年终活动
搜索
    上传资料 赚现金

    2025届北京市东城区第十一中学九上数学开学预测试题【含答案】

    立即下载
    加入资料篮
    2025届北京市东城区第十一中学九上数学开学预测试题【含答案】第1页
    2025届北京市东城区第十一中学九上数学开学预测试题【含答案】第2页
    2025届北京市东城区第十一中学九上数学开学预测试题【含答案】第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2025届北京市东城区第十一中学九上数学开学预测试题【含答案】

    展开

    这是一份2025届北京市东城区第十一中学九上数学开学预测试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)下列各数中,是不等式的解的是
    A.B.0C.1D.3
    2、(4分)下列实数中,能够满足不等式的正整数是( )
    A.-2B.3C.4D.2
    3、(4分)如果一个直角三角形的两边分别是6,8,那么斜边上的中线是( )
    A.4 B.5 C.4或5 D.3或5
    4、(4分)若,则的值是
    A.B.C.D.
    5、(4分)若x≤0,则化简|1﹣x|﹣的结果是( )
    A.1﹣2xB.2x﹣1C.﹣1D.1
    6、(4分)如图,将含30°角的直角三角尺ABC绕点B顺时针旋转150°后得到△EBD,连接CD.若AB=4cm.则△BCD的面积为( )
    A.4B.2C.3D.2
    7、(4分)如果直角三角形的边长为3,4,a,则a的值是( )
    A.5B.6C.D.5或
    8、(4分)如图,将矩形纸片ABCD沿其对角线AC折叠,使点B落到点B′的位置,AB′与CD交于点E,若AB=8,AD=3,则图中阴影部分的周长为( )
    A.16B.19C.22D.25
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,正方形ABCD的边长为4,P为正方形边上以C为起点,沿CBA的路径移动的动点,设P点经过的路径长为,△APD的面积是,则与的函数关系式为_______.
    10、(4分)如图,在正方形ABCD中,AB=3,点E,F分别在CD,AD上,CE=DF,BE,CF相交于点G,若图中阴影部分的面积与正方形ABCD的面积之比为2:3,则△BCG的周长为_____.
    11、(4分)如图,直线y=x+b与直线y=kx+6交于点P(3,5),则关于x的不等式x+b>kx+6的解集是_____.
    12、(4分)如图,将矩形纸片折叠,使点与点重合,其中,则的长度为__________.
    13、(4分)若数使关于的不等式组有且只有四个整数解,的取值范围是__________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)已知坐标平面内的三个点,,,把向下平移个单位再向右平移个单位后得到.
    (1)直接写出,,三个对应点、、的坐标;
    (2)画出将绕点逆时针方向旋转后得到;
    (3)求的面积.
    15、(8分)如图,已知点A(0,8)、B(8,0)、E(-2,0),动点 C从原点O出发沿OA方向以每秒1个单位长度向点A运动,动点D从点B出发沿BO方向以每秒2个单位长度向点O运动,动点C、D同时出发,当动点D到达原点O时,点C、D停止运动,设运动时间为t 秒。
    (1)填空:直线AB的解析式是_____________________;
    (2)求t的值,使得直线CD∥AB;
    (3)是否存在时刻t,使得△ECD是等腰三角形?若存在,请求出一个这样的t值;若不存在,请说明理由。
    16、(8分)解方程:2x2﹣4x+1=0.(用配方法)
    17、(10分)解不等式(组),并将其解集分别表示在数轴上
    (1)10﹣4(x﹣3)≤2(x﹣1);
    (2).
    18、(10分)王大伯计划在自家的鱼塘里投放普通鱼苗和红色鱼苗,需要购买这两种鱼苗2000尾,购买这两种鱼苗的相关信息如下表:
    设购买普通鱼苗x尾,养殖这些鱼苗的总费用为y元.
    (1)写出y(元)与x(尾)之间的函数关系式;
    (2)如果购买每种鱼苗不少于600尾,在总鱼苗2000尾不变的条件下,养殖这些鱼苗的最低费用是多少?
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)已知x=4是一元二次方程x2-3x+c=0的一个根,则另一个根为______.
    20、(4分)把直线向上平移2个单位得到的直线解析式为:_______.
    21、(4分)函数中,自变量x的取值范围是_____.
    22、(4分)已知,则的值为________.
    23、(4分)若与最简二次根式能合并成一项,则a=______.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,在正方形中,,分别是,上两个点,.

    (1)如图1,与的关系是________;
    (2)如图2,当点是的中点时,(1)中的结论是否仍然成立,若成立,请进行证明;若不成立,说明理由;
    (3)如图2,当点是的中点时,求证:.
    25、(10分)从1,1...,100这100个数中任意选取一个数,求:
    (1)取到的是3的倍数的数概率P(A)
    (1)取到的个位数字与十位数字之和为7的两位数的概率P(B)
    26、(12分)菱形中,,是对角线,点、分别是边、上两个点,且满足,连接与相交于点.
    (1)如图1,求的度数;
    (2)如图2,作于点,求证:;
    (3)在满足(2)的条件下,且点在菱形内部,若,,求菱形的面积.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    判断各个选项是否满足不等式的解即可.
    【详解】
    满足不等式x>2的值只有3,
    故选:D.
    本题考查不等式解的求解,关键是明白解的取值范围.
    2、D
    【解析】
    将各项代入,满足条件的即可.
    【详解】
    A选项,-2不是正整数,不符合题意;
    B选项,,不符合题意;
    C选项,,不符合题意;
    D选项,,符合题意;
    故选:D.
    此题主要考查不等式的正整数解,熟练掌握,即可解题.
    3、C
    【解析】当一个直角三角形的两直角边分别是6,8时,
    由勾股定理得,斜边==10,则斜边上的中线=×10=5,
    当8是斜边时,斜边上的中线是4,
    故选C.
    4、C
    【解析】
    ∵,
    ∴b=a,c=2a,
    则原式.
    故选C.
    5、D
    【解析】
    试题分析:根据x≤0,可知-x≥0,因此可知1-x≥0,然后根据可求解为|1﹣x|﹣=1-x+x=1.
    故选:D
    6、C
    【解析】
    过D点作BE的垂线,垂足为F,由∠ABC=30°及旋转角∠ABE=150°可知∠CBE为平角.在Rt△ABC中,AB=4,∠ABC=30°,则AC=2,BC=2,由旋转的性质可知BD=BC=2,DE=AC=2,BE=AB=4,由面积法:DF×BE=BD×DE求DF,则S△BCD=×BC×DF.
    【详解】
    过D点作BE的垂线,垂足为F,
    ∵∠ABC=30°,∠ABE=150°,
    ∴∠CBE=∠ABC+∠ABE=180°.
    在Rt△ABC中,∵AB=4,∠ABC=30°,∴AC=2,BC=2,
    由旋转的性质可知:BD=BC=2,DE=AC=2,BE=AB=4,
    由DF×BE=BD×DE,即DF×4=2×2,
    解得:DF=,
    S△BCD=×BC×DF=×2×=3(cm2).
    故选C.
    本题考查了旋转的性质,解直角三角形的方法,解答本题的关键是围绕求△BCD的面积确定底和高的值,有一定难度.
    7、D
    【解析】
    分两种情况分析:a是斜边或直角边,根据勾股定理可得.
    【详解】
    解:当a是斜边时,a=;
    当a是直角边时,a=
    所以,a的值是5或
    故选:D.
    本题考核知识点:勾股定理,解题关键点:分两种情况分析.
    8、C
    【解析】
    首先由四边形ABCD为矩形及折叠的特性,得到B′C=BC=AD,∠B′=∠B=∠D=90°,∠B′EC=∠DEA,得到△AED≌△CEB′,得出EA=EC,再由阴影部分的周长为AD+DE+EA+EB′+B′C+EC,即矩形的周长解答即可.
    【详解】
    解:∵四边形ABCD为矩形,
    ∴B′C=BC=AD,∠B′=∠B=∠D=90°
    ∵∠B′EC=∠DEA,
    在△AED和△CEB′中,

    ∴△AED≌△CEB′(AAS);
    ∴EA=EC,
    ∴阴影部分的周长为AD+DE+EA+EB′+B′C+EC,
    =AD+DE+EC+EA+EB′+B′C,
    =AD+DC+AB′+B′C,
    =3+8+8+3,
    =22,
    故选:C.
    本题主要考查了图形的折叠问题,全等三角形的判定和性质,及矩形的性质.熟记翻折前后两个图形能够重合找出相等的角是解题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、
    【解析】
    分两种情况:点P在CB边上时和点P在AB边上时,分别利用三角形的面积公式求解即可.
    【详解】
    当点P在BC边上时,即时,

    当点P在AB边上时,即时,


    故答案为:.
    本题主要考查一次函数的应用,分情况讨论是解题的关键.
    10、+1.
    【解析】
    分析:根据面积之比得出△BGC的面积等于正方形面积的,进而依据△BCG的面积以及勾股定理,得出BG+CG的长,进而得出其周长.
    详解:∵阴影部分的面积与正方形ABCD的面积之比为2:1,
    ∴阴影部分的面积为×9=6,
    ∴空白部分的面积为9-6=1,
    由CE=DF,BC=CD,∠BCE=∠CDF=90°,可得△BCE≌△CDF,
    ∴△BCG的面积与四边形DEGF的面积相等,均为×1=,
    设BG=a,CG=b,则ab=,
    又∵a2+b2=12,
    ∴a2+2ab+b2=9+6=15,
    即(a+b)2=15,
    ∴a+b=,即BG+CG=,
    ∴△BCG的周长=+1,
    故答案为+1.
    点睛:此题考查了全等三角形的判定与性质、正方形的性质以及三角形面积问题.解题时注意数形结合思想与方程思想的应用.
    11、x>1.
    【解析】
    ∵直线y=x+b与直线y=kx+6交于点P(1,5),
    ∴由图象可得,当x>1时,x+b>kx+6,
    即不等式x+b>kx+6的解集为x>1.
    本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
    12、5
    【解析】
    由折叠的AE=EC,设AE=x,则EB=8-x,利用勾股定理求解即可.
    【详解】
    由折叠的AE=EC,设AE=x,则EB=8-x
    ∵矩形ABCD
    ∴∠B=90°
    ∴42+(8-x)2=x2
    ∴x=5
    故AE=5.
    本题考查的是折叠,熟练掌握勾股定理是解题的关键.
    13、
    【解析】
    此题可先根据一元一次不等式组解出x的取值,再根据不等式组恰好只有四个整数解,求出实数a的取值范围.
    【详解】
    解不等式①得,x<5,
    解不等式②得,x≥2+2a,
    由上可得2+2a≤x<5,
    ∵不等式组恰好只有四个整数解,即1,2,3,4;
    ∴0<2+2a≤1,
    解得,.
    此题考查的是一元一次不等式的解法和一元一次方程的解,根据x的取值范围,得出x的取值范围,然后根据不等式组恰好只有四个整数解即可解出a的取值范围.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.
    三、解答题(本大题共5个小题,共48分)
    14、(1)点D、E、F的坐标分别为(5,2)、(5,-2)、(2,-3);(2)见解析;(3)1.
    【解析】
    (1)利用点平移的坐标规律写出点D、E、F的坐标;
    (2)利用网格特点和旋转的性质画出A、B的对应点A′、B′即可;
    (3)利用三角形面积公式计算.
    【详解】
    解:(1)点D、E、F的坐标分别为(5,2)、(5,-2)、(2,-3);
    (2)如图,△A'OB'为所作;
    (3)△DEF的面积=×4×3=1.
    故答案为:(1)点D、E、F的坐标分别为(5,2)、(5,-2)、(2,-3);(2)见解析;(3)1.
    本题考查作图-平移变换、旋转变换,解题的关键是熟练掌握平移变换和旋转变换的定义、性质,并据此得到变换后的对应点.
    15、
    【解析】
    分析:(1)由点A、B的坐标,利用待定系数法求出直线解析式即可;
    (2)当CD∥AB时,∠CDO=∠ABO,根据tan∠CDO=tan∠ABO列方程求解即可;
    (3)当EO=DO时,△ECD是等腰三角形,从而可求出t的值.
    详解:(1)将点A(0,1)、B(1,0)代入y=kx+b中,
    得:,解得:,
    ∴该直线的解析式为y=-x+1.
    故答案为:y=-x+1.
    (2)当直线AB∥CD时,∠CDO=∠ABO,
    ∴tan∠CDO=tan∠ABO
    ∴,解得,.
    故当时,AB∥CD.
    (3)存在.事实上,当EO=OD时,△ECD就是等腰三角形,
    此时,EO=2,OD=1-2t,
    由,
    解得,.
    ∴存在时刻T,当时,△ECD是等腰三角形
    点睛:本题考查了待定系数法求函数解析式、平行线的判定与性质,等腰三角形的判定以及解一元一次方程,解题的关键是:(1)利用待定系数法求出函数解析式;(2)①得出关于t的一元一次方程;②得出关于t的一元一次方程.
    16、x1=1+ ,x2=1﹣.
    【解析】
    试题分析:首先移项,再将二次项系数化为1,然后配方解出x即可.
    试题解析:2x2﹣4x+1=0,
    移项,得2x2﹣4x=-1,
    二次项系数化为1,得x2﹣2x=-,
    配方,得x2﹣2x+12=-+12,即(x-1)2=,
    解得,x-1=±,
    即x1=1+,x2=1-.
    点睛:配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方;(4)解出未知数.
    17、(1)x≥1,解集在数轴上如图所示见解析;(2)﹣1≤x<3,解集在数轴上如图所示见解析.
    【解析】
    (1)去括号,移项,合并同类项,化系数为1即可;
    (2)先求出其中各不等式的解集,再求出这些解集的公共部分即可.
    【详解】
    (1)10﹣1(x﹣3)≤2(x﹣1)
    10﹣1x+12≤2x﹣2,
    ﹣6x≤﹣21,
    x≥1.
    解集在数轴上如图所示:
    (2)
    由①得到:x≥﹣1,
    由②得到:x<3,
    ∴﹣1≤x<3,
    本题考查不等式组的解法,数轴等知识,解题的关键是熟练掌握不等式组的解法,属于中考常考题型.
    18、(1);(2)养殖鱼苗的最低费用是3300元
    【解析】
    (1)根据题意和表格中的数据可以写出y与x的函数关系式,本题得以解决;
    (2)根据题意和(1)中的关系式,利用一次函数的性质可以解答本题.
    【详解】
    (1)设普鱼苗为x尾,则红色鱼苗为尾,
    ∴;
    (2)由题意知:,
    ∴解得,
    ∵函数,y随x值的增大而减小,
    ∴当时,y的值最小,
    ∴,
    ∴养殖鱼苗的最低费用是3300元.
    本题考查一次函数的应用、一元一次不等式的应用,解答本题的关键是明确题意,利用一次函数的性质解答.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、-1
    【解析】
    另一个根为t,根据根与系数的关系得到4+t=3,然后解一次方程即可.
    【详解】
    设另一个根为t,
    根据题意得4+t=3,
    解得t=-1,
    即另一个根为-1.
    故答案为-1.
    此题考查根与系数的关系,解题关键在于掌握若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=− .
    20、
    【解析】
    直接根据一次函数图象与几何变换的有关结论求解.
    【详解】
    直线y=2x向上平移2个单位后得到的直线解析式为y=2x+2.
    故答案为y=2x+2.
    此题考查一次函数图象与几何变换,解题关键在于掌握平移的性质
    21、x≠1
    【解析】
    根据分母不等于0,可以求出x的范围;
    【详解】
    解:(1)x-1≠0,解得:x≠1;
    故答案是:x≠1,
    考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:
    (1)当函数表达式是整式时,自变量可取全体实数;
    (2)当函数表达式是分式时,考虑分式的分母不能为0;
    (3)当函数表达式是二次根式时,被开方数非负.
    22、1.
    【解析】
    只有非负数才有平方根,可知两个被开方数都是非负数,即可求得x的值,进而得到y,从而求解.
    【详解】
    解:由题意得
    解得:x=1,
    把x=1代入已知等式得:y=0,
    所以,x+y=1.
    函数自变量的范围一般从三个方面考虑:
    (1)当函数表达式是整式时,自变量可取全体实数;
    (2)当函数表达式是分式时,考虑分式的分母不能为0;
    (3)当函数表达式是二次根式时,被开方数为非负数.
    23、2
    【解析】
    根据二次根式能合并,可得同类二次根式,根据最简二次根式的被开方数相同,可得关于a的方程,根据解方程,可得答案.
    【详解】
    解:=2,
    由最简二次根式与能合并成一项,得
    a-1=1.
    解得a=2.
    故答案为:2.
    本题考查同类二次根式和最简二次根式的概念,同类二次根式是化为最简二次根式后,被开方数相同的二次根式.
    二、解答题(本大题共3个小题,共30分)
    24、(1),;(2)成立,证明见解析;(3)见解析
    【解析】
    (1)因为,ABCD是正方形,所以AE=DF,可证△ADF≌BAE,可得=,再根据角∠AEB=∠AFD,∠DAF+∠AFD=90°,可得∠DAF+∠AEB=90°,可得;
    (2)成立,因为E为AD中点,所以AE=DF,可证△ABE≌△DAF,可得=,再根据角∠AEB=∠AFD,∠DAF+∠AFD=90°,得到∠DAF+∠AEB=90°,可得;
    (3) 如解图,取AB中点H,连接CH交BG于点M,由(2)得,可证,所以MH为△AGB的中位线,所以M为BG中点,所以CM为BG垂直平分线,所以.
    【详解】
    解:(1)AF=BE且AF⊥BE.理由如下:
    证明:∵,ABCD为正方形
    AE=AD-DE,DF=DC-CF
    ∴AE=DF
    又∵∠BAD=∠D=90°,AB=AD
    ∴△ABE≌△DAF
    ∴AF=BE,∠AEB=∠AFD
    ∵在直角△ADF中,∠DAF+∠AFD=90°
    ∴∠DAF+∠AEB=90°
    ∴∠AGE=90°
    ∴AF⊥BE;
    (2)成立,AF=BE且AF⊥BE.理由如下:
    证明:∵E、F分别是AD、CD的中点,
    ∴AE=AD,DF=CD
    ∴AE=DF
    又∵∠BAD=∠D=90°,AB=AD
    ∴△ABE≌△DAF
    ∴AF=BE,∠AEB=∠AFD
    ∵在直角△ADF中,∠DAF+∠AFD=90°
    ∴∠DAF+∠AEB=90°
    ∴∠AGE=90°
    ∴AF⊥BE
    (3)取AB中点H,连接CH交BG于点M
    ∵H、F分别为AB、DC中点,AB∥CD,
    ∴AH=CF,
    ∴四边形AHCF是平行四边形,
    ∴AF∥CH,
    又∵由(2)得,
    ∴,
    ∵AF∥CH,H为AB中点,
    ∴M为BG中点,
    ∵M为BG中点,且,
    ∴CH垂直平分BG,
    ∴CG=CB.
    本题考查平行四边形的判定和性质,正方形的性质以及全等三角形的判定和性质,灵活应用全等三角形的性质是解题关键.
    25、(1)33%;(1)
    【解析】
    (1)先例举出1,1...,100这100个数字中3的倍数,再利用简单概率的概率公式计算即可得到答案。(1)例举出符合条件的两位数,利用简单随机事件的概率公式解题即可.
    【详解】
    (1)因为从1,1...,100这100个数字中3的倍数有
    个,所以取到的是3的倍数的数概率P(A)33%.
    (1)两位数一共90个,其中只有16、15、34、43、51、61,70满足条件,
    则P(B).
    本题考查的是简单问题中的随机事件的概率的计算,掌握计算公式是解题关键.
    26、 (1);(2)证明见解析;(3).
    【解析】
    (1)只要证明△DAE≌△BDF,推出∠ADE=∠DBF,由∠EGB=∠GDB+∠GBD=∠GDB+∠ADE=60°,推出∠BGD=180°-∠BGE=120°;
    (2)如图3中,延长GE到M,使得GM=GB,连接BD、CG.由△MBD≌△GBC,推出DM=GC,∠M=∠CGB=60°,由CH⊥BG,推出∠GCH=30°,推出CG=2GH,由CG=DM=DG+GM=DG+GB,即可证明2GH=DG+GB;
    (3)解直角三角形求出BC即可解决问题.
    【详解】
    (1)如图,
    四边形是菱形,


    是等边三角形,
    ,,
    在和中,





    (2)如图,延长到,使得,连接.
    ,,
    是等边三角形,


    在和中,


    ,,





    (3)如图中,由(2)可知,在中,,,




    在中,,
    ,都是等边三角形,

    本题考查菱形的性质、等边三角形的判定和性质、全等三角形的判定和性质,直角三角形30度角性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.
    题号





    总分
    得分
    品种项目
    单价(元/尾)
    养殖费用(元/尾)
    普通鱼苗
    0.5
    1
    红色鱼苗
    1
    1

    相关试卷

    2025届北京市东城区第166中学数学九年级第一学期开学达标测试试题【含答案】:

    这是一份2025届北京市东城区第166中学数学九年级第一学期开学达标测试试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年重庆巴蜀中学数学九上开学预测试题【含答案】:

    这是一份2024年重庆巴蜀中学数学九上开学预测试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年浙江省温州实验中学数学九上开学预测试题【含答案】:

    这是一份2024年浙江省温州实验中学数学九上开学预测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map