2025届福建省泉州市永春第二中学九年级数学第一学期开学考试模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,▱ABCD的对角线AC与BD相交于点O,AC⊥BC,且AB=10,AD=6,则OB的长度为( )
A.2B.4C.8D.4
2、(4分)如图,直线y=﹣x+4与x轴、y轴分别交于点A、B、C是线段AB上一点,四边形OADC是菱形,则OD的长为( )
A.4.2B.4.8C.5.4D.6
3、(4分)将正比例函数y=2x的图象向下平移2个单位长度,所得图象对应的函数解析式是( )
A.y=2x-1B.y=2x+2
C.y=2x-2D.y=2x+1
4、(4分)若bk>0,则直线y=kx-b一定通过( )
A.第一、二象限B.第二、三象限C.第三、四象限D.第一、四象限
5、(4分)顺次连结一个平行四边形的各边中点所得四边形的形状是( )
A.平行四边形B.矩形C.菱形D.正方形
6、(4分)在平面直角坐标系中,一次函数y=kx+b的图象如图所示,观察图象可得( )
A.k>0,b>0B.k>0,b<0C.k<0,b>0D.k<0,b<0
7、(4分)设的整数部分是,小数部分是,则的值为( ).
A.B.C.D.
8、(4分)如图,在中,,,的垂直平分线分别交于点,若,则的长是( )
A.4B.3C.2D.1
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)在平行四边形ABCD中,∠A+∠C=200°,则∠A=_____.
10、(4分)袋中装有除颜色外其余均相同的5个红球和3个白球.从袋中任意摸出一个球,则摸出的球是红球的概率为________.
11、(4分)已知菱形的边长为4,,如果点是菱形内一点,且,那么的长为___________.
12、(4分)如图,四边形ABCD中,AB∥CD,AB=BC=2,∠BCD=30°,∠E=45°,点D在CE上,且CD=BC,点H是AC上的一个动点,则HD+HE最小值为___.
13、(4分)当x______时,在实数范围内有意义.
三、解答题(本大题共5个小题,共48分)
14、(12分)某市举行“传承好家风”征文比赛,已知每篇参赛征文成绩记m分(60≤m≤100),组委会从1000篇征文中随机抽取了部分参赛征文,统计了他们的成绩,并绘制了如下不完整的两幅统计图表.
请根据以上信息,解决下列问题:
(1)征文比赛成绩频数分布表中c的值是________;
(2)补全征文比赛成绩频数分布直方图;
(3)若80分以上(含80分)的征文将被评为一等奖,试估计全市获得一等奖征文的篇数.
15、(8分)如图,某住宅小区在施工过程中留下了一块空地,已知AD=4米,CD=3米,∠ADC=90°,AB=13米,BC=12米,小区为美化环境,欲在空地上铺草坪,已知草坪每平方米100元,试问用该草坪铺满这块空地共需花费多少元?
16、(8分)已知:如图,平行四边形ABCD,对角线AC与BD相交于点E,点G为AD的中点,连接CG,CG的延长线交BA的延长线于点F,连接FD.
(1)求证:AB=AF;
(2)若AG=AB,∠BCD=120°,判断四边形ACDF的形状,并证明你的结论.
17、(10分)(1)计算:;
(2)已知x=2−,求(7+4)x2+(2+)x+的值
18、(10分)如图,每个小正方形的边长为1,四边形的每个顶点都在格点上,且,.
(1)请在图中补齐四边形,并求其面积;
(2)判断是直角吗?请说明理由
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)合作小组的4位同学在课桌旁讨论问题,学生A的座位如图所示,学生B,C,D随机坐到其他三个座位上,则B坐在2号座位的概率是 .
20、(4分)在平面直角坐标系中,抛物线y=a(x−2)经过原点O,与x轴的另一个交点为A.将抛物线在x轴下方的部分沿x轴折叠到x轴上方,将这部分图象与原抛物线剩余部分的图象组成的新图象记为G,过点B(0,1)作直线l平行于x轴,当图象G在直线l上方的部分对应的函数y随x增大而增大时,x的取值范围是____.
21、(4分)如图,点A是反比例函数y=图象上的一个动点,过点A作AB⊥x轴,AC⊥y轴,垂足点分别为B、C,矩形ABOC的面积为4,则k=________.
22、(4分)平行四边形ABCD的周长为20cm,对角线AC、BD相交于点O,若△BOC的周长比△AOB的周长大2cm,则CD=_____cm.
23、(4分)计算:3-2= ;
二、解答题(本大题共3个小题,共30分)
24、(8分)某童装专卖店在销售中发现,一款童装每件进价为80元,销售价为120元时,每天可售出20件,为了迎接“六一”儿童节,商店决定采取适当的降价措施,以扩大销售量增加利润,经市场调查发现,如果每件童装降价1元,那么平均可多售出2件.
(1)每件童装降价多少元时,能更多让利于顾客并且商家平均每天能赢利1200元.
(2)要想平均每天赢利2000元,可能吗?请说明理由.
25、(10分)为了让“两会”精神深入青年学生,增强学子们的历史使命和社会责任感,某高校党委举办了“奋力奔跑同心追梦”两会主题知识竞答活动,文学社团为选派优秀同学参加学校竞答活动,提前对甲、乙两位同学进行了6次测验:
①收集数据:分别记录甲、乙两位同学6次测验成绩(单位:分)
②整理数据:列表格整理两位同学的测验成绩(单位:分)
③描述数据:根据甲、乙两位同学的成绩绘制折线统计图
④分析数据:两组成绩的平均数、中位数、众数、方差如下表:
得出结论:结合上述统计过程,回答下列问题:
(1)补全④中表格;
(2)甲、乙两名同学中,_______(填甲或乙)的成绩更稳定,理由是______________________
(3)如果由你来选择一名同学参加学校的竞答活动,你会选择__________(填甲或乙),理由是___________
26、(12分)阅读例题,解答下题.
范例:解方程: x2 + ∣x +1∣﹣1= 0
解:(1)当 x+1 ≥ 0,即 x ≥ ﹣1时,
x2 + x +1﹣1= 0
x2 + x = 0
解得 x 1 = 0 ,x2 =﹣1
(2)当 x+1 < 0,即 x < ﹣1时,
x2 ﹣ ( x +1)﹣1= 0
x2﹣x ﹣2= 0
解得x 1 =﹣1 ,x2 = 2
∵ x < ﹣1,∴ x 1 =﹣1,x2 = 2 都舍去.
综上所述,原方程的解是x1 = 0,x2 =﹣1
依照上例解法,解方程:x2﹣2∣x-2∣-4 = 0
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
利用平行四边形的性质和勾股定理易求AC的长,进而可求出OB的长.
【详解】
∵四边形ABCD是平行四边形,
∴BC=AD=6,OA=OC,
∵AC⊥BC,AB=10,
∴,
∴,
∴;
故选:A.
本题考查了平行四边形的性质以及勾股定理的运用,熟练掌握平行四边形的性质和勾股定理是解题的关键.
2、B
【解析】
由直线的解析式可求出点B、A的坐标,进而可求出OA、OB的长,再利用勾股定理即可求出AB的长,由菱形的性质可得OE⊥AB,OE=DE,再根据直角三角形的面积可求出OE的长,进而可求出OD的长.
【详解】
解:∵直线y=﹣x+4与x轴、y轴分别交于点A、B,
∴点A(3,0)、点B(0,4),
∴OA=3,OB=4,
∴AB=,
∵四边形OADC是菱形,
∴OE⊥AB,OE=DE,
由直角三角形的面积得,
即3×4=5×OE.
解得:OE=2.4,
∴OD=2OE=4.8.
故选B.
本题考查了菱形的性质和一次函数与坐标轴的交点问题,难度不大,题目设计新颖,解题的关键是把求OD的长转化为求直角△AOB斜边上的高OE的长的2倍.
3、C
【解析】
根据“上加下减”的原则求解即可.
【详解】
将正比例函数y=1x的图象向下平移1个单位长度,所得图象对应的函数解析式是y=1x-1.
故选C.
本题考查的是一次函数的图象与几何变换,熟知函数图象变换的法则是解答此题的关键.
4、D
【解析】
根据题意讨论k和b的正负情况,然后可得出直线y=kx-b一定通过哪两个象限.
【详解】
解:由bk>0,知,①b>0,k>0;②b<0,k<0;
①b>0,k>0时,直线经过第一、三、四象限,
②b<0,k<0时,直线经过第一、二、四象限.
综上可得,函数一定经过一、四象限.
故选:D.
本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.
5、A
【解析】
试题分析:连接平行四边形的一条对角线,根据中位线定理,可得新四边形的一组对边平行且等于对角线的一半,即一组对边平行且相等.则新四边形是平行四边形.
解:顺次连接平行四边形ABCD各边中点所得四边形必定是:平行四边形,
理由如下:
(如图)根据中位线定理可得:GF=BD且GF∥BD,EH=BD且EH∥BD,
∴EH=FG,EH∥FG,
∴四边形EFGH是平行四边形.
故选A.
考点:中点四边形.
6、A
【解析】
解:∵一次函数y=kx+b的图象经过一、三象限,
∴k>1,
又该直线与y轴交于正半轴,
∴b>1.
∴k>1,b>1.
故选A.
7、B
【解析】
只需首先对 估算出大小,从而求出其整数部分a,再进一步表示出其小数部分b,然后将其代入所求的代数式求值.
【详解】
解:∵4<5<9,
∴1<<2,
∴-2< <-1.
∴1<<2.
∴a=1,
∴b=5--1=,
∴a-b=1-2+=
故选:B.
此题主要考查了估算无理数的大小,注意首先估算无理数的值,再根据不等式的性质进行计算. “夹逼法”是估算的一般方法,也是常用方法.
8、C
【解析】
连接BE,根据线段垂直平分线上的点到线段两端点的距离相等可得AE=BE,再根据等边对等角的性质求出∠ABE=∠A,然后根据三角形的内角和定理求出∠CBE,再根据30°角所对的直角边等于斜边的一半求出CE.
【详解】
如图,连接BE,
∵DE是AB的垂直平分线,
∴AE=BE,
∴∠ABE=∠A=30°,
在△ABC中,∠CBE=180°-∠A-∠ABE-∠C=180°-30°-30°-90°=30°,
∴CE=BE=×4=2,
故选C.
本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,30°角所对的直角边等于斜边的一半的性质,勾股定理的应用,熟记性质并作出辅助线是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、100°
【解析】
根据平行四边形的性质(平行四边形的对角相等,对边平行)可得,又由 ,可得.
【详解】
四边形ABCD是平行四边形
故答案是:
本题主要考查了平行四边形的性质:平行四边形的对角相等,对边平行.熟练掌握平行四边形的性质是解题的关键.
10、
【解析】
直接利用概率公式求解.
【详解】
从袋中任意摸出一个球,则摸出的球是红球的概率=.
故答案为.
本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.
11、1或3
【解析】
数形结合,画出菱形,根据菱形的性质及勾股定理即可确定BP的值
【详解】
解:连接AC和BD交于一点O,
四边形ABCD为菱形
垂直平分AC,
点P在线段AC的垂直平分线上,即BD上
在直角三角形APO中,由勾股定理得
如下图所示,当点P在BO之间时,BP=BO-PO=2-1=1;
如下图所示,当点P在DO之间时,BP=BO+PO=2+1=3
故答案为:1或3
本题主要考查了菱形的性质及勾股定理,熟练应用菱形的性质及勾股定理求线段长度是解题的关键.
12、
【解析】
根据平行四边形的性质及两点之间线段最短进行作答.
【详解】
由题知,四边形ABCD是平行四边形,所以BH=DH.要求HD+HE最小,即BH+HE最小,所以,连接B、E,得到最小值HD+HE=BE.过B点作BGCE交于点G,再结合题意,得到GE=3,BG=1,由勾股定理得,BE=.所以,HD+HE最小值为.
本题考查了平行四边形的性质及两点之间线段最短,熟练掌握平行四边形的性质及两点之间线段最短是本题解题关键.
13、x≥-1且x≠1.
【解析】
根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,列不等式求解.
【详解】
解:根据二次根式的意义,被开方数x+1≥0,解得x≥-1;
根据分式有意义的条件,x-1≠0,解得x≠1,
所以,x取值范围是x≥-1且x≠1
故答案为:x≥-1且x≠1.
本题考查二次根式有意义的条件和分式有意义的条件,掌握二次根式中的被开方数必须是非负数、分式分母不为0是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)0.2;(2)补全征文比赛成绩频数分布直方图见解析;(3)全市获得一等奖征文的篇数为300篇.
【解析】
【分析】(1)由频率之和为1,用1减去其余各组的频率即可求得c的值;
(2)由频数分布表可知 60≤m<70的频数为:38,频率为:0.38,根据总数=频数÷频率得样本容量,再由频数=总数×频率求出a、b的值,根据a、b的值补全图形即可;
(3)由频数分布表可知评为一等奖的频率为:0.2+0.1=0.3,再用总篇数×一等奖的频率=全市一等奖征文篇数.
【详解】(1)c=1-0.38-0.32-0.1=0.2,
故答案为:0.2;
(2)38÷0.38=100,a=100×0.32=32,b=100×0.2=20,
补全征文比赛成绩频数分布直方图如图所示:
(3)由频数分布表可知评为一等奖的频率为:0.2+0.1=0.3,
∴全市获得一等奖征文的篇数为:1000×0.3=300(篇),
答:全市获得一等奖征文的篇数为300篇.
【点睛】本题考查了频数分布表、频数分布直方图,熟知频数、频率、总数之间的关系是解本题的关键.
15、2400元
【解析】
试题分析:连接AC,根据勾股定理求出AC,根据勾股定理的逆定理求出∠ACB=90°,求出区域的面积,即可求出答案.
试题解析:连结AC,
在Rt△ACD中,∠ADC=90°,AD=4米,CD=3米,由勾股定理得:AC=(米),
∵AC2+BC2=52+122=169,AB2=132=169,∴AC2+BC2=AB2,∴∠ACB=90°,
该区域面积S=S△ACB﹣S△ADC=×5×12﹣×3×4=24(平方米),
即铺满这块空地共需花费=24×100=2400元.
考点:1.勾股定理;2.勾股定理的逆定理.
16、(1)证明见解析;(2)结论:四边形ACDF是矩形.理由见解析.
【解析】
(1)只要证明AB=CD,AF=CD即可解决问题;
(2)结论:四边形ACDF是矩形.根据对角线相等的平行四边形是矩形判断即可;
【详解】
(1)证明:∵四边形ABCD是平行四边形,
∴BE∥CD,AB=CD,
∴∠AFC=∠DCG,
∵GA=GD,∠AGF=∠CGD,
∴△AGF≌△DGC,
∴AF=CD,
∴AB=CF.
(2)解:结论:四边形ACDF是矩形.
理由:∵AF=CD,AF∥CD,
∴四边形ACDF是平行四边形,
∵四边形ABCD是平行四边形,
∴∠BAD=∠BCD=120°,
∴∠FAG=60°,
∵AB=AG=AF,
∴△AFG是等边三角形,
∴AG=GF,
∵△AGF≌△DGC,
∴FG=CG,∵AG=GD,
∴AD=CF,
∴四边形ACDF是矩形.
本题考查平行四边形的判定和性质、矩形的判定、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题.
17、(1)9-2;(2)2+
【解析】
(1)根据二次根式的运算法则即可求出答案.
(2)根据完全平方公式进行化简,然后将x的值代入即可求出答案.
【详解】
(1)原式=6+3−2+1−1
=9-2
(2)原式=(+2)2x2+(2+)x+
=(+2)2(2-)2+(2+)(2-)+
=(4-3)2+4-3+
=1+1+
=2+
本题考查学生的运算能力,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.
18、(1)图形见解析,四边形的面积为14.5;(2)是直角,理由见解析
【解析】
(1)根据勾股定理可得出A点位置如图,然后根据网格特点求面积;
(2)根据勾股定理可分别算出BC、CD和BD的长,再用勾股定理逆定理验证即可.
【详解】
(1)补全如下图:
S四边形ABCD=(4+5)×5÷2-4×2÷2-(1+3)×1÷2-1×4÷2=14.5
故四边形的面积为14.5
(2)是直角,理由如下:
根据勾股定理可得:;;;
∵;
∴△BCD是直角三角形,∠BCD=90°
故答案为是直角
本题考查格点图中线段长度的算法以及面积的算法,灵活运用勾股定理及其逆定理是解题关键
一、填空题(本大题共5个小题,每小题4分,共20分)
19、.
【解析】
根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.因此,
∵坐到1,2,3号的坐法共有 6 种方法:BCD、BDC、CBD、CDB、DBC、DCB,其中有 2 种方法(CBD、DBC)B坐在2号座位,
∴B坐在2号座位的概率是.
20、1
【解析】
先写出沿x轴折叠后所得抛物线的解析式,根据图象计算可得对应取值范围.
【详解】
由题意可得抛物线:y=(x−2),
对称轴是:直线x=2,由对称性得:A(4,0),
沿x轴折叠后所得抛物线为:y=−(x−2);
如图,由题意得:
当y=1时, (x−2)=1,
解得:x=2+ ,x =2−,
∴C(2−,1),F(2+,1),
当y=1时,−(x−2)=1,
解得:x=3,x=1,
∴D(1,1),E(3,1),
由图象得:图象G在直线l上方的部分,当1
故答案为1
此题考查二次函数的性质,二次函数图象与几何变换,抛物线与坐标轴的交点,解题关键在于结合函数图象进行解答.
21、-1
【解析】
试题分析:由于点A是反比例函数y=上一点,矩形ABOC的面积S=|k|=1,则k的值为-1.
考点:反比例函数
22、1.
【解析】
根据平行四边形的性质可知,平行四边形的对角线互相平分,由于△BOC的周长比△AOB的周长大2cm,则BC比AB长7cm,所以根据周长的值可以求出AB,进而求出CD的长.
【详解】
解:∵平行四边形的周长为20cm,
∴AB+BC=10cm;
又△BOC的周长比△AOB的周长大2cm,
∴BC﹣AB=2cm,
解得:AB=1cm,BC=6cm.
∵AB=CD,
∴CD=1cm
故答案为1.
23、
【解析】
根据负整数指数为正整数指数的倒数计算.
解:3-2=.故答案为.
二、解答题(本大题共3个小题,共30分)
24、(1)每件童装降价20元时,能更多让利于顾客并且商家平均每天能赢利1200元;(2)不可能,理由详见解析.
【解析】
(1)设每件童装降价x元,则销售量为(20+2x)件,根据总利润=每件利润 销售数量,即可得出关于x的一元二次方程,解之取其较大值即可得出结论
(2)设每件童装降价元,则销售量为(20+2y)件,根据总利润=每件利润 销售数量,即可得出关于y的一元二次方程,由根的判别式A<0可得出原方程无解,进而即可得出不可能每天盈利2000元.
【详解】
(1)设每件童装降价元时,能更多让利于顾客并且商家平均每天能赢利1200元,得:
∴,
∵要更多让利于顾客
∴更符合题意
答:每件童装降价20元时,能更多让利于顾客并且商家平均每天能赢利1200元.
(2)不可能;
设每件桶童装降价元,则销售量为件,根据题意得:
整理得:
∵
∴该方程无实数解
∴不可能每天盈利2000元.
本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.
25、(1)1;4;(2)乙;乙的方差更小,成绩更稳定;(3)乙;甲、乙组成绩的平均数相同,乙的中位数、众数都大于甲,乙的方差又比甲的方差小,成绩更稳定.
【解析】
(1)按照众数的定义即可求得甲组的众数;根据方差的计算公式可计算出乙的方差;
(2)比较两组成绩的方差即可回答,方差越小越稳定;
(3)综合比较两级成绩的平均数、中位数、众数、方差的大小即可作出判断.
【详解】
(1)甲组成绩1分出现了两次,是出现次数最多的,所以甲组成绩的众数是1(分);
乙组成绩的方差
=
=4,
故答案是:1;4;
(2)∵甲的方差是2.3,乙的方差是4,
∴乙的方差更小,成绩更稳定;
故答案是:乙;乙的方差更小,成绩更稳定;
(3)甲、乙组成绩的平均数相同,乙的中位数、众数都大于甲,乙的方差又比甲的方差小,成绩更稳定,综合以上因素,应选择乙组去参加.
故答案是:乙;甲、乙组成绩的平均数相同,乙的中位数、众数都大于甲,乙的方差又比甲的方差小,成绩更稳定.
本题考查了统计学中的相关统计量的意义,掌握平均数、中位数、众数、方差的意义及计算方法是解题关键.
26、 (1) x 1 = 0 , x2 = 2;(2)x1 = 2 ,x2 =﹣4.
【解析】
根据题中所给的材料把绝对值符号内的x+2分两种情况讨论(x+2≥0和x+2<0),去掉绝对值符号后再解方程求解.
【详解】
(1)当 x﹣2 ≥ 0,即 x ≥ 2时,
x2 ﹣2(x﹣2)﹣4= 0
x2 -2x = 0
解得x 1 = 0,x2 = 2
∵ x ≥ 2,∴x 1 = 0 舍去
(2)当 x﹣2 < 0,即 x < 2时,
x2 + 2(x﹣2)﹣4= 0
x2+ 2x﹣8= 0
解得 x 1 =﹣4 ,x2 = 2
∵ x < 2,∴x2 = 2 舍去.
综上所述,原方程的解是 x1 = 2 ,x2 =﹣4.
从题中所给材料找到需要的解题方法是解题的关键.注意在去掉绝对值符号时要针对符号内的代数式的正负性分情况讨论.
题号
一
二
三
四
五
总分
得分
甲
1
78
1
3
86
93
乙
3
81
84
86
3
87
1
2
3
4
5
6
甲
1
78
1
3
86
93
乙
3
81
84
86
3
87
同学
平均数
中位数
众数
方差
甲
84
1.5
__________
2.3
乙
84
3.5
3
__________
2025届福建省泉州市永春第二中学九上数学开学教学质量检测模拟试题【含答案】: 这是一份2025届福建省泉州市永春第二中学九上数学开学教学质量检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届福建省泉州市永春县第一中学九上数学开学质量跟踪监视模拟试题【含答案】: 这是一份2025届福建省泉州市永春县第一中学九上数学开学质量跟踪监视模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
福建省泉州市永春县福建省永春第一中学2024-2025学年八年级上学期开学数学试题(原卷版+解析版): 这是一份福建省泉州市永春县福建省永春第一中学2024-2025学年八年级上学期开学数学试题(原卷版+解析版),文件包含福建省泉州市永春县福建省永春第一中学2024-2025学年八年级上学期开学数学试题原卷版docx、福建省泉州市永春县福建省永春第一中学2024-2025学年八年级上学期开学数学试题解析版docx等2份试卷配套教学资源,其中试卷共30页, 欢迎下载使用。