=∠GFD=60°,
    ∵FG=CE,CE=CF,CF=BH,
    ∴BH=GF,
    在△BHD与△GFD中,
    ∵,
    ∴△BHD≌△GFD(SAS),
    ∴∠BDH=∠GDF
    ∴∠BDG=∠BDH+∠HDG=∠GDF+∠HDG=60°.
    此题主要考查平行四边形的判定方法,全等三角形的判定与性质,等边三角形的判定与性质,菱形的判定与性质等知识点,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.
    17、(1)见详解;(2)见详解;(3)是,见详解
    【解析】
    (1)由题意得出,需将点B与点C先向左平移3个单位,再向下平移1个单位,据此可得;
    (2)分别作出三顶点分别关于点D的对称点,再首尾顺次连接可得;
    (3)连接两组对应点即可得.
    【详解】
    解:(1)如图所示,即为所求.
    (2)如图所示,即为所求;
    (3)是,如图所示,与是关于点成中心对称.
    本题主要考查作图-旋转变换和平移变换,解题的关键是熟练掌握旋转变换和平移变换的定义和性质,并据此得出变换后的对应点.
    18、(1)详情见解析;(2)①15°,②
    【解析】
    (1)通过证明△ABD≅△ACE进一步求证即可;
    (2)①连接AF、AG,利用直角三角形斜边的中线等于斜边的一半求出AF=BD=BF,AG=CE=GC,由此进一步证明△AFG为等边三角形,最后利用△ABF≅△ACG进一步求解即可;②连接BC,再连接EF、DG并延长分别交BC于点M、N,首先根据题意求得BM=DE=NC,然后利用△ABC~△AED进一步求解即可.
    【详解】
    (1)在△ABD与△ACE中,
    ∵AB=AC,∠A=∠A,AD=AE,
    ∴△ABD≅△ACE(SAS),
    ∴BD=CE;
    (2)①连接AF、AG,
    ∵AF、AG分别为Rt△ABD、Rt△ACE的斜边中线,
    ∴AF=BD=BF,AG=CE=GC,
    又∵BD=CE,FG=BD,
    ∴AF=AG=FG,
    ∴△AFG为等边三角形,
    易证△ABF≅△ACG(SSS),
    ∴∠BAF=∠B=∠C=∠CAG,
    ∴∠C=15°;
    ②连接BC、DE,再连接EF、DG并延长分别交BC于点M、N,
    ∵△ABC与△AED都是等腰直角三角形,
    ∴DE∥BC,
    ∵F、G分别是BD、CE的中点,
    ∴易证△DEF≅△BMF,△DEG≅△NCG(ASA),
    ∴BM=DE=NC,
    若四边形DEFG为矩形,则DE=FG=MN,
    ∴,
    ∵DE∥BC,
    ∴△ABC~△AED,
    ∴,
    ∵AC=4,
    ∴AD=,
    ∴当AD的长为时,四边形DEFG为矩形.
    本题主要考查了全等三角形性质与判定和相似三角形性质与判定及直角三角形性质和矩形性质的综合运用,熟练掌握相关概念是解题关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、1
    【解析】
    根据菱形的面积等于对角线积的一半,即可求得答案.
    【详解】
    解:∵在菱形ABCD中,对角线AC=30,BD=60,
    ∴菱形ABCD的面积为:AC•BD=1.
    故答案为:1.
    此题考查了菱形的性质.注意菱形的面积等于对角线积的一半.
    20、八(或8)
    【解析】
    分析:根据正多边形的每一个内角为,求出正多边形的每一个外角,根据多边形的外角和,即可求出正多边形的边数.
    详解:根据正多边形的每一个内角为,
    正多边形的每一个外角为:
    多边形的边数为:
    故答案为八.
    点睛:考查多边形的外角和,掌握多边形的外角和是解题的关键.
    21、乙
    【解析】
    由于甲的面试成绩低于80分,根据公司规定甲被淘汰;再将乙与丙的总成绩按比例求出测试成绩,比较得出结果.
    【详解】
    解:∵该公司规定:笔试,面试、体能得分分别不得低于80分,80分,70分,
    ∴甲淘汰;
    乙成绩=85×60%+80×30%+75×10%=82.5,
    丙成绩=80×60%+90×30%+73×10%=82.3,
    乙将被录取.
    故答案为:乙.
    本题考查了加权平均数的计算.平均数等于所有数据的和除以数据的个数.
    22、1
    【解析】
    分式的值为零:分子等于零,且分母不等于零,由此得到1-|x|=2且x+1≠2,从而得到x的值.
    【详解】
    依题意得:1-|x|=2且x+1≠2,
    解得x=1.
    故答案是:1.
    本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为2;(2)分母不为2.这两个条件缺一不可.
    23、4
    【解析】
    由题意得,在直角三角形中,知道了两直角边,运用勾股定理即可求出斜边,从而得出木杆顶端落在地面的位置离木杆底端的距离.
    【详解】
    一颗垂直于地面的木杆在离地面处折断,木杆折断前的高度为,
    木杆顶端落在地面的位置离木杆底端的距离为.
    故答案为:.
    此题考查了勾股定理的应用,主要考查学生对勾股定理在实际生活中的运用能力.
    二、解答题(本大题共3个小题,共30分)
    24、(1)详见解析;(2)四边形ADCF为矩形时AB=AC,理由详见解析.
    【解析】
    (1)利用△AEF≌△DEB得到AF=DB,所以AF=DC,根据一组对边平行且相等的四边形是平行四边形可证明四边形ADCF为平行四边形;
    (2)利用等腰三角形的性质以及矩形的性质得出即可.
    【详解】
    (1)∵AF∥BC,
    ∴∠FAE=∠EDB,∠AFE=∠EBD.
    又∵AE=ED,
    ∴△AEF≌△DEB(AAS),
    ∴AF=DB,
    又∵BD=DC,
    ∴AF=DC,
    ∴四边形ADCF为平行四边形;
    (2)四边形ADCF为矩形时AB=AC;
    理由:∵四边形ADCF为矩形,
    ∴AD⊥BC,
    ∴∠ADC=90°,
    ∵D为BC的中点,
    ∴AB=AC,
    ∴四边形ADCF为矩形时AB=AC.
    此题主要考查了矩形的性质和全等三角形的判定等知识,利用了全等三角形的判定与性质,平行四边形的判定,矩形的性质是解题关键.
    25、 (1)证明见解析;(2)k=±4.
    【解析】
    (1)证明根的判别式△≥0即可;
    (2)由根与系数的关系可得,,继而利用完全平方公式的变形可得关于k的方程,解方程即可.
    【详解】
    (1),

    ∵,
    ∴Δ≥0,
    方程总有两个实数根;
    (2),,
    ∴,
    ∴.
    本题考查了一元二次方程根的判别式,根与系数的关系,熟练掌握相关知识是解题的关键.
    26、(1)9;(2)
    【解析】
    (1)直接利用二次根式的性质分别化简得出答案;
    (2)将方程化为一般性质,然后利用因式分解法解方程.
    【详解】
    (1)原式=9;
    (2)原方程可化为
    解得:
    此题主要考查了二次根式的混合运算和解一元二次方程,解题的关键是掌握一元二次方程的解法和二次根式的性质,本题是属于基础题型.
    题号





    总分
    得分
    批阅人
    笔试
    面试
    体能

    83
    79
    90

    85
    80
    75

    80
    90
    73

    相关试卷

    2024年重庆市涪陵区第十九中学数学九上开学预测试题【含答案】:

    这是一份2024年重庆市涪陵区第十九中学数学九上开学预测试题【含答案】,共20页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。

    2024-2025学年重庆市涪陵区名校数学九上开学统考模拟试题【含答案】:

    这是一份2024-2025学年重庆市涪陵区名校数学九上开学统考模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年重庆市涪陵区名校数学九上开学统考模拟试题【含答案】:

    这是一份2024-2025学年重庆市涪陵区名校数学九上开学统考模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map