2025届安徽省安庆市九一六校数学九年级第一学期开学达标检测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,有一个水池,其底面是边长为16尺的正方形,一根芦苇AB生长在它的正中央,高出水面部分BC的长为2尺,如果把该芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部B恰好碰到岸边的B′,则这根芦苇AB的长是( )
A.15尺B.16尺C.17尺D.18尺
2、(4分)已知反比例函数的图象过点M(-1,2),则此反比例函数的表达式为( )
A.y=B.y=-C.y=D.y=-
3、(4分)用科学记数法表示,结果为( )
A.B.C.D.
4、(4分)下列选择中,是直角三角形的三边长的是( )
A.1,2,3B.,,C.3,4,6D.4,5,6
5、(4分)下列计算正确的是( )
A.B.C.D.
6、(4分)下列各曲线表示的y与x的关系中,y不是x的函数的是( )
A.B.
C.D.
7、(4分)要使代数式有意义,则x的取值范围是( )
A.x≠2B.x≥2C.x>2D.x≤2
8、(4分)已知关于的一元二次方程的一个根是,则的值为( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)下表是某校女子羽毛球队队员的年龄分布:
则该校女子排球队队员年龄的中位数为__________岁.
10、(4分)抽取某校学生一个容量为150的样本,测得学生身高后,得到身高频数分布直方图如图,已知该校有学生1500人,则可以估计出该校身高位于160 cm和165 cm之间的学生大约有_______人.
11、(4分)如图,直线l过正方形ABCD的顶点B,点A、C到直线l的距离AE、CF分别是1cm、2cm,则线段EF的长为 ______cm.
12、(4分)已知▱ABCD的两条对角线相交于O,若∠ABC=120°,AB=BC=4,则OD=______.
13、(4分)如图,的对角线相交于点,点分别是线段的中点,若厘米,的周长是厘米,则__________厘米.
三、解答题(本大题共5个小题,共48分)
14、(12分)已知:关于x的方程有两个不相等的实数根.
(1)求m的取值范围;
(2)若m为正整数,且该方程的根都是整数,求m的值.
15、(8分)我们用a表示不大于 a 的最大整数,用 a 表示大于 a 的最小整数.例如:2.5 2 ,3 3 , 2.5 3 ;<2.5> 3 ,<4> 5 ,< 1.5> 1 .解决下列问题:
(1) 4.5 ,< 3.5> .
(2)若x 2 ,则 < x> 的取值范围是 ;若< y > 1,则 y 的取值范围是 .
(3)已知 x, y 满足方程组;求 x, y 的取值范围.
16、(8分)暑假期间某景区商店推出销售纪念品活动,已知纪念品每件的进货价为30元,经市场调研发现,当该纪念品的销售单价为40元时,每天可销售280件;当销售单价每增加1元,每天的销售数量将减少10件. (销售利润=销售总额-进货成本)
(1)若该纪念品的销售单价为45元时则当天销售量为______件。
(2)当该纪念品的销售单价为多少元时,该产品的当天销售利润是2610元。
(3)该纪念品的当天销售利润有可能达到3700元吗?若能,请求出此时的销售单价;若不能,请说明理由。
17、(10分)如图1所示,在A,B两地之间有汽车站C站,客车由A地驶往C站,货车由B地驶往A地。两车同时出发,匀速行驶。图2是客车、货车离C站的路程y ,y (千米)与行驶时间x(小时)之间的函数关系图象。
(1)填空:A,B两地相距___千米;货车的速度是___千米/时。
(2)求两小时后,货车离C站的路程y 与行驶时间x之间的函数表达式;
(3)客、货两车何时距离不大于30km?
18、(10分)如图,直线分别与轴、轴交于两点,与直线交于点.
(1)点坐标为( , ),B为( , ).
(2)在线段上有一点,过点作轴的平行线交直线于点,设点的横坐标为,若四边形是平行四边形时,求出此时的值.
(3)若点为轴正半轴上一点,且,则在轴上是否存在一点,使得四个点能构成一个梯形若存在,求出所有符合条件的点坐标;若不存在,请说明理由.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)若直角三角形两边的长分别为a、b且满足+|b-4|=0,则第三边的长是 _________.
20、(4分)在▱ABCD中,对角线AC和BD交于点O,AB=2,AC=6,BD=8,那么△COD的周长为_____.
21、(4分)汽车开始行驶时,油箱中有油40L,如果每小时耗油5L,则油箱内余油量y(L)与行驶时间x(h)的关系式为_____.
22、(4分)一个数的平方等于这个数本身,这个数为_________.
23、(4分)定义:等腰三角形的顶角与其一个底角的度数的比值称为这个等腰三角形的“特征值”.若等腰中,,则它的特征值__________.
二、解答题(本大题共3个小题,共30分)
24、(8分)用适当的方法解下列方程:
(1)
(2)
25、(10分)在平面直角坐标系中,△ABC的位置如图所示(每个小方格都是边长为1个单位长度的正方形).
(1)将△ABC沿x轴方向向左平移6个单位长度,画出平移后得到的△A1B1C1;
(2)将△ABC绕着点A顺时针旋转90°,画出旋转后得到的△AB2C2;
(3)直接写出点B2,C2的坐标.
26、(12分)小明到服装店参加社会实践活动,服装店经理让小明帮助解决以下问题:
服装店准备购进甲乙两种服装,甲种每件进价80元,售价120元;乙种每件进价60元,售价90元.计划购进两种服装共100件,其中甲种服装不少于65件.
(1)若购进这100件服装的费用不得超过7500,则甲种服装最多购进多少件?
(2)在(1)的条件下,该服装店对甲种服装以每件优惠a(0<a<20)元的价格进行优惠促销活动,乙种服装价格不变,那么该服装店应如何调整进货方案才能获得最大利润?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
我们可以将其转化为数学几何图形,如图所示,根据题意,可知EB'的长为16尺,则B'C=8尺,设出AB=AB'=x尺,表示出水深AC,根据勾股定理建立方程,求出的方程的解即可得到芦苇的长.
【详解】
解:依题意画出图形,
设芦苇长AB=AB′=x尺,则水深AC=(x-2)尺,
因为B'E=16尺,所以B'C=8尺
在Rt△AB'C中,82+(x-2)2=x2,
解之得:x=17,
即芦苇长17尺.
故选C.
本题主要考查勾股定理的应用,熟悉数形结合的解题思想是解题关键.
2、B
【解析】
函数经过一定点,将此点坐标代入函数解析式y=(k≠0),即可求得k的值.
【详解】
设反比例函数的解析式为y=(k≠0).
∵该函数的图象过点M(−1,2),
∴2=,
得k=−2.
∴反比例函数解析式为y=-.故选B.
本题考查了待定系数法求反比例函数解析式,解题的关键是掌握待定系数法求反比例函数解析式的方法和步骤.
3、B
【解析】
小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【详解】
﹣0.000 001 4=﹣1.4×10﹣1.
故选B.
本题考查了用科学记数法表示较小的数.一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
4、B
【解析】
由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.
【详解】
解:A、12+22≠32,故不能组成直角三角形;
B、()2+()2=()2,故能组成直角三角形;
C、32+42≠62,故不能组成直角三角形;
D、42+52≠62,故不能组成直角三角形.
故选:B.
本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.
5、C
【解析】
根据二次根式的性质和计算法则分别计算可得正确选项。
【详解】
解:A、 不是同类二次根式,不能合并,故本选项错误;
B、不是同类二次根式,不能合并,故本选项错误;
C、正确;
D、,故故本选项错误。
故选:C
本题考查了二次根式的性质和运算,掌握运算法则是关键。
6、C
【解析】
根据函数的意义即可求出答案.函数的意义反映在图象上简单的判断方法是:做垂直x轴的直线在左右平移的过程中与函数图象只会有一个交点.
【详解】
根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,所以只有选项C不满足条件.
故选C.
本题主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.
7、B
【解析】
二次根式的被开方数x-2是非负数.
【详解】
解:根据题意,得
x-2≥0,
解得,x≥2;
故选:B.
考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.
8、C
【解析】
把x=-2代入,即可求出a的值.
【详解】
把x=-2代入,得
4-2a-a=0,
∴a=.
故选C.
本题考查了一元二次方程解的定义,能使一元二次方程成立的未知数的值叫作一元二次方程的解,熟练掌握一元二次方程解得定义是解答本题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、15.
【解析】
中位数有2种情况,共有2n+1个数据时,从小到大排列后,,中位数应为第n+1个数据,可见,大于中位数与小于中位数的数据都为n个;共有2n+2个数据时,从小到大排列后,中位数为中间两个数据平均值,大小介于这两个数据之间,可见大于中位数与小于中位数的数据都为n+1个,所以这组数据中大于或小于这个中位数的数据各占一半,中位数有一个.
【详解】
解:总数据有5个,中位数是从小到大排,第3个数据为中位数,即15为这组数据的中位数.
故答案为:15
本题考查中位数的定义,解题关键是熟练掌握中位数的计算方法,即中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).
10、1
【解析】
根据频率直方图的意义,由用样本估计总体的方法可得样本中160~165的人数,进而可得其频率;计算可得1500名学生中身高位于160cm至165cm之间的人数
【详解】
解:由题意可知:150名样本中160~165的人数为30人,则其频率为,
则1500名学生中身高位于160cm至165cm之间大约有1500×=1人.
故答案为1.
本题考查读频数分布直方图的能力和利用统计图获取信息的能力;同时本题很好的考查了用样本来估计总体的数学思想.
11、3
【解析】
∵四边形ABCD为正方形,
∴AB=BC,∠ABC=90°.
∵AE⊥l,CF⊥l,
∴∠E=∠F=90°,∠EAB+∠ABE=90°,∠FBC+∠BCF=90°.
∵∠ABE+∠ABC+∠FBC=180°,
∴∠ABE+∠FBC=90°,
∴∠EAB=∠FBC.
在△ABE和△BCF中,
,
∴△ABE≌△BCF(AAS),
∴BE=CF=2cm,BF=AE=1cm,
∴EF=BE+BF=2+1=3cm.
故答案为3.
12、1
【解析】
根据菱形的判定可得▱ABCD是菱形,再根据性质求得∠BCO的度数,可求OB,进一步求得OD的长.
【详解】
解:∵四边形ABCD是平行四边形,AB=BC=4,
∴▱ABCD是菱形,
∵∠ABC=110°,
∴∠BCO=30°,∠BOC=90°,
∴OB==1,
∴OD=1.
故答案为:1.
本题主要考查了平行四边形的性质、菱形的性质、30度角所对的直角边等于斜边的一半,解决问题的关键是掌握:菱形的对角线平分每一组对角.
13、
【解析】
先由平行四边形的性质求出OA+OB的值,再由的周长是厘米,求出AB的值,然后根据三角形的中位线即可求出EF的值.
【详解】
∵四边形ABCD是平行四边形,厘米,
∴OA+OB=12厘米,
∵的周长是厘米,
∴AB=20-12=8厘米,
∵点分别是线段的中点,
∴EF是的中位线,
∴EF=AB=4厘米.
故答案为:4.
本题考查了平行四边形的性质,三角形中位线的判定与性质. 三角形的中位线平行于第三边,并且等于第三边的一半.
三、解答题(本大题共5个小题,共48分)
14、(1);(2)m的值为1.
【解析】
(1)根据题意得出△>0,代入求出即可;
(2)求出m=1,2或1,代入后求出方程的解,即可得出答案.
【详解】
解:(1)∵关于x的方程有两个不相等的实数根,
∴△=.
∴;
(2)∵且m为正整数,
∴m可取1、2、1.
当m=1时,的根不是整数,不符合题意;
当m=2时,的根不是整数,不符合题意;
当m=1时,,根为,,符合题意.
∴m的值为1.
本题考查根的判别式和解一元二次方程,能根据题意求出m的值和m的范围是解题的关键.
15、(1)-5,4;(1)1≤x<3,-1≤y<-1;(3)-1≤x<0, 1≤y<1
【解析】
(1)根据题目所给信息求解;
(1)根据[1.5]=1,[3]=3,[-1.5]=-3,可得[x]=1中的1≤x<3,根据<a>表示大于a的最小整数,可得<y>=-1中,-1≤y<-1;
(3)先求出[x]和<y>的值,然后求出x和y的取值范围.
【详解】
解:(1)由题意得:[-4.5]=-5,<y>=4;
故答案为:-5,4;
(1)∵[x]=1,
∴x的取值范围是1≤x<3;
∵<y>=-1,
∴y的取值范围是-1≤y<-1;
故答案为:1≤x<3,-1≤y<-1;
(3)解方程组,
得: ,
∴x的取值范围为-1≤x<0,y的取值范围为1≤y<1.
本题考查了一元一次不等式的应用与解二元一次方程组,解答本题的关键是读懂题意,根据题目所给的信息进行解答.
16、(1)1.(2)当该纪念品的销售单价为2元时,该产品的当天销售利润是2613元.(3)不能,理由见解析.
【解析】
(1)根据当天销售量=283﹣13×增加的销售单价,即可求出结论;
(2)设该纪念品的销售单价为x元(x>43),则当天的销售量为[283﹣(x﹣43)×13]件,根据当天的销售利润=每件的利润×当天销售量,即可得出关于x的一元二次方程,解之取其较大值即可得出结论;
(3)设该纪念品的销售单价为y元(y>43),则当天的销售量为[283﹣(y﹣43)×13]件,根据当天的销售利润=每件的利润×当天销售量,即可得出关于y的一元二次方程,由该方程根的判别式△=﹣36<3,可得出该方程无解,进而可得出该纪念品的当天销售利润不能达到3733元.
【详解】
解:(1)283﹣(45﹣43)×13=1(件).故答案为:1.
(2)设该纪念品的销售单价为x元(x>43),则当天的销售量为[283﹣(x﹣43)×13]件,
依题意,得:(x﹣33)[283﹣(x﹣43)×13]=2613,整理,得:x2﹣98x+11=3,整理,得:x1=39(不合题意,舍去),x2=2.
答:当该纪念品的销售单价为2元时,该产品的当天销售利润是2613元.
(3)不能,理由如下:
设该纪念品的销售单价为y元(y>43),则当天的销售量为[283﹣(y﹣43)×13]件,
依题意,得:(y﹣33)[283﹣(y﹣43)×13]=3733,
整理,得:y2﹣98y+2413=3.
∵△=(﹣98)2﹣4×1×2413=﹣36<3,
∴该方程无解,即该纪念品的当天销售利润不能达到3733元.
本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.
17、(1)420,30;(2)y=30x−60;(3)当客车行驶的时间x, ⩽x⩽5时,客、货两车相距不大于30千米.
【解析】
(1)根据图象中的数据即可得到A,B两地的距离;
(2)根据函数图象中的数据即可得到两小时后,货车离C站的路程y与行驶时间x之间的函数关系式;
(3)根据题意可以分相遇前和相遇后两种情况进行解答.
【详解】
(1)由题意和图象可得,
A,B两地相距:360+60=420千米,
货车的速度=60÷2=30千米/小时,
故答案为:420,30;
(2)设两小时后,货车离C站的路程y与行驶时间x之间的函数关系式为y=kx+b,
由图象可得,货车的速度为:60÷2=30千米/时,
则点P的横坐标为:2+360÷30=14,
∴点P的坐标为(14,360),
,得 ,
即两小时后,货车离C站的路程y与行驶时间x之间的函数关系式为y=30x−60;
(3)由题意可得,
相遇前两车相距150千米用的时间为:(420−30)÷(60÷2+360÷6)= (小时),
相遇后两车相距150千米用的时间为:+(30×2)÷(60÷2+360÷6)=5(小时),
当客车行驶的时间x, ⩽x⩽5时,客、货两车相距不大于30千米。
此题考查一次函数的应用,解题关键在于看懂图中数据
18、(1)点的坐标是,点的坐标是;(2);(3)符合条件的点坐标为
【解析】
(1)先将点C坐标代入直线l1中,求出直线l1的解析式,令x=0和y=0,即可得出结论;
(2)先求出直线l2的解析式,表示出点E,F的坐标,在判断出OB=EF,建立方程求解,即可得出结论;
(3)先求出点P的坐标,分两种情况求出直线PQ,AQ的解析式,即可得出结论.
【详解】
解:(1)∵点C(2,)在直线l1:上,
∴,
∴直线l1的解析式为,
令x=0,∴y=3,∴B(0,3),
令y=0,∴,∴x=4,∴A(4,0),
故答案为:点的坐标是,点的坐标是.
(2)∵轴,点的横坐标为,∴点的横坐标也为,
∵直线与直线交于点
∵点是直线的一点,
∴点E的坐标是,
∵点是直线上的一点,
∴点的坐标是
∵当
(3)若点为轴正半轴上一点,,,
∴,.
当时
直线AB的解析式为:
直线PQ的解析式为
∴点的坐标是
当时
直线BP的解析式为,
直线AQ的解析式为
∴点的坐标是
综上,在平面直角坐标系中存在点,使得四个点能构成一个梯形,符合条件的点坐标为
此题是一次函数综合题,主要考查了待定系数法,平行四边形的性质,三角形的面积公式,利用方程的思想解决问题是解本题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、2或
【解析】
首先利用绝对值以及算术平方根的性质得出a,b的值,再利用分类讨论结合勾股定理求出第三边长.
【详解】
解:∵+|b-4|=0,
∴b=4,a=1.
当b=4,a=1时,第三边应为斜边,
∴第三边为;
当b=4,a=1时,则第三边可能是直角边,其长为 =2.
故答案为:2或.
本题考查了利用勾股定理解直角三角形的能力,当已知条件中没有明确哪是斜边时,要注意讨论,一些学生往往忽略这一点,造成丢解.
20、1
【解析】
△COD的周长=OC+OD+CD,根据平行四边形的对角线互相平分的性质求得OC与OD的长,根据平行四边形的对边相等可得CD=AB=2,进而求得答案
【详解】
解:∵四边形ABCD是平行四边形,
∴OC=OA=AC=3,OD=OB=BD=4,CD=AB=2,
∴△COD的周长=OC+OD+CD=3+4+2=1.
故答案为1.
此题考查平行四边形的性质,解题关键在于画出图形
21、y=40-5x
【解析】
直接利用汽车耗油量结合油箱的容积,进而得出油箱内剩余油量y(L)与行驶时间x(h)的关系式.
【详解】
由题意可得:y=40-5x.
故答案为y=40-5x.
此题主要考查了函数关系式,根据汽车耗油量得出函数关系式是解题关键.
22、0或1
【解析】
根据特殊数的平方的性质解答.
【详解】
解:平方等于这个数本身的数只有0,1.
故答案为:0或1.
此题考查了特殊数值的平方的性质,要注意平时在学习中进行积累.
23、
【解析】
可知等腰三角形的两底角相等,则可求得底角的度数.从而可求解
【详解】
解:
①当为顶角时,等腰三角形两底角的度数为:
∴特征值
②当为底角时,顶角的度数为:
∴特征值
综上所述,特征值为或
故答案为或
本题主要考查等腰三角形的性质,熟记等腰三角形的性质是解题的关键,要注意到本题中,已知的底数,要进行判断是底角或顶角,以免造成答案的遗漏.
二、解答题(本大题共3个小题,共30分)
24、(1);(2).
【解析】
(1)首先分解因式,再用十字相乘法计算;
(2)首先转化形式,然后直接采用平方差公式计算.
【详解】
原方程可转化为:
原方程可转化为:
此题主要考查一元二次方程的解法,熟练运用,即可解题.
25、(1)答案见解析;(2)答案见解析;(3)点B2(4,-2),C2(1,-3).
【解析】
试题分析:(1)利用点平移的规律写出点A、B、C的对应点A1、B1、C1的坐标,然后描点即可得到△A1B1C1;
(2)利用网格特点和旋转的性质画出点B、C的对应点B2、C2,从而得到△AB2C2,再写出点B2、C2的坐标.
试题解析:解:(1)如图,△A1B1C1即为所求;
(2)如图,△AB2C2即为所求,点B2(4,﹣2),C2(1,﹣3).
26、(1)75件(2)当x=65时,w有最大值,则购进甲种服装65件,乙种服装35件
【解析】
(1)根据题意设购进甲种服装x件,可知购进甲需80x元,则乙为60(100-x)元,再根据二者之和不超过7500元,可列不等式,求解集可得结果;
(2)根据要求设总利润为w元,因为甲种服装不少于65件,所以65≤x≤75,因此甲的利润为(120-80-a)元,乙的利润为(90-60-a)元,因此可得w=(10-a)x+3000,然后分情况讨论设计方案,①当0<a<10时,由一次函数的性质可判断当x=65时,利润最大;②当a=10时,w=3000,二者一样;③当10<a<20时,根据一次函数的性质可判断,当x=75时,利润最大.
【详解】
解:(1)设购进甲种服装x件,由题意可知:
80x+60(100-x)≤7500
解得:x≤75
答:甲种服装最多购进75件.
(2)设总利润为w元,因为甲种服装不少于65件,所以65≤x≤75
W=(40-a)x+30(100-x)=(10-a)x+3000
方案1:当0<a<10时,10-a>0,w随x的增大而增大
所以当x=75时,w有最大值,则购进甲种服装75件,乙种服装25件;
方案2:当a=10时,所有方案获利相同,所以按哪种方案进货都可以;
方案3:当10<a<20时,10-a<0,w随x的增大而减小
所以当x=65时,w有最大值,则购进甲种服装65件,乙种服装35件.
考点:一元一次不等式,一次函数的应用
题号
一
二
三
四
五
总分
得分
年龄/岁
13
14
15
16
人数
1
1
2
1
2025届安徽省安庆九一六校数学九上开学教学质量检测模拟试题【含答案】: 这是一份2025届安徽省安庆九一六校数学九上开学教学质量检测模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年安徽省安庆市安庆九一六校九上数学开学学业质量监测试题【含答案】: 这是一份2024年安徽省安庆市安庆九一六校九上数学开学学业质量监测试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
安徽省安庆市九一六校2023-2024学年数学九上期末达标检测试题含答案: 这是一份安徽省安庆市九一六校2023-2024学年数学九上期末达标检测试题含答案,共8页。试卷主要包含了在中,,,则,如图,将Rt△ABC等内容,欢迎下载使用。