年终活动
搜索
    上传资料 赚现金

    2025届福建省福州市平潭县九上数学开学预测试题【含答案】

    立即下载
    加入资料篮
    2025届福建省福州市平潭县九上数学开学预测试题【含答案】第1页
    2025届福建省福州市平潭县九上数学开学预测试题【含答案】第2页
    2025届福建省福州市平潭县九上数学开学预测试题【含答案】第3页
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2025届福建省福州市平潭县九上数学开学预测试题【含答案】

    展开

    这是一份2025届福建省福州市平潭县九上数学开学预测试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)下列关系式中,不是函数关系的是( )
    A.y=(x<0)B.y=±(x>0)C.y=(x>0)D.y=﹣(x>0)
    2、(4分)如图,直线与双曲线交于、两点,过点作轴,垂足为,连接,若,则的值是( )
    A.2B.4C.-2D.-4
    3、(4分)如图,在四边形中,动点从点开始沿的路径匀速前进到为止,在这个过程中,的面积随时间的变化关系用图象表示正确的是( )
    A.B.C.D.
    4、(4分)下列多项式中,不是完全平方式的是
    A.B.C.D.
    5、(4分)下列计算正确的是( )
    A.m6•m2=m12B.m6÷m2=m3
    C.()5=D.(m2)3=m6
    6、(4分)若正多边形的一个外角是,则该正多边形的内角和为( )
    A.B.C.D.
    7、(4分)如图是九(1)班45名同学每周课外阅读时间的频数直方图(每组含前一个边界值,不含后一个边界值).由图可知,人数最多的一组是( )
    A.2~4小时B.4~6小时C.6~8小时D.8~10小时
    8、(4分)如图,在矩形ABCD中,对角线AC,BD相交于点O,AE⊥BD,垂足为E,AE=3,BC=6,则下列正确的是( )
    A.ED=BEB.ED=2BEC.ED=3BED.ED=4BE
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)当______时,分式方程会产生增根.
    10、(4分)若关于x的方程-3有增根,则a=_____.
    11、(4分)当_____时,分式的值为1.
    12、(4分)一组数据﹣1,0,1,2,3的方差是_____.
    13、(4分)如图,△ABC是边长为6的等边三角形,D是AB中点,E是边BC上一动点,连结DE,将DE绕点D逆时针旋转60°得DF,连接CF,若CF=,则BE=_________。
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,平行四边形ABCD中,G是CD的中点,E是边AD上的动点,EG的延长线与BC的延长线交于点F,连结CE,DF.
    (1)求证:四边形CEDF为平行四边形;
    (2)若AB=6cm,BC=10cm,∠B=60°,
    ①当AE= cm时,四边形CEDF是矩形;
    ②当AE= cm时,四边形CEDF是菱形.
    15、(8分)一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地.两车行驶的时间为xh,两车之间的距离为ykm,图中的折线表示y与x之间的函数关系,根据图象解决以下问题:
    (1)慢车的速度为 km/h,快车的速度为 km/h;
    (2)解释图中点C的实际意义并求出点C的坐标;
    (3)求当x为多少时,两车之间的距离为500km.
    16、(8分)如图,O是矩形ABCD对角线的交点,作,,DE,CE相交于点E,求证:四边形OCED是菱形.
    17、(10分)已知函数,
    (1)当m取何值时抛物线开口向上?
    (2)当m为何值时函数图像与x轴有两个交点?
    (3)当m为何值时函数图像与x轴只有一个交点?
    18、(10分)如图,在每个小正方形的边长都是的正方形网格中,的三个顶点都在小正方形的格点上.将绕点旋转得到(点、分别与点、对应),连接,.
    (1)请直接在网格中补全图形;
    (2)四边形的周长是________________(长度单位)
    (3)直接写出四边形是何种特殊的四边形.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,是的角平分线,交于,交于.且交于,则________度.
    20、(4分)如图,一架15m长的梯子AB斜靠在一竖直的墙OA上,这时梯子的顶端A离地面距离OA为12m,如果梯子顶端A沿墙下滑3m至C点,那么梯子底端B向外移至D点,则BD的长为___m.
    21、(4分)某市某活动中心组织了一次少年跳绳比赛,各年龄组的参赛人数如表所示:
    则全体参赛选手年龄的中位数是________.
    22、(4分)9的算术平方根是 .
    23、(4分)在平行四边形ABCD中,∠B+∠D=190°,则∠A=_____°.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,在菱形ABCD中,对角线AC,相交于点O,cm,cm,E,F分别是AB,BC的中点,点P是对角线AC上的一个动点,设cm,cm,cm
    小明根据学习函数的经验,分别对这两种函数随自变量的变化而变化的情况进行了探究,下面是小明探究过程,请补充完整:
    (1)画函数的图象
    ①按下表自变量的值进行取点、画图、测量,得到了与x的几组对应值:
    ②在所给坐标系中描出补全后的表中的各对应值为坐标的点,画出函数的图象;
    (2)画函数的图象
    在同一坐标系中,画出函数的图象;
    (3)根据画出的函数的图象、函数的图象,解决问题
    ①函数的最小值是________________;
    ②函数的图象与函数的图象的交点表示的含义是________________;
    ③若,AP的长约为________________cm
    25、(10分)中考体育测试前,某区教育局为了了解选报引体向上的初三男生的成绩情况,随机抽测了本区部分选报引体向上项目的初三男生的成绩,并将测试得到的成绩绘成了下面两幅不完整的统计图:
    请你根据图中的信息,解答下列问题:
    (1)补全条形图;
    (2)直接写出在这次抽测中,测试成绩的众数和中位数;
    (3)该区体育中考选报引体向上的男生共有1800人,如果体育中考引体向上达6个以上(含6个)得满分,请你估计该区体育中考中选报引体向上的男生能获得满分的有多少名?
    26、(12分)如图,平行四边形中,点是与的交点,过点的直线与,的延长线分别交于点,.
    (1)求证:;
    (2)连接,,求证:四边形是平行四边形.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    根据函数的概念可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可得出答案.
    【详解】
    解:A、当x<0时,对于x的每一个值,y=都有唯一确定的值,所以y=(x<0)是函数;
    B、当x>0时,对于x的每一个值,y=±有两个互为相反数的值,而不是唯一确定的值,所以y=±(x>0)不是函数;
    C、当x>0时,对于x的每一个值,y=都有唯一确定的值,所以y=(x>0)是函数;
    D、当x>0时,对于x的每一个值,y=-都有唯一确定的值,所以y=-(x>0)是函数.
    故选B.
    此题主要考查了函数的概念.函数的概念:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.
    2、A
    【解析】
    由题意得:,又,则k的值即可求出.
    【详解】
    设,
    直线与双曲线交于A、B两点,
    ,

    ,
    ,
    ,则.
    又由于反比例函数位于一三象限,,故.
    故选A.
    本题主要考查了反比例函数中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为,是经常考查的一个知识点.
    3、C
    【解析】
    根据点的运动过程可知:的底边为,而且始终不变,点到直线的距离为的高,根据高的变化即可判断与的函数图象.
    【详解】
    解:设点到直线的距离为,
    的面积为:,
    当在线段运动时,
    此时不断增大,也不端增大
    当在线段上运动时,
    此时不变,也不变,
    当在线段上运动时,
    此时不断减小,不断减少,
    又因为匀速行驶且,所以在线段上运动的时间大于在线段上运动的时间
    故选.
    本题考查函数图象,解题的关键是根据点到直线的距离来判断与的关系,本题属于基础题型.
    4、D
    【解析】
    根据完全平方公式即可求出答案.
    【详解】
    A.原式,故错误;
    B.原式,故错误;
    C.原式,故错误;
    故选.
    本题考查完全平方公式,解题的关键是熟练运用完全平方公式.
    5、D
    【解析】
    分别根据同底数幂的乘法和除法法则、分式的乘方和幂的乘方法则计算各项即得答案.
    【详解】
    解:A、原式=m8 ≠m12,所以本选项不符合题意;
    B、原式=m4≠m3,所以本选项不符合题意;
    C、原式=≠,所以本选项不符合题意;
    D、原式=m6,所以本选项符合题意.
    故选:D.
    此题考查了分式的乘方,同底数幂的乘法,幂的乘方以及同底数幂的除法等运算法则,熟练掌握幂的运算性质是解本题的关键.
    6、C
    【解析】
    根据正多边形的外角度数求出多边形的边数,根据多边形的内角和公式即可求出多边形的内角和.
    【详解】
    由题意,正多边形的边数为,
    其内角和为.
    故选C.
    考查多边形的内角和与外角和公式,熟练掌握公式是解题的关键.
    7、B
    【解析】
    试题分析:根据条形统计图可以得到哪一组的人数最多,从而可以解答本题.
    由条形统计图可得,人数最多的一组是4~6小时,频数为22,
    考点:频数(率)分布直方图
    8、C
    【解析】
    根据矩形的性质,AD=BC=6,则根据直角三角形的性质,得到∠ADE=30°,则得到∠BAE=30°,利用勾股定理求出DE的长度和BE的长度,即可得到答案.
    【详解】
    解:在矩形ABCD中,∠BAD=90°,AD=BC=6,
    ∵AE⊥BD,AE=3,
    ∴,
    ∵Rt△ADE中,,
    ∴∠ADE=30°,
    ∵,
    ∴,
    ∴,
    ∵,即,
    ∴,
    ∴;
    故选:C.
    本题考查了矩形的性质,利用勾股定理解直角三角形,含30°直角三角形的性质,以及同角的余角相等,解题的关键是熟练掌握所学的知识,正确求出DE和BE的长度.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、1
    【解析】
    解分式方程,根据增根的含义:使最简公分母为0的根叫做分式方程的增根,即可求得.
    【详解】
    解:去分母得,解得,
    而此方程的最简公分母为,令故增根为.
    即,解得.
    故答案为1.
    本题考查解分式方程,难度不大,是中考的常考点,熟练掌握增根的含义是顺利解题的关键.
    10、1
    【解析】
    去分母后把x=2代入,即可求出a的值.
    【详解】
    两边都乘以x-2,得
    a=x-1,
    ∵方程有增根,
    ∴x-2=0,
    ∴x=2,
    ∴a=2-1=1.
    故答案为:1.
    本题考查的是分式方程的增根,在分式方程变形的过程中,产生的不适合原方程的根叫做分式方程的增根.增根使最简公分母等于0,不适合原分式方程,但是适合去分母后的整式方程.
    11、.
    【解析】
    分式值为零的条件:分子为零且分母不为零,即且.
    【详解】
    分式的值为1

    解得:
    故答案为.
    从以下三个方面透彻理解分式的概念:
    分式无意义分母为零;
    分式有意义分母不为零;
    分式值为零分子为零且分母不为零.
    12、1
    【解析】
    这组数据的平均数为:(-1+1+0+1+3)÷5=1,所以方差=[(-1-1)1+(0-1)1+(1-1)1+(1-1)1+(3-1)1]=1.
    13、1或2
    【解析】
    当DF在CD右侧时,取BC中点H,连接FH交CD于M,连接DH,CD。可证△FDH≌△EDB,再证△CHM≌△DHM,推出MH⊥CD,由勾股定理可得FM,由中位线可得MH,进而可计算FH,由全等可得FH=BE。同理可求DF在CD左侧时,FH的值,进而求BE的值。
    【详解】
    如图当DF在CD右侧时,取BC中点H,连接FH交CD于M,连接DH,CD。
    易证△BDH是等边三角形,DH=BD, ∠FDH=∠EDB ,DF=DE
    ∴△FDH≌△EDB
    ∴FH=BE,∠FHD=∠B=60°
    在等边△BDH中∠DHB=60°
    ∴∠CHF=60°
    ∴MH=MH,∠CHM=∠MHD=60°,DH=CH,
    ∴△CHM≌△DHM
    ∴CM=DM,
    ∵ CM=DM,CH=BH
    ∴ MH//BD,
    ∵CD⊥AB
    ∴MH⊥CD
    ∴∠CMF=90°



    BE==1
    同理可证,当DF在CD左侧时
    BE==2
    综上所诉,BE=1或2
    灵活构造三角形全等,及中位线,勾股定理,等边三角形的性质是解题的关键。
    三、解答题(本大题共5个小题,共48分)
    14、(1)见解析;(2)①7;②1.
    【解析】
    (1)根据平行四边形的性质得出CF平行ED,再根据三角形的判定方法判定△CFG≌△EDG,从而得出FG=CG,根据平行四边形的判定定理,即可判断四边形CEDF为平行四边形.
    (2)①过A作AM⊥BC于M,根据直角三角形边角关系和平行四边形的性质得出DE=BM,根据三角形全等的判定方法判断△MBA≌△EDC,从而得出∠CED=∠AMB=90°,根据矩形的判定方法,即可证明四边形CEDF是矩形.
    ②根据题意和等边三角形的性质可以判断出CE=DE,再根据菱形的判定方法,即可判断出四边形CEDF是菱形.
    【详解】
    (1)证明:
    ∵四边形ABCD是平行四边形,
    ∴CF∥ED,
    ∴∠FCD=∠GCD,
    ∵G是CD的中点,
    ∴CG=DG,
    在△FCG和△EDG中,
    ∴△CFG≌△EDG(ASA),
    ∴FG=EG,
    ∴四边形CEDF是平行四边形;
    (2)①解:当AE=7时,平行四边形CEDF是矩形,
    理由是:过A作AM⊥BC于M,
    ∵∠B=60°,AB=6,
    ∴BM=3,
    ∵四边形ABCD是平行四边形,
    ∴∠CDA=∠B=60°,DC=AB=6,BC=AD=10,
    ∵AE=7,
    ∴DE=3=BM,
    在△MBA和△EDC中,,
    ∴△MBA≌△EDC(SAS),
    ∴∠CED=∠AMB=90°,
    ∵四边形CEDF是平行四边形,
    ∴四边形CEDF是矩形,
    故答案为:7;
    ②当AE=1时,四边形CEDF是菱形,
    理由是:∵AD=10,AE=1,
    ∴DE=6,
    ∵CD=6,∠CDE=60°,
    ∴△CDE是等边三角形,
    ∴CE=DE,
    ∵四边形CEDF是平行四边形,
    ∴四边形CEDF是菱形,
    故答案为:1.
    本题考查了平行四边形、矩形、菱形的判定方法,平行四边形的性质和三角形全等的判定和性质,解决本题的关键是正确理解题意,能够熟练掌握平行四边形、矩形、菱形的判定方法,找到各个量之间存在的关系.
    15、80 120
    【解析】
    (1)由图象可知,两车同时出发.等量关系有两个:3.6×(慢车的速度+快车的速度)=720,(9-3.6)×慢车的速度=3.6×快车的速度,设慢车的速度为akm/h,快车的速度为bkm/h,依此列出方程组,求解即可;
    (2)点C表示快车到达乙地,然后求出快车行驶完全程的时间从而求出点C的横坐标,再求出相遇后两辆车行驶的路程得到点C的纵坐标,从而得解;
    (3)分相遇前相距500km和相遇后相遇500km两种情况求解即可.
    【详解】
    (1)设慢车的速度为akm/h,快车的速度为bkm/h,
    根据题意,得 ,解得 ,
    故答案为80,120;
    (2)图中点C的实际意义是:快车到达乙地;
    ∵快车走完全程所需时间为720÷120=6(h),
    ∴点C的横坐标为6,
    纵坐标为(80+120)×(6﹣3.6)=480,
    即点C(6,480);
    (3)由题意,可知两车行驶的过程中有2次两车之间的距离为500km.
    即相遇前:(80+120)x=720﹣500,
    解得x=1.1,
    相遇后:∵点C(6,480),
    ∴慢车行驶20km两车之间的距离为500km,
    ∵慢车行驶20km需要的时间是=0.25(h),
    ∴x=6+0.25=6.25(h),
    故x=1.1 h或6.25 h,两车之间的距离为500km.
    考查了一次函数的应用,主要利用了路程、时间、速度三者之间的关系,(3)要分相遇前与相遇后两种情况讨论,这也是本题容易出错的地方.
    16、见解析
    【解析】
    首先判断出四边形OCED是平行四边形,而四边形ABCD是矩形,由OC、OD是矩形对角线的一半,知OC=OD,从而得出四边形OCED是菱形.
    【详解】
    证明:∵DE∥AC,CE∥DB,
    ∴四边形OCED是平行四边形,
    又∵四边形ABCD是矩形,
    ∴AC=BD,OC=OA=AC,OB=OD=BD,
    ∴OC=OD,
    ∴平行四边形OCED是菱形(一组邻边相等的平行四边形是菱形).
    此题主要考查了菱形的判定,关键是掌握菱形的判定方法:
    ①菱形定义:一组邻边相等的平行四边形是菱形(平行四边形+一组邻边相等=菱形);
    ②四条边都相等的四边形是菱形.
    ③对角线互相垂直的平行四边形是菱形(或“对角线互相垂直平分的四边形是菱形”).
    17、(1);(2)且;(3)或
    【解析】
    (1)开口方向向上,即m-1>0,然后求解即可;
    (2)当与x轴有两个交点,即对应的一元二次方程的判别式大于零;
    (3)当与x轴有一个交点,即对应的一元二次方程的判别式等于零或者本身就是一次函数.
    【详解】
    解:(1)∵,
    ∴.
    (2)且,

    ∴且.
    (3)或,
    ∴或.
    本题考查了二次函数和一元二次方程的关系,特别是与x轴交点的个数与方程的判别式的关系是解答本题的关键.
    18、(1)见解析;(2);(3)正方形,见解析
    【解析】
    (1)根据中心对称的特点得到点A1、C1,顺次连线即可得到图形;
    (2)根据图形分别求出AC、、、的长即可得到答案;
    (3)求出AB、AC、BC的长度,根据勾股定理逆定理及中心对称图形得到四边形是正方形,即可求出答案.
    【详解】
    (1)如图,
    (2)∵,,, ,
    ∴四边形的周长=AC+++=,
    故答案为:;
    (3)由题意得: ,,,
    ∴AB=BC, ,
    ∴△ABC是等腰直角三角形,
    由(2)得,
    ∴四边形是菱形,
    由中心对称得到,,,
    ∴是等腰直角三角形,
    ∴,
    ∴,
    ∴四边形是正方形.
    此题考查中心对称图形的作图能力,勾股定理计算网格中线段长度,等腰直角三角形的判定定理及性质定理,勾股定理的逆定理,正方形的判定定理.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、
    【解析】
    先根据平行四边形的判定定理得出四边形AEDF为平行四边形,再根据平行线的性质及角平分线的性质得出∠1=∠3,故可得出▱AEDF为菱形,根据菱形的性质即可得出.
    【详解】
    如图所示:
    ∵DE∥AC,DF∥AB,
    ∴四边形AEDF为平行四边形,
    ∴OA=OD,OE=OF,∠2=∠3,
    ∵AD是△ABC的角平分线,
    ∵∠1=∠2,
    ∴∠1=∠3,
    ∴AE=DE.
    ∴▱AEDF为菱形.
    ∴AD⊥EF,即∠AOF=1°.
    故答案是:1.
    考查的是菱形的判定与性质,根据题意判断出四边形AEDF是菱形是解答此题的关键.
    20、1
    【解析】
    先根据勾股定理求出OB的长,再在Rt△COD中求出OD的长,进而可得出结论.
    【详解】
    解:在Rt△ABO中,
    ∵AB=15m,AO=12m,
    ∴OB==9m.
    同理,在Rt△COD中,DO==12m,
    ∴BD=OD﹣OB=12﹣9=1(m).
    故答案是:1.
    本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.
    21、1
    【解析】
    根据中位数的定义来求解即可,中位数是指将数据按大小顺序排列起来,形成一个数列,居于数列中间位置的那个数据.
    【详解】
    解:本次比赛一共有:5+19+13+13=50人,
    ∴中位数是第25和第26人的年龄的平均数,
    ∵第25人和第26人的年龄均为1岁,
    ∴全体参赛选手的年龄的中位数为1岁.
    故答案为1.
    中位数的定义是本题的考点,熟练掌握其概念是解题的关键.
    22、1.
    【解析】
    根据一个正数的算术平方根就是其正的平方根即可得出.
    【详解】
    ∵,
    ∴9算术平方根为1.
    故答案为1.
    本题考查了算术平方根,熟练掌握算术平方根的概念是解题的关键.
    23、1
    【解析】
    利用平行四边形的对角相等、邻角互补可求得答案.
    【详解】
    解:因为四边形ABCD是平行四边形,
    所以∠B=∠D,∠A+∠B=180°.
    因为∠B+∠D=190°,
    所以∠B=95°.
    所以∠A=180°﹣95°=1°.
    故答案为1.
    此题考查平行四边形的性质,解题关键在于掌握其性质定理
    二、解答题(本大题共3个小题,共30分)
    24、(1)①见解析;②见解析;(2)见解析;(3)①y1的最小值是0.5;②AP的长为2cm;③x=2.1.
    【解析】
    (1)①由表格得点(x,y1)即可;
    ②先由①描点,再用光滑曲线顺次连接各点,即可得出函数图象;利用数形结合,根据当x=0.5时,得出y1值,填入表格即可;
    (2)过点F作FM⊥AC于M,由菱形的性质各三角形中位线性质求得FM=1,PM=3-x,所以y2=,再利用描点法画出y2的图象即可;
    (3)①利用数形结合,由函数y1的图象求解即可;
    ②过点F作FM⊥AC于M,
    可利用几何背景意义求解;
    ③因PC=AC-AP=4-x,由PE=PC,则y1=4-x,利用图象求解即可.
    【详解】
    解:(1)①如下表:图象如图所示:
    ②过点F作FM⊥AC于M,如图,
    ∵菱形ABCD,
    ∴AC⊥BD,
    ∴FM∥BD,
    ∵F是BC的中点,
    ∴M是OC的中点,
    ∴FM=1,OM=1,
    ∴PM=3-x,
    ∴PF2=PM2+MF2,
    ∴y2=,
    利用描点法作出图象,如图所示:
    (3)如上图;
    ①由图象可得:函数y1的最小值是0.5;
    ②答案不唯一,如,如:用几何背景意义可知:函数y1的图象与函数y2的图象的交点表示的含义是:当PE=PF=1.12cm时,由图象可得:AP的长为2cm;
    ③∵PC=AC-AP=4-x,
    ∵PE=PC,
    ∴y1=4-x,
    利用图象可得:x=2.1.
    故答案为①0.5;②当PE=PF=1.12cm时,AP的长为2cm;③2.1.
    本题考查动点函数的函数图象,菱形的性质,以及勾股定理的应用.熟练掌握用描点法作函数图象是解题关键.
    25、(1)见解析;(2)众数:5,中位数:5;(3)该区体育中考选报引体向上的男生能获得满分的同学有810名.
    【解析】
    (1)用1减去其他天数所占的百分比即可得到a的值,用360°乘以它所占的百分比,即可求出该扇形所对圆心角的度数确定a的值,再补全条形图即可;
    (2)根据众数与中位数的定义求解即可;
    (3)先求出样本中得满分的学生所占的百分比,再乘以1800即可.
    【详解】
    解:(1) 设引体向上6个的学生有x人,由题意得 ,解得x=50.
    条形统计图补充如下:
    (2)由条形图可知,引体向上5个的学生有60人,人数最多,所以众数是5;
    共200名同学,排序后第100名与第101名同学的成绩都是5个,故中位数为(5+5)÷2=5;
    (3)(名)
    答:估计该区体育中考选报引体向上的男生能获得满分的同学有810名.
    本题为统计题,考查众数与中位数的意义.一组数据中出现次数最多的数据叫做众数;将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数.也考查了条形统计图、扇形统计图与用样本估计总体.
    26、 (1)证明见解析;(2)证明见解析.
    【解析】
    (1)根据平行四边形的性质和全等三角形的证明方法证明即可;
    (2)请连接、,由,得到,又,所以四边形是平行四边形.
    【详解】
    (1)四边形是平行四边形,
    ,.

    在与中,


    (2)如图,连接、,
    由(1)可知,


    四边形是平行四边形.
    本题主要考查了全等三角形的性质与判定、平行四边形的性质,首先利用平行四边形的性质构造全等条件,然后利用全等三角形的性质解决问题.
    题号





    总分
    得分
    批阅人
    年龄组
    12岁
    13岁
    14岁
    15岁
    参赛人数
    5
    19
    13
    13
    x/cm
    0
    0.5
    1
    1.5
    2
    2.5
    3
    3.5
    4
    /cm
    1.12
    0.5
    0.71
    1.12
    1.58
    2.06
    2.55
    3.04
    x/cm
    0
    0.5
    1
    1.5
    2
    2.5
    3
    3.5
    4
    y1/cm
    1.12
    0.71
    0.5
    0.71
    1.12
    1.58
    2.06
    2.55
    3.04

    相关试卷

    2024年福建省福州市杨桥中学九上数学开学经典试题【含答案】:

    这是一份2024年福建省福州市杨桥中学九上数学开学经典试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年福建省福州市数学九上开学复习检测模拟试题【含答案】:

    这是一份2024年福建省福州市数学九上开学复习检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年福建省福州市屏东中学九上数学开学联考模拟试题【含答案】:

    这是一份2024年福建省福州市屏东中学九上数学开学联考模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map