![2025届北京海淀区一零一中学九上数学开学监测试题【含答案】第1页](http://www.enxinlong.com/img-preview/2/3/16222334/0-1728202292170/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2025届北京海淀区一零一中学九上数学开学监测试题【含答案】第2页](http://www.enxinlong.com/img-preview/2/3/16222334/0-1728202292202/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2025届北京海淀区一零一中学九上数学开学监测试题【含答案】第3页](http://www.enxinlong.com/img-preview/2/3/16222334/0-1728202292238/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2025届北京海淀区一零一中学九上数学开学监测试题【含答案】
展开这是一份2025届北京海淀区一零一中学九上数学开学监测试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)已知一次函数y=kx+b随着x的增大而减小,且kb<0,则在直角坐标系内它的大致图象是( )
A.B.C.D.
2、(4分)如图,在△ABC中,∠C=78°,若沿图中虚线截去∠C,则∠1+∠2=( )
A.282°B.180°C.258°D.360°
3、(4分)方程x2﹣9=0的解是( )
A.x=3B.x=9C.x=±3D.x=±9
4、(4分)下列方程中,有实数解的方程是( )
A.;B.;
C.;D.
5、(4分)下列等式中,从左到右的变形是因式分解的是( )
A.B.
C.D.
6、(4分)一个正n边形的每一个外角都是45°,则n=( )
A.7B.8C.9D.10
7、(4分)已知一次函数,y随着x的增大而减小,且,则它的大致图象是( )
A.B.C.D.
8、(4分)道路千万条,安全第一条,下列交通标志是中心对称图形的为( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知,则____.
10、(4分)如图,在矩形中,不重叠地放上两张面积分别是和的正方形纸片和.矩形没被这两个正方形盖住的面积是________;
11、(4分)已知x=4是一元二次方程x2-3x+c=0的一个根,则另一个根为______.
12、(4分)如图,是等腰直角三角形内一点,是斜边,将绕点按逆时针方向旋转到的位置.如果,那么的长是____.
13、(4分)化简+的结果是________.
三、解答题(本大题共5个小题,共48分)
14、(12分)列方程解题:据专家预测今年受厄尔尼诺现象影响,我国大部分地区可能遇到洪涝灾害.进入防汛期前,某地对河堤进行了加固.该地驻军在河堤加固的工程中出色完成了任务.这是记者与驻军工程指挥官的一段对话:
“你们是用9天完成4800米长的大坝加固任务的”?
“我们加固600米后采用新的加固模式,这样每天加固长度是原来的2倍”,
通过这段对话请你求出该地驻军原来每天加固的米数.
15、(8分)如图,在四边形ABCD中,AB∥CD,AC垂直平分BD,交BD于点F,延长DC到点E,使得CE=DC,连接BE.
(1)求证:四边形ABCD是菱形.
(2)填空:
①当∠ADC= °时,四边形ACEB为菱形;
②当∠ADC=90°,BE=4时,则DE=
16、(8分)为了了解学生关注热点新闻的情况,“两会”期间,小明对班级同学一周内收看“两会”新闻的次数情况作了调查,调查结果统计如图所示(其中男生收看次的人数没有标出).
根据上述信息,解答下列各题:
×
(1)该班级女生人数是__________,女生收看“两会”新闻次数的中位数是________;
(2)对于某个群体,我们把一周内收看某热点新闻次数不低于次的人数占其所在群体总人数的百分比叫做该群体对某热点新闻的“关注指数”.如果该班级男生对“两会”新闻的“关注指数”比女生低,试求该班级男生人数;
(3)为进一步分析该班级男、女生收看“两会”新闻次数的特点,小明给出了男生的部分统计量(如表).
根据你所学过的统计知识,适当计算女生的有关统计量,进而比较该班级男、女生收看“两会”新闻次数的波动大小.
17、(10分)如图,中,,是边上的高.点是中点,延长到,使,连接,.若,.
(1)求证:四边形是矩形;
(2)求四边形的面积.
18、(10分)在“母亲节”前夕,店主用不多于900元的资金购进康乃馨和玫瑰两种鲜花共500枝,康乃馨进价为2元/枝,玫瑰进价为1.5元/枝,问至少购进玫瑰多少枝?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在矩形中,,,点是边上一点,连接,将沿折叠,使点落在点处.当为直角三角形时,__.
20、(4分)将一次函数的图象向上平移个单位得到图象的函数关系式为________________.
21、(4分)甲、乙、丙、丁四人进行100m短跑训练,统计近期10次测试的平均成绩都是13.2s,10次测试成绩的方差如下表:则这四人中发挥最稳定的是_________.
22、(4分)如图,在▱ABCD中,AB=10,BC=6,AC⊥BC,则▱ABCD的面积为_____.
23、(4分)若函数是正比例函数,则常数m的值是 。
二、解答题(本大题共3个小题,共30分)
24、(8分)在平面直角坐标系中,三个顶点的坐标分别是,,.
(1)将绕点旋转,请画出旋转后对应的;
(2)将沿着某个方向平移一定的距离后得到,已知点的对应点的坐标为,请画出平移后的;
(3)若与关于某一点中心对称,则对称中心的坐标为_____.
25、(10分)某校为了解八年级学生的视力情况,对八年级的学生进行了一次视力调查,并将调查数据进行统计整理,绘制出如下频数分布表和频数分布直方图的一部分.
(1)在频数分布表中,a=_________,b=_________;
(2)将频数分布直方图补充完整;
(3)若视力在4.6以上(含4.6)均属正常,求视力正常的人数占被调查人数的百分比.
26、(12分)高铁的开通给滕州人民出行带来极大的方便,从滕州到北京相距,现在乘高铁列车比以前乘特快列车少用,已知高铁列车的平均速度是特快列车的2.8倍,求高铁列车的平均行驶速度.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
先根据函数图像得出其经过的象限,由一次函数图像与系数的关系即可得出结论.
【详解】
因为y随着x的增大而减小,
可得:k<0,
因为kb<0,
可得:b>0,
所以图像经过一、二、四象限.
故选A.
本题考查的是一次函数的图像与系数的关系,即一次函数y=kx+b(k0)中,当k<0,b>0时函数的图像经过一、二、四象限.
2、C
【解析】
先利用三角形内角与外角的关系,得出∠1+∠2=∠C+(∠C+∠3+∠4),再根据三角形内角和定理即可得出结果.
【详解】
如图,
∵∠1、∠2是△CDE的外角,
∴∠1=∠4+∠C,∠2=∠3+∠C,
即∠1+∠2=∠C+(∠C+∠3+∠4)=78°+180°=258°.
故选C.
此题主要考查了三角形内角和定理及外角的性质,三角形内角和是180°;三角形的任一外角等于和它不相邻的两个内角之和.
3、C
【解析】
试题分析:首先把﹣9移到方程右边,再两边直接开平方即可.
解:移项得;x2=9,
两边直接开平方得:x=±3,
故选C.
考点:解一元二次方程-直接开平方法.
4、B
【解析】
首先对每一项的方程判断有无实数解,就是看方程的解是否存在能满足方程的左右两边相等的实数.一元二次方程要有实数根,则△≥0;算术平方根不能为负数;分式方程化简后求出的根要满足原方程.
【详解】
解:A项移项得:,等式不成立,所以原方程没有实数解,故本选项错误;
B项移项得,存在实数x使等式成立;所以原方程有实数解,故本选项符合题意;
C项是一元二次方程,△==-15<0,方程无实数根,故本选项错误;
D. 化简分式方程后,求得x=1,检验后,x=1为增根,故原分式方程无解.故本选项错误;
故选B.
本题考查了无理方程、高次方程、分式方程的解法,二次根式的性质,属于基础知识,需熟练掌握.
5、D
【解析】
根据因式分解的定义,逐一判断选项,即可得到答案.
【详解】
∵是整式的乘法,不是因式分解,
∴A不符合题意,
∵不是因式分解,
∴B不符合题意,
∵不是因式分解,
∴C不符合题意,
∵是因式分解,
∴D符合题意.
故选D.
本题主要考查因式分解的定义,掌握因式分解的定义,是解题的关键.
6、B
【解析】
根据正多边形的边数=360°÷每一个外角的度数,进行计算即可得解.
【详解】
解:n=360°÷45°=1.
故选:B.
本题考查了多边形的外角,熟记正多边形的边数、每一个外角的度数、以及外角和360°三者之间的关系是解题的关键.
7、A
【解析】
由y随着x的增大而减小,可知,根据k,b的取值范围即可确定一次函数所经过的象限.
【详解】
解:y随着x的增大而减小,
又
一次函数的图像经过第一、二、四象限,不经过第三象限.
故答案为:A
本题考查了一次函数的图像与性质,确定k的取值范围是解题的关键.
8、B
【解析】
结合中心对称图形的概念求解即可.
【详解】
解:A、不是中心对称图形,本选项错误;
B、是中心对称图形,本选项正确;
C、不是中心对称图形,本选项错误;
D、不是中心对称图形,本选项错误.
故选:B.
本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
先求出x的值,然后提取公因式xy分解因式,再把数值代入得出答案.
【详解】
解:∵,
∴x=-5
∴xy(x+y)
=-5×3×(-2)
=1.
此题主要考查了提取公因式法分解因式,正确提取公因式是解题关键.
10、
【解析】
先根据正方形的面积求出正方形纸片和的边长,求出长方形的面积,然后用长方形的面积减去两个正方形纸片的面积即可.
【详解】
∵正方形纸片和的面积分别为和,
∴BC=cm,AE=cm,
.
故答案为:.
本题考查了二次根式混合运算的应用,根据题意求出矩形的面积是解题关键.
11、-1
【解析】
另一个根为t,根据根与系数的关系得到4+t=3,然后解一次方程即可.
【详解】
设另一个根为t,
根据题意得4+t=3,
解得t=-1,
即另一个根为-1.
故答案为-1.
此题考查根与系数的关系,解题关键在于掌握若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=− .
12、
【解析】
证明△ADD′是等腰直角三角形即可解决问题.
【详解】
解:由旋转可知:△ABD≌△ACD′,
∴∠BAD=∠CAD′,AD=AD′=2,
∴∠BAC=∠DAD′=90°,即△ADD′是等腰直角三角形,
∴DD′=,
故答案为:.
本题考查旋转的性质,等腰直角三角形的判定和性质,勾股定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
13、1
【解析】
找到公分母x-3,再利用同分母相加减法则即可求解.
【详解】
+=-==1
本题考查了分式的化简,属于简单题,找到公分母是解题关键.
三、解答题(本大题共5个小题,共48分)
14、该建筑队原来每天加固300米.
【解析】
设原来每天加固x米,则采用新的加固技术后每天加固2x米,然后依据共用9天完成任务进行解答即可.
【详解】
解:设原来每天加固x米,则采用新的加固技术后每天加固2x米.
根据题意得:
解得:x=300,
经检验x=300是分式方程的解.
答:该建筑队原来每天加固300米.
本题主要考查的是分式方程的应用,找出题目的等量关系是解题的关键.
15、(1)见解析;(2)①60 ;②.
【解析】
(1)由“有一组对边平行且相等的四边形是平行四边形”证得四边形ABCD为平行四边形,再由“邻边相等的平行四边形是菱形”证得四边形ABCD是菱形.
(2)①由“有一组对边平行且相等的四边形是平行四边形”证得四边形ABEC为平行四边形,再由“邻边相等的平行四边形是菱形”证得四边形ABEC是菱形,则CA=AD=DC,此时三角形ADC为等边三角形,∠ADC=60°;②当∠ADC=90°时,四边形ABCD为正方形,三角形BCE为等腰直角三角形,因为BE=4,所以由勾股定理得CE= ,.
【详解】
解:(1)证明:∵AC垂直平分BD,∴AB=AD ,BF=DF,
∵AB∥CD,∴∠ABD=∠CDB.
∵∠AFB=∠CFD,∴△AFB≌△CFD (ASA),
∴AB=CD.又∵AB∥CD,∴四边形ABCD是平行四边形 .
∵AB=AD,∴平行四边形ABCD是菱形 .
(2)①∵由(1)得:四边形ABCD是菱形,
∴AB=CD,AB//CD,
∵CE是CD的延长线,且CE=CD,
∴由“有一组对边平行且相等的四边形是平行四边形”证得四边形ABEC为平行四边形
∵假设四边形ACEB为菱形,∴AC=CE
∵已知AD=DC,∴AC=DC=AD,即三角形ADC为等边三角形,∴
②∵由(1)得:四边形ABCD是菱形,且∠ADC=90°
∴四边形ABCD为正方形,三角形BCE为直角三角形,
∵CE=CD,∴由勾股定理得CE= ,.
本题主要考察特殊四边形的性质,掌握特殊四边形的相关性质是解题的关键.
16、(1)20,1;(2)2人;(1)男生比女生的波动幅度大.
【解析】
(1)将柱状图中的女生人数相加即可求得总人数,中位数为第10与11名同学的次数的平均数.
(2)先求出该班女生对“两会”新闻的“关注指数”,即可得出该班男生对“两会”新闻的“关注指数”,再列方程解答即可.
(1)比较该班级男、女生收看“两会”新闻次数的波动大小,需要求出女生的方差.
【详解】
(1)该班级女生人数是2+5+6+5+2=20,女生收看“两会”新闻次数的中位数是1.
故答案为20,1.
(2)由题意:该班女生对“两会”新闻的“关注指数”为=65%,所以,男生对“两会”新闻的“关注指数”为60%.设该班的男生有x人,则=60%,解得:x=2.
答:该班级男生有2人.
(1)该班级女生收看“两会”新闻次数的平均数为=1,女生收看“两会”新闻次数的方差为:=.
∵2>,∴男生比女生的波动幅度大.
本题考查了平均数,中位数,方差的意义.解题的关键是明确平均数表示一组数据的平均程度,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.
17、(1)见解析;(2).
【解析】
(1)根据平行四边形的判定得出四边形是平行四边形,推出,根据矩形的判定得出即可;
(2)依据等腰三角形三线合一的性质可求得,然后证明为等边三角形,从而可求得的长,然后依据勾股定理可求得的长,最后利用矩形的面积公式求出即可.
【详解】
(1)证明:点是中点,
,
又,
四边形是平行四边形.
是边上的高,
,
四边形的是矩形.
(2)解:是等腰三角形边上的高,,
四边形的是矩形,
.
,
是等边三角形,
,
.
在中,,,,
由勾股定理得,
∴四边形的面积.
本题考查了平行四边形的判定,矩形的判定和性质,等腰三角形的性质,勾股定理的应用,能综合运用定理进行推理和计算是解此题的关键.
18、至少购进玫瑰200枝.
【解析】
由康乃馨和玫瑰共500枝,可设玫瑰x枝,康乃馨(500-x)枝,可求出每种花的总进价,再利用两种花总进价和“不多于900元”列出不等式并解答.
【详解】
解:设购进玫瑰x枝,则购进康乃馨(500-x)枝,列不等式得:
1.5x+2(500-x)≤900
解得:x≥200
答:至少购进玫瑰200枝.
本题考查了一元一次不等式的应用,关键是找准不等关系列不等式,是常考题型.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、或1
【解析】
当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如图1所示.连结AC,先利用勾股定理计算出AC=13,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即ΔABE沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=1,可计算出CB′=8,设BE=a,则EB′=a,CE=12-a,然后在Rt△CEB′中运用勾股定理可计算出a.②当点B′落在AD边上时,如图2所示.此时ABEB′为正方形.
【详解】
当△CEB′为直角三角形时,有两种情况:
①当点B′落在矩形内部时,如图1所示,
连结AC,
在Rt△ABC中,AB=1,BC=12,
∴AC==13,
∵将ΔABE沿AE折叠,使点B落在点B′处,
∴∠AB′E=∠B=90°,
当△CEB′为直角三角形时,只能得到∠EB′C=90°,
∴点A、B′、C共线,即将ΔABE沿AE折叠,使点B落在对角线AC上的点B′处,设:,则,,
,
由勾股定理得:,
解得:;
②当点B′落在AD边上时,如图2所示,
此时ABEB′为正方形,∴BE=AB=1,
综上所述,BE的长为或1,
故答案为:或1.
本题考查了矩形的性质,折叠问题,勾股定理等知识,熟练掌握折叠前后两图形全等,即对应线段相等;对应角相等是解题的关键.注意本题有两种情况,需要分类讨论,避免漏解.
20、.
【解析】
根据直线y=kx+b向上平移m(m>0)个单位所得直线解析式为y=kx+b+m求解.
【详解】
解:把一次函数的图象向上平移3个单位后,得到的图象对应的函数关系式为.
故答案为:.
本题考查了一次函数图象与几何变换:直线y=kx+b向上平移m(m>0)个单位所得直线解析式为y=kx+b+m,直线y=kx+b向下平移m(m>0)个单位所得直线解析式为y=kx+b-m.
21、乙
【解析】
方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.
【详解】
解:∵,
方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.
∴乙最稳定.
故答案为:乙.
本题考查了方差,正确理解方差的意义是解题的关键.
22、1.
【解析】
先在Rt△ABC中利用勾股定理可得AC=2,根据平行四边形面积:底高,可求面积。
【详解】
在Rt△ABC中,AB=10,BC=6,
利用勾股定理可得AC=2.
根据平行四边形面积公式可得平行四边形ABCD面积=BC×AC=6×2=1.
故答案为1.
本题考查了平行四边形的性质及勾股定理,熟知平行四边形的面积公式是解题的关键。
23、-3
【解析】
根据函数是正比例函数知x的幂是一次得,m=±3,m=3不符合题意,舍去得m=-3.
二、解答题(本大题共3个小题,共30分)
24、(1)见解析;(2)见解析;(3)
【解析】
(1)延长BC到B1使B1C=BC,延长AC到A1使A1C=AC,从而得到△A1B1C1;
(2)利用点A1和A2的坐标特征得到平移的规律,然后描点得到△A2B2C2;
(3)利用关于原点对称的点的坐标特征进行判断.
【详解】
(1)△A1B1C1如图所示;
(2)△A2B2C2,如图所示;
(3)∵,,,,,
∴与关于原点对,对称中心坐标为,
本题考查了作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.
25、(1)60,0.2 (2)见解析(3)70%
【解析】
(1)依据总数=频数÷频率可求得总人数,然后依据频数=总数×频率,频率=频数÷总数求解即可;
(2)依据(1)中结果补全统计图即可;
(3)依据百分比=频数÷总数求解即可.
【详解】
解:(1)总人数=20÷0.1=1.
∴a=1×0.3=60,b=1-0.1-0.2-0.35-0.3=0.2,
故答案为60,0.2.
(2)频数分布直方图如图所示,
(3)视力正常的人数占被调查人数的百分比是×100%=70%.
本题考查了频数分布表和频数分布直方图的综合,解答此类题目,要善于发现二者之间的关联点,用频数分布表中某部分的频数除以它的频率求出样本容量,进而求解其它未知的量.
26、高铁列车平均速度为.
【解析】
设特快列车平均速度为,则高铁列车平均速度为,根据现在乘高铁列车比以前乘特快列车少用 列方程求解即可.
【详解】
设特快列车平均速度为,则高铁列车平均速度为,
由题意得:,
解得:,
经检验:是原方程的解,
则;
答:高铁列车平均速度为.
本题是分式方程的应用,属于行程问题;两类车:高铁和特快,路程都是,高铁列车的平均速度是特快列车的倍,时间相差,根据速度的关系设未知数,根据时间的关系列方程,注意分式方程要检验.
题号
一
二
三
四
五
总分
得分
批阅人
统计量
平均数(次)
中位数(次)
众数(次)
方差
…
该班级男生
…
选手
甲
乙
丙
丁
方差(S2)
0.020
0.019
0.021
0.022
视力
频数/人
频率
4.0≤x<4.3
20
0.1
4.3≤x<4.6
40
0.2
4.6≤x<4.9
70
0.35
4.9≤x<5.2
a
0.3
5.2≤x<5.5
10
b
相关试卷
这是一份2025届北京市一零一中学数学九上开学达标检测模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年北京一零一中学数学九上开学监测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年北京市第一零一中学九上数学开学经典试题【含答案】,共21页。试卷主要包含了选择题,一象限B.第二,填空题等内容,欢迎下载使用。