![人教版九年级数学上册同步备课22.3实际问题与二次函数(第二课时)(分层作业)【原卷版+解析】第1页](http://www.enxinlong.com/img-preview/2/3/16222127/0-1728196749306/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![人教版九年级数学上册同步备课22.3实际问题与二次函数(第二课时)(分层作业)【原卷版+解析】第2页](http://www.enxinlong.com/img-preview/2/3/16222127/0-1728196749352/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![人教版九年级数学上册同步备课22.3实际问题与二次函数(第二课时)(分层作业)【原卷版+解析】第3页](http://www.enxinlong.com/img-preview/2/3/16222127/0-1728196749369/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
所属成套资源:人教版九年级数学上册同步备课(分层作业)【原卷版+解析】
初中数学人教版(2024)九年级上册22.3 实际问题与二次函数第二课时同步测试题
展开
这是一份初中数学人教版(2024)九年级上册22.3 实际问题与二次函数第二课时同步测试题,共26页。试卷主要包含了农特产品展销推荐会在杨凌举行等内容,欢迎下载使用。
1.某商场降价销售一批名牌衬衫,已知所获得利润(元)与降价金额(元)之间的关系是,则获利最多为( )
A.元B.元C.元D.元
2.农特产品展销推荐会在杨凌举行.某农户销售一种商品,每千克成本价为40元.已知每千克售价不低于成本价,不超过80元.经调查,当每千克售价为50元时,每天的销量为100千克,且每千克售价每上涨1元,每天的销量就减少2千克,为使每天的销售利润最大,每千克的售价应定为( )
A.20B.60C.70D.80
3.2022年北京冬奥会举办期间,冬奥会吉祥物“冰墩墩”深受广大人民的喜爱.某特许零售店“冰墩墩”的销售日益火爆,每个纪念品进价40元.销售期间发现,当销售单价定为44元时,每天可售出300个,销售单价每降价1元,每天销量增加20个.现商家决定降价销售,设每天销售量为个,销售单价为元,商家每天销售纪念品获得的利润元,则下列等式正确的是( )
A.B.
C.D.
4.某商品现在的售价为每件35元,每天可卖出50件.市场调查反映:如果调整价格,每降价1元,每天可多卖出2件.请你帮助分析,当每件商品降价多少元时,可使每天的销售额最大,求最大销售额是( )
A.2500元B.2000元C.1800元D.2200元
5.2020年6月中旬以来,北京市新冠肺炎疫情出现反弹,北京市民对防疫物资需求量激增.某厂商计划投资产销一种消毒液,设每天产销量为x瓶,每日产销这种消毒液的有关信息如下表:(产销量指生产并销售的数量,生产多少就销售多少,不考虑滞销和脱销)若该消毒液的单日产销利润y元,当销量x为多少时,该消毒液的单日产销利润最大.( )
A.250B.300C.200D.550
6.如图是拱形大桥的示意图,桥拱与桥面的交点为O,B,以点O为原点,水平直线OB为x轴,建立平面直角坐标系,桥的拱形可以近似看成抛物线y=-0.01(x-20)2+4,桥拱与桥墩AC的交点C恰好位于水面,且AC⊥x轴,若OA=5米,则桥面离水面的高度AC为( )
A.米B.米C.米D.米
7.如图所示,一座抛物线形的拱桥在正常水位时,水面AB宽为20米,拱桥的最高点O到水面AB的距离为4米.如果此时水位上升3米就达到警戒水位CD,那么CD宽为( )
A.4米B.10米C.4米D.12米
8.如图是抛物线形的拱桥,当水面宽4m时,顶点离水面2m,当水面宽度增加到6m时,水面下降( )
A.1mB.1.5mC.2.5mD.2m
9.某池塘的截面如图所示,池底呈抛物线形,在图中建立平面直角坐标系,并标出相关数据(单位:m).有下列结论:
①;
②池底所在抛物线的解析式为;
③池塘最深处到水面CD的距离为1.8m;
④若池塘中水面的宽度减少为原来的一半,
则最深处到水面的距离减少为原来的.
其中结论正确的是( )
A.①②B.②④C.③④D.①④
10.某快餐店销售A、B两种快餐,每份利润分别为12元、8元,每天卖出份数分别为40份、80份.该店为了增加利润,准备降低每份A种快餐的利润,同时提高每份B种快餐的利润.售卖时发现,在一定范围内,每份A种快餐利润每降1元可多卖2份,每份B种快餐利润每提高1元就少卖2份.如果这两种快餐每天销售总份数不变,那么这两种快餐一天的总利润最多是 元.
11.北仑梅山所产的草莓柔嫩多汁,芳香味美,深受消费者喜爱.有一草莓种植大户,每天草莓的采摘量为300千克,当草莓的零售价为22元/千克时,刚好可以全部售完.经调查发现,零售价每上涨1元,每天的销量就减少30千克,而剩余的草莓可由批发商以18元/千克的价格统一收购走,则当草莓零售价为 元时,该种植户一天的销售收入最大.
12.网络销售已经成为一种热门的销售方式,某网络平台为一服装厂直播代销一种服装(这里代销指厂家先免费提供货源,待货物销售后再进行结算,未售出的由厂家负责处理).销售中发现每件售价为250元时,日销售量为40件,当每件衣服每下降10元时,日销售量就会增加8件.已知每售出1件衣服,该平台需支付厂家和其它费用共100元.设每件衣服售价为x(元),该网络平台的日销售量为y(件).则下列结论正确的是 (填写所有正确结论序号).
①y与x的关系式是y=-x+240;
②y与x的关系式是y=x-160;
③设每天的利润为W元,则W与x的关系式是W=-x2+320x-24000;
④按照厂家规定,每件售价不得低于210元,若该经销商想要每天获得最大利润,当每件售价定为210元时,每天利润最大,此时最大利润为7920元.
13.某商店购进了一种消毒用品,进价为每件8元,在销售过程中发现,每天的销售量y(件)与每件售价x(元)之间存在一次函数关系(其中8≤x≤15,且x为整数).当每件消毒用品售价为9元时,每天的销售量为105件;当每件消毒用品售价为11元时,每天的销售量为95件.
(1)求y与x之间的函数关系式.
(2)若该商店销售这种消毒用品每天获得425元的利润,则每件消毒用品的售价为多少元?
(3)设该商店销售这种消毒用品每天获利w(元),当每件消毒用品的售价为多少元时,每天的销售利润最大?最大利润是多少元?
14.李大爷每天到批发市场购进某种水果进行销售,这种水果每箱10千克,批发商规定:整箱购买,一箱起售,每人一天购买不超过10箱;当购买1箱时,批发价为8.2元/千克,每多购买1箱,批发价每千克降低0.2元.根据李大爷的销售经验,这种水果售价为12元/千克时,每天可销售1箱;售价每千克降低0.5元,每天可多销售1箱.
(1)请求出这种水果批发价y(元/千克)与购进数量x(箱)之间的函数关系式;
(2)若每天购进的这种水果需当天全部售完,请你计算,李大爷每天应购进这种水果多少箱,才能使每天所获利润最大?最大利润是多少?
15.如图,三孔桥横截面的三个孔都呈抛物线形,左右两个抛物线形是全等的,正常水位时,大孔水面宽度为,顶点距水面,小孔顶点距水面.当水位上涨刚好淹没小孔时,求大孔的水面宽度.
.
16.一座隧道的截面由抛物线和长方形构成,长方形的长OC为8m,宽OA为2m,隧道最高点P位于AB的中央且距地面6m,建立如图所示的坐标系:
(1)求抛物线的解析式;
(2)一辆货车高4m,宽2m,能否从该隧道内通过,为什么?
(3)如果隧道内设双行道,两辆同样的上述货车相对而行,是否可以同时在隧道内顺利通过,为什么?
能力提升
1.某地的药材批发公司指导农民养植和销售某种药材,经市场调研发现1-8月份这种药材售价(元)与月份之间存在如下表所示的一次函数关系,同时,每千克的成本价(元)与月份之间近似满足如图所示的抛物线,观察两幅图表,试判断 月份出售这种药材获利最大.
2.如图,某单位的围墙由一段段形状相同的抛物线形栅栏组成,为了牢固,每段栅栏间隔0.2米设置一根立柱(即AB间间隔0.2米的7根立柱)进行加固,若立柱EF的长为0.28米,则拱高OC为 米
拔高拓展
1.三孔桥横截面的三个孔都呈抛物线形,两小孔形状、大小完全相同.当水面刚好淹没小孔时,大孔水面宽度为10米,孔顶离水面1.5米;当水位下降,大孔水面宽度为14米时,单个小孔的水面宽度为4米,若大孔水面宽度为20米,则单个小孔的水面宽度为( )
A.4米B.5米C.2米D.7米
2.根据以下素材,探索完成任务.
22.3 实际问题与二次函数(第二课时)分层作业
基础训练
1.某商场降价销售一批名牌衬衫,已知所获得利润(元)与降价金额(元)之间的关系是,则获利最多为( )
A.元B.元C.元D.元
【详解】解:对于抛物线,
,
时,有最大值,最大值为,
故选:D.
2.农特产品展销推荐会在杨凌举行.某农户销售一种商品,每千克成本价为40元.已知每千克售价不低于成本价,不超过80元.经调查,当每千克售价为50元时,每天的销量为100千克,且每千克售价每上涨1元,每天的销量就减少2千克,为使每天的销售利润最大,每千克的售价应定为( )
A.20B.60C.70D.80
【详解】解:设每千克上涨x元,利润为w元,根据题意,得
,
∵,
∴,
∵,
∴当时,w有最大值,最大值为1800元,
∴每千克的售价应定为(元).
故选:C.
3.2022年北京冬奥会举办期间,冬奥会吉祥物“冰墩墩”深受广大人民的喜爱.某特许零售店“冰墩墩”的销售日益火爆,每个纪念品进价40元.销售期间发现,当销售单价定为44元时,每天可售出300个,销售单价每降价1元,每天销量增加20个.现商家决定降价销售,设每天销售量为个,销售单价为元,商家每天销售纪念品获得的利润元,则下列等式正确的是( )
A.B.
C.D.
【详解】解:设每天销售量为个,销售单价为元,商家每天销售纪念品获得的利润元,
根据题意得,
则,
故选:D.
4.某商品现在的售价为每件35元,每天可卖出50件.市场调查反映:如果调整价格,每降价1元,每天可多卖出2件.请你帮助分析,当每件商品降价多少元时,可使每天的销售额最大,求最大销售额是( )
A.2500元B.2000元C.1800元D.2200元
【详解】解:设每件商品降价x元,每天的销售额为y元.
依题意有:
y=(35﹣x)(50+2x)
=﹣2x2+20x+1750
=﹣2(x﹣5)2+1800,
∵﹣2<0,
∴当x=5时,y最大,最大值为1800,
∴最大销售额为1800元.
故选:C.
5.2020年6月中旬以来,北京市新冠肺炎疫情出现反弹,北京市民对防疫物资需求量激增.某厂商计划投资产销一种消毒液,设每天产销量为x瓶,每日产销这种消毒液的有关信息如下表:(产销量指生产并销售的数量,生产多少就销售多少,不考虑滞销和脱销)若该消毒液的单日产销利润y元,当销量x为多少时,该消毒液的单日产销利润最大.( )
A.250B.300C.200D.550
【详解】解:根据题意,得
∴,
∴,
∵,
∴抛物线的开口向下,有最大值,
又∵,
∴当时,,
故选:D
6.如图是拱形大桥的示意图,桥拱与桥面的交点为O,B,以点O为原点,水平直线OB为x轴,建立平面直角坐标系,桥的拱形可以近似看成抛物线y=-0.01(x-20)2+4,桥拱与桥墩AC的交点C恰好位于水面,且AC⊥x轴,若OA=5米,则桥面离水面的高度AC为( )
A.米B.米C.米D.米
【详解】解:∵AC⊥x轴,OA=5米,
∴点C的横坐标为-5,
当x=-5时,y=-0.01(x-20)2+4=y=-0.01(-5-20)2+4=-2.25,
∴C(-5,-2.25),
∴桥面离水面的高度AC为2.25米.
故选:C.
7.如图所示,一座抛物线形的拱桥在正常水位时,水面AB宽为20米,拱桥的最高点O到水面AB的距离为4米.如果此时水位上升3米就达到警戒水位CD,那么CD宽为( )
A.4米B.10米C.4米D.12米
【详解】解:以O点为坐标原点,AB的垂直平分线为y轴,过O点作y轴的垂线,建立直角坐标系,
设抛物线的解析式为y=ax2,
∵O点到水面AB的距离为4米,
∴A、B点的纵坐标为﹣4,
∵水面AB宽为20米,
∴A(﹣10,﹣4),B(10,﹣4),
将A代入y=ax2,
﹣4=100a,
∴a=﹣,
∴y=﹣x2,
∵水位上升3米就达到警戒水位CD,
∴C点的纵坐标为﹣1,
∴﹣1=﹣x2,
∴x=±5,
∴CD=10,
故选:B.
8.如图是抛物线形的拱桥,当水面宽4m时,顶点离水面2m,当水面宽度增加到6m时,水面下降( )
A.1mB.1.5mC.2.5mD.2m
【详解】解:建立平面直角坐标系,设横轴通过,纵轴通过中点且通过顶点,则通过画图可得知为原点,
由平面直角坐标系可知,,即,
设抛物线的解析式为,
将点代入得:,解得,
则抛物线的解析式为,即,
当时,,
所以水面下降,
故选:C.
9.某池塘的截面如图所示,池底呈抛物线形,在图中建立平面直角坐标系,并标出相关数据(单位:m).有下列结论:
①;
②池底所在抛物线的解析式为;
③池塘最深处到水面CD的距离为1.8m;
④若池塘中水面的宽度减少为原来的一半,
则最深处到水面的距离减少为原来的.
其中结论正确的是( )
A.①②B.②④C.③④D.①④
【详解】①由题可知,AB=15-(﹣15)=30m,则①错误;
②对称轴为y轴,交y轴于点(0,﹣5),设函数解析式为 ,将点(15,0)代入解析式得,解得,池底所在抛物线解析式为,则②正确;
③将代入解析式得 ,解得,则池塘最深处到水面CD的距离为m,则③错误;
④设原宽度为时最深处到水面的距离为m,宽度减少为原来的一半时距离为m,故④正确,
所以①、③错误,②、④正确,
选项B正确,符合题意.
故选:B.
10.某快餐店销售A、B两种快餐,每份利润分别为12元、8元,每天卖出份数分别为40份、80份.该店为了增加利润,准备降低每份A种快餐的利润,同时提高每份B种快餐的利润.售卖时发现,在一定范围内,每份A种快餐利润每降1元可多卖2份,每份B种快餐利润每提高1元就少卖2份.如果这两种快餐每天销售总份数不变,那么这两种快餐一天的总利润最多是 元.
【详解】解:设种快餐的总利润为,种快餐的总利润为,两种快餐的总利润为,设快餐的份数为份,则B种快餐的份数为份.
据题意:,
,
∴,
∵,
∴当的时候,W取到最大值1264,故最大利润为1264元,
故答案为:1264.
11.北仑梅山所产的草莓柔嫩多汁,芳香味美,深受消费者喜爱.有一草莓种植大户,每天草莓的采摘量为300千克,当草莓的零售价为22元/千克时,刚好可以全部售完.经调查发现,零售价每上涨1元,每天的销量就减少30千克,而剩余的草莓可由批发商以18元/千克的价格统一收购走,则当草莓零售价为 元时,该种植户一天的销售收入最大.
【详解】解:设草莓的零售价为x元/千克,销售收入为y元,
由题意得,y=x[30030(x22)]+18×30(x22)=30x2+1500x11880,
当时,y最大,
∴当草莓的零售价为25元/千克时,种植户一天的销售收入最大.
故答案为:25.
12.网络销售已经成为一种热门的销售方式,某网络平台为一服装厂直播代销一种服装(这里代销指厂家先免费提供货源,待货物销售后再进行结算,未售出的由厂家负责处理).销售中发现每件售价为250元时,日销售量为40件,当每件衣服每下降10元时,日销售量就会增加8件.已知每售出1件衣服,该平台需支付厂家和其它费用共100元.设每件衣服售价为x(元),该网络平台的日销售量为y(件).则下列结论正确的是 (填写所有正确结论序号).
①y与x的关系式是y=-x+240;
②y与x的关系式是y=x-160;
③设每天的利润为W元,则W与x的关系式是W=-x2+320x-24000;
④按照厂家规定,每件售价不得低于210元,若该经销商想要每天获得最大利润,当每件售价定为210元时,每天利润最大,此时最大利润为7920元.
【详解】解:∵,
∴①正确,②错误;
∵;
∴③正确;
∵,
,每件售价不得低于210元,
∴当x=210时,每天利润最大,
每天利润最大为:,
∴④正确.
故正确的有①③④.
故答案为:①③④.
13.某商店购进了一种消毒用品,进价为每件8元,在销售过程中发现,每天的销售量y(件)与每件售价x(元)之间存在一次函数关系(其中8≤x≤15,且x为整数).当每件消毒用品售价为9元时,每天的销售量为105件;当每件消毒用品售价为11元时,每天的销售量为95件.
(1)求y与x之间的函数关系式.
(2)若该商店销售这种消毒用品每天获得425元的利润,则每件消毒用品的售价为多少元?
(3)设该商店销售这种消毒用品每天获利w(元),当每件消毒用品的售价为多少元时,每天的销售利润最大?最大利润是多少元?
【详解】(1)解:设y与x之间的函数关系式为,根据题意得:
,解得:,
∴y与x之间的函数关系式为;
(2)解:(-5x+150)(x-8)=425,
整理得:,
解得:,
∵8≤x≤15,
∴若该商店销售这种消毒用品每天获得425元的利润,则每件消毒用品的售价为13元;
(3)解:根据题意得:
∵8≤x≤15,且x为整数,
当x
相关试卷
这是一份初中数学人教版(2024)九年级上册22.3 实际问题与二次函数第一课时综合训练题,共21页。
这是一份数学人教版(2024)第二章 整式的加减2.2 整式的加减综合训练题,共18页。试卷主要包含了下列式子中去括号错误的是,与结果相同的是,若,则的值为,学校组织师生参加研学活动,化简, 等内容,欢迎下载使用。
这是一份人教版(2024)七年级上册4.3.1 角课时训练,共16页。试卷主要包含了下图中用量角器测得的度数是,下列各角中是钝角的是,下列表示图中角的方法不正确的是,化为用度表示是,请计算 ,比较大小等内容,欢迎下载使用。
![英语朗读宝](http://www.enxinlong.com/img/images/c2c32c447602804dcbaa70980ee6b1a1.jpg)