年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2025届甘肃省定西岷县联考九年级数学第一学期开学联考模拟试题【含答案】

    2025届甘肃省定西岷县联考九年级数学第一学期开学联考模拟试题【含答案】第1页
    2025届甘肃省定西岷县联考九年级数学第一学期开学联考模拟试题【含答案】第2页
    2025届甘肃省定西岷县联考九年级数学第一学期开学联考模拟试题【含答案】第3页
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2025届甘肃省定西岷县联考九年级数学第一学期开学联考模拟试题【含答案】

    展开

    这是一份2025届甘肃省定西岷县联考九年级数学第一学期开学联考模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)下列给出的四个点中,不在直线y=2x-3上的是 ( )
    A.(1, -1)B.(0, -3)C.(2, 1)D.(-1,5)
    2、(4分)如果一组数据,,0,1,x,6,9,12的平均数为3,则x为
    A.2B.3C.D.1
    3、(4分)生物刘老师对本班50名学生的血型进行了统计,列出如下统计表.则本班O型血的有( )
    A.17人B.15人C.13人D.5人
    4、(4分)关于抛物线与的说法,不正确的是( )
    A.与的顶点关于轴对称
    B.与的图像关于轴对称
    C.向右平移4个单位可得到的图像
    D.绕原点旋转可得到的图像
    5、(4分)下列说法正确的是( )
    A.两锐角分别相等的两个直角三角形全等
    B.两条直角边分别相等的两直角三角形全等
    C.一个命题是真命题,它的逆命题一定也是真命题
    D.经过旋转,对应线段平行且相等
    6、(4分)如图,某小区计划在一块长为31m,宽为10m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m1.若设道路的宽为xm,则下面所列方程正确的是( )
    A.(31﹣1x)(10﹣x)=570B.31x+1×10x=31×10﹣570
    C.(31﹣x)(10﹣x)=31×10﹣570D.31x+1×10x﹣1x1=570
    7、(4分)如图,在平面直角坐标系中,,,,…都是等腰直角三角形,其直角顶点,,,…均在直线上.设,,,…的面积分别为,,,…,根据图形所反映的规律,( )
    A.B.C.D.
    8、(4分)如图所示,在菱形ABCD中,已知两条对角线AC=24,BD=10,则此菱形的边长是( )
    A.11B.13C.15D.17
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如果是两个不相等的实数,且满足,那么代数式_____.
    10、(4分)如图,矩形中,是上一点(不与重合),点在边上运动,分别是的中点,线段长度的最大值是__________.
    11、(4分)如图,▱ABCD的对角线AC,BD相交于点O,且AC=4,BD=7,CD=3,则△ABO周长是__.
    12、(4分)如果点A(1,n)在一次函数y=3x﹣2的图象上,那么n=_____.
    13、(4分)已知实数a、b在数轴上的位置如图所示,则化简的结果为________
    三、解答题(本大题共5个小题,共48分)
    14、(12分)若关于x、y的二元一次方程组的解满足x+y>0,求m的取值范围.
    15、(8分)A、B两座城市之间有一条高速公路,甲、乙两辆汽车同时分别从这条路两端的入口处驶入,并始终在高速公路上正常行驶.甲车驶往B城,乙车驶往A城,甲车在行驶过程中速度始终不变.甲车距B城高速公路入口处的距离y(千米)与行驶时间x(时)之间的关系如图.
    (1)求y关于x的表达式;
    (2)已知乙车以60千米/时的速度匀速行驶,设行驶过程中,两车相距的路程为s(千米).请直接写出s关于x的表达式;
    (3)当乙车按(2)中的状态行驶与甲车相遇后,速度随即改为a(千米/时)并保持匀速行驶,结果比甲车晚20分钟到达终点,求乙车变化后的速度a.在下图中画出乙车离开B城高速公路入口处的距离y(千米)与行驶时间x(时)之间的函数图象.
    16、(8分)如图①,在矩形ABCD中,AB=,BC=3,在BC边上取两点E、F(点E在点F的左边),以EF为边所作等边△PEF,顶点P恰好在AD上,直线PE、PF分别交直线AC于点G、H.
    (1)求△PEF的边长;
    (2)若△PEF的边EF在线段CB上移动,试猜想:PH与BE有何数量关系?并证明你猜想的结论;
    (3)若△PEF的边EF在射线CB上移动(分别如图②和图③所示,CF>1,P不与A重合),(2)中的结论还成立吗?若不成立,直接写出你发现的新结论.
    17、(10分)如图,在矩形ABCD中,AB=6,AD=12,点E在AD边上,且AE=8,EF⊥BE交CD于点F.
    (1)求证:△ABE∽△DEF;
    (2)求CF的长
    18、(10分)综合与探究
    问题情境:
    在综合实践课上,李老师让同学们根据如下问题情境,写出两个数学结论:如图(1),正方形ABCD的对角线交于点O,点O又是正方形OEFG的一个顶点(正方形OEFG的边长足够长),将正方形OEFG绕点O做旋转实验,OE与BC交于点M,OG与DC交于点N.
    “兴趣小组”写出的两个数学结论是:
    ①S△OMC+S△ONC=S正方形ABCD;
    ②BM1+CM1=1OM1.
    问题解决:
    (1)请你证明“兴趣小组”所写的两个结论的正确性.
    类比探究:
    (1)解决完“兴趣小组”的两个问题后,老师让同学们继续探究,再提出新的问题;“智慧小组“提出的问题是:如图(1),将正方形OEFG在图(1)的基础上旋转一定的角度,当OE与CB的延长线交于点M,OG与DC的延长线交于点N,则“兴趣小组”所写的两个结论是否仍然成立?请说明理由.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)老师对甲、乙两人的五次数学测验成绩进行统计,得出两人五次测验成绩的平均分均为90分,方差分别是S甲 2=17,S乙 2=1.则成绩比较稳定的是 (填“甲”、“乙”中的一个).
    20、(4分)若一次函数y=kx+b的图象经过点P(﹣2,3),则2k﹣b的值为_____.
    21、(4分)已知函数y=ax+b和y=kx的图象交于点P,根据图象可得,求关于x的不等式ax+b>kx的解是____________.
    22、(4分)若代数式的值大于﹣1且小于等于2,则x的取值范围是_____.
    23、(4分)已知,那么的值为__________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)某校为提高学生的汉字书写能力,开展了“汉字听写”大赛.七、八年级各有150人参加比赛,为了解这两个年级参加比赛学生的成绩情况,从中各随机抽取10名学生的成绩,数据如下:
    七年级 88 94 90 94 84 94 99 94 99 100
    八年级 84 93 88 94 93 98 93 98 97 99
    整理数据:按如下分段整理样本数据并补全表格:
    分析数据:补全下列表格中的统计量:
    得出结论:你认为抽取的学生哪个年级的成绩较为稳定?并说明理由.
    25、(10分)如图1,,是线段上的一个动点,分别以为边,在的同侧构造菱形和菱形,三点在同一条直线上连结,设射线与射线交于.

    (1)当在点的右侧时,求证:四边形是平形四边形.
    (2)连结,当四边形恰为矩形时,求的长.
    (3)如图2,设,,记点与之间的距离为,直接写出的所有值.
    26、(12分)已知一次函数y=kx-4,当x=2时,y=-3.
    (1)求一次函数的表达式;
    (2)将该函数的图像向上平移6个单位长度,求平移后的图像与x轴交点的坐标.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    只需把每个点的横坐标即x的值分别代入y=2x-3,计算出对应的y值,然后与对应的纵坐标比较即可
    A、当x=1时,y=-1,(1,-1)在直线y=2x-3上;
    B、当x=0时,y=-3,(0,-3)在直线y=2x-3上;
    C、当x=2时,y=1,(2,1)在直线y=2x-3上;
    D、当x=-1时,y=-5,(-1,5)不在直线y=2x-3上.
    故选D.
    2、D
    【解析】
    根据算术平均数的公式:可得:,进而可得:,解得:x=1.
    【详解】
    因为一组数据,,0,1,x,6,9,12的平均数为3,
    所以,
    所以,
    所以x=1.
    故选D.
    本题主要考查算术平均数的计算公式,解决本题的关键是要熟练掌握算术平均数的计算公式.
    3、D
    【解析】
    频率是指每个对象出现的次数与总次数的比值(或者百分比).即频率=频数÷总数一般称落在不同小组中的数据个数为该组的频数,频数与数据总数的比值为频率.频率反映了各组频数的大小在总数中所占的分量.
    【详解】
    解:本班O型血的有50×0.1=5(人),
    故选:D.
    本题考查了频率与频数,正确理解频率频数的意义是解题的关键.
    4、D
    【解析】
    利用对称变换和平移变换法则,分析两条抛物线的位置关系,即可做出选择..
    【详解】
    解:A,与,当纵坐标相同,横坐标互为相反数,故正确;
    B, 与,当纵坐标相同,横坐标互为相反数,故正确;
    C,与的对称轴分别为x=-2和x=2,故正确;
    D,绕原点旋转,只是开口方向发生变化,故D错误;
    故答案为D.
    本题考查的知识点是二次函数的图象和性质,其中熟练的掌握给定函数解析式求顶点坐标,对称轴方程和开口方向的方法,是解答的关键.
    5、B
    【解析】
    A,B利用斜边和一条直角边对应相等的两个直角三角形全等,判定直角三角形全等时,也可以运用其它的方法.C利用命题与定理进行分析即可,D.利用旋转的性质即可解答;
    【详解】
    A、两个锐角分别相等的两个直角三角形不一定全等,故A选项错误;
    B、根据SAS可得,两条直角边分别相等的两个直角三角形全等,故B选项正确;
    C、一个命题是真命题,它的逆命题不一定是真命题.故C选项错误;
    D、经过旋转,对应线段相等,故D选项错误;
    故选:B.
    此题考查命题与定理,解题关键在于掌握判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.
    6、A
    【解析】
    六块矩形空地正好能拼成一个矩形,设道路的宽为xm,根据草坪的面积是570m1,即可列出方程:(31−1x)(10−x)=570,
    故选A.
    7、A
    【解析】
    分别过点P1、P2、P3作x轴的垂线段,先根据等腰直角三角形的性质求得前三个等腰直角三角形的底边和底边上的高,继而求得三角形的面积,得出面积的规律即可得出答案.
    【详解】
    解:如图,分别过点P1、P2、P3作x轴的垂线段,垂足分别为点C、D、E,
    ∵P1(3,3),且△P1OA1是等腰直角三角形,
    ∴OC=CA1=P1C=3,
    设A1D=a,则P2D=a,
    ∴OD=6+a,
    ∴点P2坐标为(6+a,a),
    将点P2坐标代入,得:,
    解得:
    ∴A1A2=2a=3,,
    同理求得,
    故选:A
    本题考查规律型:点的坐标、等腰直角三角形的性质等知识,解题的关键是从特殊到一般,探究规律,利用规律解决问题,属于中考常考题型.
    8、B
    【解析】
    由菱形的性质可得AO=AC=12,BO=BD=5,由勾股定理可求菱形的边长.
    【详解】
    如图,
    ∵四边形ABCD是菱形
    ∴AC⊥BD,AO=AC=12,BO=BD=5
    ∴AB==13
    故选B.
    本题考查了菱形的性质,利用勾股定理求AB长是本题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、1
    【解析】
    由于m,n是两个不相等的实数,且满足m2-m=3,n2-n=3,可知m,n是x2-x-3=0的两个不相等的实数根.则根据根与系数的关系可知:m+n=1,mn=-3,又n2=n+3,利用它们可以化简,然后就可以求出所求的代数式的值.
    【详解】
    解:由题意可知:m,n是两个不相等的实数,且满足m2-m=3,n2-n=3,
    所以m,n是x2-x-3=0的两个不相等的实数根,
    则根据根与系数的关系可知:m+n=1,mn=-3,
    又n2=n+3,
    则2n2-mn+2m+2015
    =2(n+3)-mn+2m+2015
    =2n+6-mn+2m+2015
    =2(m+n)-mn+2021
    =2×1-(-3)+2021
    =2+3+2021
    =1.
    故答案为:1.
    本题考查一元二次方程根与系数的关系,解题关键是把所求代数式化成两根之和、两根之积的系数,然后利用根与系数的关系式求值.
    10、5
    【解析】
    根据矩形的性质求出AC,然后求出AP的取值范围,再根据三角形的中位线平行于第三边并且等于第三边的一半可得MN=AP.
    【详解】
    解:∵矩形ABCD中,AB=6,BC=8 ,
    ∴对角线AC=10,
    ∵P是CD边上的一动点,
    ∴8≤AP≤10,
    连接AP,
    ∵M,N分别是AE、PE的中点,
    ∴MN是△AEP的中位线,
    ∴, MN=AP.
    ∴MN最大长度为5.
    本题考查了矩形的性质,三角形的中位线平行于第三边并且等于第三边的一半,熟记性质以及定理并求出AP的取值范围是解题的关键.
    11、8.1.
    【解析】
    直接利用平行四边形的性质得出AO=CO=2,BO=DO=,DC=AB=3,进而得出答案.
    【详解】
    ∵四边形ABCD是平行四边形,
    ∴AO=CO,BO=DO,AB=CD=3,
    ∵AC=4,BD=7,
    ∴AO=2,OB=,
    ∴△ABO的周长=AO+OB+AB=2++3=8.1.
    故答案为:8.1.
    此题主要考查了平行四边形的性质以及三角形周长的计算,正确得出AO+BO的值是解题关键.
    12、1
    【解析】
    把点A的坐标代入一次函数y=3x﹣2解析式中,即可求出n的值.
    【详解】
    ∵点A(1,n)在一次函数y=3x﹣2的图象上,
    ∴n=3×1﹣2=1.
    故答案为:1.
    本题考查了点在一次函数图象上的条件,即点的坐标满足一次函数解析式,正确计算是解题的关键.
    13、0
    【解析】
    根据数轴所示,a<0,b>0, b-a>0,依据开方运算的性质,即可求解.
    【详解】
    解:由图可知:a<0,b>0, b-a>0,

    故填:0
    本题主要考查二次根式的性质和化简,实数与数轴,去绝对值号,关键在于求出b-a>0,即|b-a|=b-a.
    三、解答题(本大题共5个小题,共48分)
    14、m>﹣1
    【解析】
    两方程相加可得x+y=m+1,根据题意得出关于m的方程,解之可得.
    【详解】
    解:将两个方程相加即可得1x+1y=1m+4,
    则x+y=m+1,
    根据题意,得:m+1>0,
    解得m>﹣1.
    本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
    15、(1)y=-90x+1;(2)s=1-150x;(3)a=108(千米/时),作图见解析.
    【解析】
    (1)由图知y是x的一次函数,设y=kx+b.把图象经过的坐标代入求出k与b的值.
    (2)根据路程与速度的关系列出方程可解.
    (3)如图:当s=0时,x=2,即甲乙两车经过2小时相遇.再由1得出y=-90x+1.设y=0时,求出x的值可知乙车到达终点所用的时间.
    【详解】
    (1)由图知y是x的一次函数,设y=kx+b
    ∵图象经过点(0,1),(2,120),

    解得
    ∴y=-90x+1.
    即y关于x的表达式为y=-90x+1.
    (2)由(1)得:甲车的速度为90千米/时,甲乙相距1千米.
    ∴甲乙相遇用时为:1÷(90+60)=2,
    当0≤x≤2时,函数解析式为s=-150x+1,
    2<x≤时,s=150x-1
    <x≤5时,s=60x;
    (3)在s=-150x+1中.当s=0时,x=2.即甲乙两车经过2小时相遇.
    因为乙车比甲车晚20分钟到达,20分钟=小时,
    所以在y=-90x+1中,当y=0,x=.
    所以,相遇后乙车到达终点所用的时间为+-2=(小时).
    乙车与甲车相遇后的速度a=(1-2×60)÷=108(千米/时).
    ∴a=108(千米/时).
    乙车离开B城高速公路入口处的距离y(千米)与行驶时间x(时)之间的函数图象如图所示.
    考点:一次函数的应用.
    16、(1)△PEF的边长为2;(2)PH﹣BE=1,证明见解析;(3)结论不成立,当1<CF<2时,PH=1﹣BE,当2<CF<3时,PH=BE﹣1.
    【解析】
    (1)过P作PQ⊥BC,垂足为Q,由四边形ABCD为矩形,得到∠B为直角,且AD∥BC,得到PQ=AB,又△PEF为等边三角形,根据“三线合一”得到∠FPQ为30°,在Rt△PQF中,设出QF为x,则PF=2x,由PQ的长,根据勾股定理列出关于x的方程,求出x的值,即可得到PF的长,即为等边三角形的边长;
    (2)PH﹣BE=1,过E作ER垂直于AD,如图所示,首先证明△APH为等腰三角形,在根据矩形的对边平行得到一对内错角相等,可得∠APE=60°,在Rt△PER中,∠REP=30°,根据直角三角形中,30°角所对的直角边等于斜边的一半,由PE求出PR,由PA=PH,则PH﹣BE=PA﹣BE=PA﹣AR=PR,即可得到两线段的关系;
    (3)当若△PEF的边EF在射线CB上移动时(2)中的结论不成立,由(2)的解题思路可知当1<CF<2时,PH=1﹣BE,当2<CF<3时,PH=BE﹣1.
    【详解】
    解:(1)过P作PQ⊥BC于Q(如图1),
    ∵四边形ABCD是矩形, ∴∠B=90°,即AB⊥BC,
    又∵AD∥BC, ∴PQ=AB=, ∵△PEF是等边三角形, ∴∠PFQ=60°,
    在Rt△PQF中,∠FPQ=30°, 设PF=2x,QF=x,PQ=,根据勾股定理得:,
    解得:x=1,故PF=2,
    ∴△PEF的边长为2;
    (2)PH﹣BE=1,理由如下:
    ∵在Rt△ABC中,AB=,BC=3, ∴由勾股定理得AC=2,
    ∴CD=AC, ∴∠CAD=30° ∵AD∥BC,∠PFE=60°, ∴∠FPD=60°, ∴∠PHA=30°=∠CAD,
    ∴PA=PH, ∴△APH是等腰三角形, 作ER⊥AD于R(如图2) Rt△PER中,∠RPE=60°, ∴PR=PE=1,
    ∴PH﹣BE=PA﹣BE=PR=1.
    (3)结论不成立,
    当1<CF<2时,PH=1﹣BE, 当2<CF<3时,PH=BE﹣1.
    本题考查相似形综合题.
    17、 (1)见详解;(2) .
    【解析】
    (1)由同角的余角相等可得出∠DEF=∠ABE,结合∠A=∠D=90°,即可证出△ABE∽△DEF;
    (2)由AD、AE的长度可得出DE的长度,根据相似三角形的性质可求出DF的长度,将其代入CF=CD-DF即可求出CF的长.
    【详解】
    (1)证明:
    ∵EF⊥BE,
    ∴∠EFB=90°,
    ∴∠DEF+∠AEB=90°.
    ∵四边形ABCD为矩形,
    ∴∠A=∠D=90°,
    ∴∠AEB+∠ABE=90°,
    ∴∠DEF=∠ABE,
    ∴△ABE∽△DEF.
    (2)解:∵AD=12,AE=8,
    ∴DE=1.
    ∵△ABE∽△DEF,
    ∴ = ,
    ∴DF= ,
    ∴CF=CD-DF=6-=.
    本题考查相似三角形的判定与性质以及矩形的性质,解题关键是:(1)利用同角的余角相等找出∠DEF=∠ABE;(2)利用相似三角形的性质求出DF的长度.
    18、(1)详见解析;(1)结论①不成立,结论②成立,理由详见解析.
    【解析】
    (1)①利用正方形的性质判断出△BOM≌△CON,利用面积和差即可得出结论;
    ②先得出OM=ON,BM=CN,再用勾股定理即可得出结论;
    (1)同(1)的方法即可得出结论.
    【详解】
    解:(1)①∵正方形ABCD的对角线相交于O,
    ∴S△BOC=S正方形ABCD,OB=OC,∠BOC=90°,∠OBM=∠OCN,
    ∵四边形OEFG是正方形,
    ∴∠MON=90°,
    ∴∠BOC﹣∠MOC=∠MON﹣∠MOC,
    ∴∠BOM=∠COM,
    ∴△BOM≌△CON,
    ∴S△BOM=S△CON,
    ∴S△OMC+S△ONC=S△OMC+S△BOM=S正方形ABCD;
    ②由①知,△BOM≌△CON,
    ∴OM=ON,BM=CN,
    在Rt△MCN中,MN1=CM1+CN1=CM1+BM1,
    在Rt△MON中,MN1=OM1+ON1=1OM1,
    ∴BM1+CM1=1OM1;
    (1)结论①不成立,
    理由:∵正方形ABCD的对角线相交于O,
    ∴S△BOC=S正方形ABCD,OB=BD,OC=AC,AC=BD,AC⊥BD,∠ABC=∠BCD=90°,AC平分∠BCD,BD平分∠ABC,
    ∴OB=OC,∠BOC=90°,∠OBC=∠OCD=45°,
    ∴∠OBM=∠OCN=135°,
    ∵四边形OEFG是正方形,
    ∴∠MON=90°,
    ∴∠BOM=∠CON,
    ∴△BOM≌△CON,
    ∴S△BOM=S△CON,
    ∴S△OMC﹣S△BOM=S△OMC﹣S△CON=S△BOC=S正方形ABCD,
    ∴结论①不成立;
    结论②成立,理由:
    如图(1)
    连接MN,∵△BOM≌△CON,
    ∴OM=ON,BM=CN,
    在Rt△MCN中,MN1=CM1+CN1=CM1+BM1,
    在Rt△MON中,MN1=OM1+ON1=1OM1,
    ∴BM1+CM1=1OM1,
    ∴结论②成立.
    本题属于三角形综合题,主要考查了全等三角形的判定与性质,等腰直角三角形的判定与性质等知识,解题的关键是正确寻找全等三角形解决问题.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、乙.
    【解析】
    试题解析:∵S甲 2=17,S乙 2=1,1<17,
    ∴成绩比较稳定的是乙.
    考点:方差.
    20、-3
    【解析】
    把坐标带入解析式即可求出.
    【详解】
    y=kx+b的图象经过点P(﹣2,3),
    ∴3=﹣2k+b,
    ∴2k﹣b=﹣3,
    故答案为﹣3;
    此题主要考查一次函数的性质,解题的关键是熟知一次函数的图像.
    21、x<-1.
    【解析】
    试题解析:∵由函数图象可知,当x<-1时一次函数y=ax+b在一次函数y=kx图象的上方,
    ∴关于x的不等式ax+b>kx的解是x<-1.
    考点:一次函数与一元一次不等式.
    22、﹣1≤x<1.
    【解析】
    先根据题意得出关于x的不等式组,求出x的取值范围即可.
    【详解】
    解:根据题意,得:
    解不等式①,得:x<1,
    解不等式②,得:x≥-1,
    所以-1≤x<1,
    故答案为:-1≤x<1.
    本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
    23、
    【解析】
    根据,可设a=3k,则b=2k,代入所求的式子即可求解.
    【详解】
    ∵,
    ∴设a=3k,则b=2k,
    则原式=.
    故答案为:.
    本题考查了比例的性质,根据,正确设出未知数是本题的关键.
    二、解答题(本大题共3个小题,共30分)
    24、1,1,93.5,1;八年级的成绩较为稳定.
    【解析】
    根据中位数,众数和方差的定义即可得到结论.
    【详解】
    整理数据:按如下分段整理样本数据并补全表格:
    分析数据:补全下列表格中的统计量:
    八年级的成绩较为稳定,理由:∵七年级的方差=24.2,八年级的方差=20.4,24.2>20.4,∴八年级的成绩较为稳定.
    故答案为:1,1,93.5,1.
    本题考查了中位数,众数,方差,熟练掌握中位线,众数和方差的定义是解题的关键.
    25、(1)见解析;(2)FG=;(3)d=14或.
    【解析】
    (1)由菱形的性质可得AP∥EF,∠APF=∠EPF=∠APE,PB∥CD,∠CDB=∠PDB=∠CDP,由平行线的性质可得∠FPE=∠BDP,可得PF∥BD,即可得结论;
    (2)由矩形的性质和菱形的性质可得FG=PB=2EF=2AP,即可求FG的长;
    (3)分两种情况讨论,由勾股定理可求d的值;点G在DP的右侧,连接AC,过点C作CH⊥AB,交AB延长线于点H;若点G在DP的左侧,连接AC,过点C作CH⊥AB,交AB延长线于点H.
    【详解】
    (1)∵四边形APEF是菱形
    ∴AP∥EF,∠APF=∠EPF=∠APE,
    ∵四边形PBCD是菱形
    ∴PB∥CD,∠CDB=∠PDB=∠CDP
    ∴∠APE=∠PDC
    ∴∠FPE=∠BDP
    ∴PF∥BD,且AP∥EF
    ∴四边形四边形FGBP是平形四边形;
    (2)若四边形DFPG恰为矩形
    ∴PD=FG,PE=DE,EF=EG,
    ∴PD=2EF
    ∵四边形APEF是菱形,四边形PBCD是菱形
    ∴AP=EF,PB=PD
    ∴PB=2EF=2AP,且AB=10
    ∴FG=PB=.
    (3)如图,点G在DP的右侧,连接AC,过点C作CH⊥AB,交AB延长线于点H,
    ∵FE=2EG,
    ∴PB=FG=3EG,EF=AP=2EG
    ∵AB=10
    ∴AP+PB=5EG=10
    ∴EG=2,
    ∴AP=4,PB=6=BC,
    ∵∠ABC=120°,
    ∴∠CBH=60°,且CH⊥AB
    ∴BH=BC=3,CH=BH=3
    ∴AH=13
    ∴AC==14
    若点G在DP的左侧,连接AC,过点C作CH⊥AB,交AB延长线于点H
    ∵FE=2EG,
    ∴PB=FG=EG,EF=AP=2EG
    ∵AB=10,
    ∴3EG=10
    ∴EG=
    ∴BP=BC=
    ∵∠ABC=120°,
    ∴∠CBH=60°,且CH⊥AB
    ∴BH=BC=,CH=BH=
    ∴AH=
    ∴AC=
    综上所述:d=14或.
    本题考查菱形的性质、平行线的性质、平行四边形的判定及勾股定理,解题的关键是掌握菱形的性质、平行线的性质、平行四边形的判定及勾股定理的计算.
    26、(1)y=x-4.(2)(-4,0).
    【解析】
    (1)把点(2,-3)代入解析式即可求出k;
    (2)先得出函数图像向上平移6单位的函数关系式,再令y=0,即可求出与x轴交点的坐标.
    【详解】
    解:(1)将x=2,y=-3代入y=kx-4,得-3=2k-4.∴k=.
    ∴一次函数的表达式为y=x-4.
    (2)将y=x-4的图像向上平移6个单位长度得y=x+2.
    当y=0时,x=-4.
    ∴平移后的图像与x轴交点的坐标为(-4,0).
    此题主要考察一次函数的解析式的求法与在坐标轴方向上的平移.
    题号





    总分
    得分
    血型
    A型
    B型
    AB型
    O型
    频率
    0.34
    0.3
    0.26
    0.1

    相关试卷

    2023年甘肃省定西市岷县第二次中考模拟数学模拟试题(无答案):

    这是一份2023年甘肃省定西市岷县第二次中考模拟数学模拟试题(无答案),共6页。试卷主要包含了请将答案正确填写在答题卡上;,在中,,则的值为等内容,欢迎下载使用。

    甘肃省省定西市2023-2024学年数学九年级第一学期期末联考试题含答案:

    这是一份甘肃省省定西市2023-2024学年数学九年级第一学期期末联考试题含答案,共7页。试卷主要包含了二次函数y=﹣x2+2mx,中,,是边上的高,若,则等于,抛物线的对称轴为直线等内容,欢迎下载使用。

    甘肃省定西岷县联考2023-2024学年数学九上期末质量跟踪监视模拟试题含答案:

    这是一份甘肃省定西岷县联考2023-2024学年数学九上期末质量跟踪监视模拟试题含答案,共7页。试卷主要包含了下列说法正确的是,已知a、b、c、d是比例线段等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map