2025届广东省潮州潮安区五校联考九年级数学第一学期开学调研模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列各点中,不在反比例函数图象上的点是( )
A.B.C.D.
2、(4分)下列各式计算正确的是( )
A.+=B.2﹣=
C.D.÷=
3、(4分)一个有进水管与出水管的容器,从某时刻开始4min内只进水不出水,在随后的8min内既进水又出水,每分钟的进水量和出水量是两个常数,容器内的水量y(单位:L)与时间x(单位:min)之间的关系如图所示.则8min时容器内的水量为( )
A.20 LB.25 LC.27LD.30 L
4、(4分)直角坐标系中,点P(x,y)在第三象限,且P到x轴和y轴的距离分别为3、4,则点P的坐标为( )
A.(-3,-4)B.(3,4)C.(-4,-3)D.(4,3)
5、(4分)化简的结果是( )
A.2B.-4C.4D.±4
6、(4分)如图,矩形ABCD的面积为5,它的两条对角线交于点O1,以AB、AO1为两邻边作平行四边形ABC1O1,平行四边形ABC1O1的对角线交于点O2,同样以AB、AO2为两邻边作平行四边形ABC2O2,…,依此类推,则平行四边形ABCnOn的面积为( )
A.B.5×C.5×D.5×
7、(4分)使代数式有意义的x的取值范围( )
A.x>2B.x≥2C.x>3D.x≥2且x≠3
8、(4分)如图,,,则( )
A.垂直平分B.垂直平分
C.平分D.以上结论均不对
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)当x _________时,分式有意义.
10、(4分)已知关于X的一元二次方程有实数根,则m的取值范围是____________________
11、(4分)八个边长为1的正方形如图所示的位置摆放在平面直角坐标系中,经过原点的直线l将这八个正方形分成面积相等的两部分,则这条直线的解析式是_____.
12、(4分)某航空公司规定,旅客乘机所携带行李的质量x(kg)与其运费y(元)由如图所示的一次函数图象确定,则旅客可携带的免费行李的最大质量为kg
13、(4分)函数中自变量x的取值范围是_______.
三、解答题(本大题共5个小题,共48分)
14、(12分)已知:点,.
(1)求:直线的表达式;
(2)直接写出直线向下平移2个单位后得到的直线表达式;
(3)求:在(2)的平移中直线在第三象限内扫过的图形面积.
15、(8分)下表是厦门市某品牌专卖店全体员工9月8日的销售量统计资料.
(1)写出该专卖店全体员工9月8日销售量的众数;
(2)求该专卖店全体员工9月8日的平均销售量.
16、(8分)如图,矩形OABC的顶点A,C在x,y轴正半轴上,反比例函数过OB的中点D,与BC,AB交于M,N,且已知D(m,2),N(8,n).
(1)求反比例函数的解析式;
(2)若将矩形一角折叠,使点O与点M重合,折痕为PQ,求点P的坐标;
(3)如图2,若将沿OM向左翻折,得到菱形OQMR,将该菱形沿射线OB以每秒个单位向上平移t秒.
① 用t的代数式表示和的坐标;
② 要使该菱形始终与反比例函数图像有交点,求t的取值范围.
17、(10分)如图,在中,,,点D从点C出发沿CA方向以每秒2个单位长的速度向点A匀速运动,同时点E从点A出发沿AB方向以每秒1个单位长的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动,设点D、E运动的时间是t秒过点D作于点F,连接DE、EF.
求证:;
四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由.
当t为何值时,为直角三角形?请说明理由.
18、(10分)倡导健康生活推进全民健身,某社区去年购进A,B两种健身器材若干件,经了解,B种健身器材的单价是A种健身器材的1.5倍,用7200元购买A种健身器材比用5400元购买B种健身器材多10件.
(1)A,B两种健身器材的单价分别是多少元?
(2)若今年两种健身器材的单价和去年保持不变,该社区计划再购进A,B两种健身器材共50件,且费用不超过21000元,请问:A种健身器材至少要购买多少件?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知A、B两地之间的距离为20千米,甲步行,乙骑车,两人沿着相同路线,由A地到B地匀速前行,甲、乙行进的路程s与x(小时)的函数图象如图所示.(1)乙比甲晚出发___小时;(2)在整个运动过程中,甲、乙两人之间的距离随x的增大而增大时,x的取值范围是___.
20、(4分)甲、乙两车从城出发匀速行驶至城在个行驶过程中甲乙两车离开城的距离(单位:千米)与甲车行驶的时间(单位:小时)之间的函数关系如图所示.则下列结论: ①两城相距千米;②乙车比甲车晚出发小时,却早到小时;③乙车出发后小时追上甲车;④在乙车行驶过程中.当甲、乙两车相距千米时,或,其中正确的结论是_________.
21、(4分)正方形A1B1C1O,A2B2C2C1,A3B3C3C2……按如图所示放置,点A1、A2、A3……在直线y=x+1上,点C1、C2、C3……在x轴上,则A2019的坐标是___.
22、(4分)一组数据:25,29,20,x,14,它的中位数是24,则这组数据的平均数为_____.
23、(4分)一次函数y=kx+b,当1≤x≤4时,3≤y≤6,则的值是_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)5个同样大小的正方形纸片摆放成“十”字型,按图1所示的方法分割后可拼接成一个新的正方形.按照此种做法解决下列问题:
(1)5个同样大小的矩形纸片摆放成图2形式,请将其分割并拼接成一个平行四边形.要求:在图2中画出并指明拼接成的平行四边形(画出一个符合条件的平行四边形即可);
(2)如图3,在面积为1的平行四边形中,点分别是边的中点,分别连结得到一个新的平四边形.则平行四边形的面积为___________(在图3中画图说明).
25、(10分)如图①,正方形ABCD中,点E、F都在AD边上,且AE=FD,分别连接BE、FC,对角线BD交FC于点P,连接AP,交BE于点G;
(1)试判断AP与BE的位置关系;
(2)如图②,再过点P作PH⊥AP,交BC于点H,连接AH,分别交BE、BD于点N,M,请直接写出图②中有哪些等腰三角形.
26、(12分)(1)计算:
(2)计算:(2+)(2﹣)+÷+
(3)在▱ABCD中,过点D作DE⊥AB于点E,点F在CD上且DF=BE,连接AF,BF.
①求证:四边形BFDE是矩形;
②若CF=6,BF=8,AF平分∠DAB,则DF= .
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
直接利用反比例函数图象上点的坐标特点进而得出答案.
【详解】
解:∵,
∴xy=12,
A.(3,−4),此时xy=3×(−4)=−12,符合题意;
B、(3,4),此时xy=3×4=12,不合题意;
C、(2,6),此时xy=2×6=12,不合题意;
D、(−2,−6),此时xy=−2×(−6)=12,不合题意;
故选:A.
此题主要考查了反比例函数图象上点的坐标特征,属于基础题.
2、B
【解析】
A选项中,因为,所以A中计算错误;
B选项中,因为,所以B中计算正确;
C选项中,因为,所以C中计算错误;
D选项中,因为,所以D中计算错误.
故选B.
3、B
【解析】
试题分析:由图形可得点(4,20)和(12,30),然后设直线的解析式为y=kx+b,代入可得,解得,得到函数的解析式为y=x+15,代入x=8可得y=25.
故选:B
点睛:此题主要考察了一次函数的图像与性质,先利用待定系数法求出函数的解析式,然后代入可求解.
4、C
【解析】
根据点P所在象限先确定P点横纵坐标都是负数,根据P到x轴和y轴的距离确定点的坐标.
【详解】
解:∵点P(x,y)在第三象限,
∴P点横纵坐标都是负数,
∵P到x轴和y轴的距离分别为3、4,
∴点P的坐标为(-4,-3).
故选:C.
此题主要考查了点的坐标,关键是掌握到x轴的距离=纵坐标的绝对值,到y轴的距离=横坐标的绝对值.
5、C
【解析】
根据算术平方根的性质直接进行计算即可.
【详解】
=|-1|=1.
故选:C.
本题考查的是算术平方根的定义,把化为|-1|的形式是解答此题的关键.
6、C
【解析】
根据矩形的对角线和平行四边形的对角线都互相平分,所以上下两平行线间的距离相等,平行四边形的面积等于底×高,所以第一个平行四边形是矩形的一半,第二个平行四边形是第一个平行四边形的一半,由此即可解答.
【详解】
根据矩形的对角线相等且互相平分,可得:平行四边形ABC1O1底边AB上的高为:BC;平行四边形ABC2O2底边AB上的高为:×BC= ()2BC;
∵S矩形ABCD=AB•BC=5,
∴平行四边形ABC1O1的面积为:×5;
∴平行四边形ABC2O2的面积为:××5=()2×5;
由此可得:平行四边形的面积为()n×5.
故选C.
本题考查了矩形对角线相等且互相平分的性质以及平行四边形的性质,探索并发现规律是解题的关键.
7、D
【解析】
试题分析:分式有意义:分母不为0;二次根式有意义,被开方数是非负数.
根据题意,得解得,x≥2且x≠1.
考点:(1)、二次根式有意义的条件;(2)、分式有意义的条件
8、B
【解析】
根据段垂直平分线的判定定由AC=AD得到点A在线段CD的垂直平分线上,由BC=BD得到点B在线段CD的垂直平分线上,而两点确定一直线,所以可判断AB垂直平分CD.
【详解】
解:∵AC=AD,
∴点A在线段CD的垂直平分线上,
∵BC=BD,
∴点B在线段CD的垂直平分线上,
∴AB垂直平分CD.
故选:B.
本题考查了线段垂直平分线的判定与性质:到线段两端点的距离相等的点在这条线段的垂直平分线上;线段垂直平分线上任意一点,到线段两端点的距离相等.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、≠3
【解析】
解:根据题意得x-3≠0,即x≠3
故答案为:≠3
10、m≤3且m≠2
【解析】
试题解析:∵一元二次方程有实数根
∴4-4(m-2)≥0且m-2≠0
解得:m≤3且m≠2.
11、y=x
【解析】
设直线l和八个正方形的最上面交点为A,过点A作AB⊥y轴于点B,过点A作AC⊥x轴于点C,易知OB=1,利用三角形的面积公式和已知条件求出A的坐标,再利用待定系数法可求出该直线l的解析式.
【详解】
设直线l和八个正方形的最上面交点为A,过点A作AB⊥y轴于点B,过点A作AC⊥x轴于点C,如图所示.
∵正方形的边长为1,∴OB=1.
∵经过原点的一条直线l将这八个正方形分成面积相等的两部分,∴两部分面积分别是4,∴三角形ABO面积是5,∴OB•AB=5,∴AB=,∴OC=,∴点A的坐标为(,1).
设直线l的解析式为y=kx,
∵点A(,1)在直线l上,∴1=k,
解得:k=,∴直线l解析式为y=x.
故答案为:y=x.
本题考查了待定系数法求一次函数解析式、正方形的性质以及三角形的面积,利用三角形的面积公式和已知条件求出A的坐标是解题的关键.
12、20
【解析】
设函数表达式为y=kx+b把(30,300)、(50、900)代入可得:y=30x-600当y=0时x=20所以免费行李的最大质量为20kg
13、x≥-3
【解析】
根据被开方数必须大于或等于0可得:3+x≥0,解不等式即可.
【详解】
因为要使有意义,
所以3+x≥0,
所以x≥-3.
故答案是:x≥-3.
本题考查了函数自变量的取值范围,主要涉及二次根式有意义的条件,解题关键是熟记二次根式有意义的条件为:被开方数必须大于或等于0.
三、解答题(本大题共5个小题,共48分)
14、(1);(2);(3).
【解析】
(1)根据点、的坐标利用待定系数法即可求出直线的表达式;
(2)根据平移的规律“上加下减,左加右减”即可得出平移后的直线表达式;
(3)设直线与轴交点为点,与轴的交点为点,根据一次函数图象上点的坐标特征可求出点、的坐标,再根据直线在第三象限内扫过的图形面积结合三角形的面积公式即可得出结论.
【详解】
解:(1)设直线的表达式为,
将,代入,
得,解得:,
∴直线的表达式为.
(2)根据平移的规律可知:直线:向下平移2个单位后得到的直线表达式为:.
(3)设直线与轴交点为点,与轴的交点为点,
在中,当时,,
∴点的坐标为;
当时,,
∴点的坐标为.
∴直线在第三象限内扫过的图形面积,
,
.
本题考查了一次函数图象与几何变换、待定系数法求一次函数解析式、一次函数图象上点的坐标特征以及三角形的面积,解题的关键是:(1)根据点的坐标利用待定系数法求出函数表达式;(2)牢记平移的规律“上加下减,左加右减”;(3)结合图形找出直线在第三象限内扫过的图形面积,.
15、(1)该专卖店全体员工9月8日销售量的众数是件;(2)该专卖店全体员工9月8日的平均销售量是件.
【解析】
(1)由题意直接根据众数的定义进行分析求解可得;
(2)由题意直接根据加权平均数的定义列式并进行计算可得.
【详解】
解:(1) 该专卖店全体员工9月8日销售量的众数是件.
答:该专卖店全体员工9月8日销售量的众数是件.
(2)(件)
答:该专卖店全体员工9月8日的平均销售量是件.
本题主要考查众数和加权平均数,求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.
16、(1);(2);(3)①;;②
【解析】
(1)由题意得OA=8,因为D为OB的中点,得出D(4,2),代入反比例函数的解析式可得;
(2)求出M点的坐标,再利用勾股定理求出OP的长,可得点P坐标;
(3)①过点O′作O′T⊥x轴,垂足为T,可得△OO′T∽△OBA,进而可表示的坐标,利用勾股定理求出CR,可表示的坐标;
②把R′(2t-3,t+4)代入反比例函数的解析式解答即可.
【详解】
解:(1)∵N(8,n),四边形OABC是矩形,
∴OA=8,
∵D为OB的中点,
∴D(4,2),
∴2=,则k=8,
∴y=;
(2)∵D(4,2),
∴点M纵坐标为4,
∴4=,则x=2,
∴M(2,4),
设OP=x,则MP=x,CP=4-x,CM=2,由勾股定理得:(4-x)2+22=x2,
解得:x=,即OP=,
∴P(0,);
(3)①过点O′作O′T⊥x轴,垂足为T.
可得△OO′T∽△OBA,
∵,
∴=,
∵OO′=,
∴OT=2t,O′T=t,
∴O′(2t,t);
设CR=x,则OR=RM=x+2,
∴x2+42=(x+2)2,解得x=3,即CR=3,
∴R′(2t-3,t+4);
②∵R′(2t-3,t+4),
根据题意得:t+4=,
化简得:2t2+5t-20=0,
解得:或(舍去),
本题主要考查的是反比例函数的综合应用,解答本题主要应用了矩形的性质、勾股定理、相似三角形的判定和性质,求得CR的长是解题的关键.
17、(1)证明见解析;(2)能,理由见解析;(3)秒或4秒时,为直角三角形.
【解析】
在中,,,根据30°角直角三角形的性质及已知条件即可证得结论;先证得四边形AEFD为平行四边形,使▱AEFD为菱形则需要满足的条件为AE=AD,由此即可解答;时,四边形EBFD为矩形在Rt△AED中求可得,由此即可解答;时,由知,则得,求得,由此列方程求解即可;时,此种情况不存在.
【详解】
证明:在中,,,,
.
又,
.
解:能理由如下:
,,
.
又,
四边形AEFD为平行四边形.
,
.
.
若使▱AEFD为菱形,则需,
即,.
即当时,四边形AEFD为菱形.
解:时,四边形EBFD为矩形.
在中,,
.
即,.
时,由四边形AEFD为平行四边形知,
.
,
.
即,.
时,此种情况不存在.
综上所述,当秒或4秒时,为直角三角形.
本题考查了菱形的性质,考查了菱形是平行四边形,考查了菱形的判定定理,以及菱形与矩形之间的联系.难度适宜,计算繁琐.
18、(1) A,B单价分别是360元,540元;(2)34件.
【解析】
(1)设A种型号健身器材的单价为x元/套,B种型号健身器材的单价为1.5x元/套,根据“B种健身器材的单价是A种健身器材的1.5倍,用7200元购买A种健身器材比用5400元购买B种健身器材多10件”,即可得出关于x,y的分式方程,解之即可得出结论;
(2)设购买A种型号健身器材m套,则购买B种型号的健身器材(50﹣m)套,根据总价=单价×数量结合这次购买两种健身器材的总费用不超过21000元,即可得出关于m的一元一次不等式,解之取其最小值即可得出结论.
【详解】
解:(1)设A种型号健身器材的单价为x元/套,B种型号健身器材的单价为1.5x元/套,
根据题意,可得:,
解得:x=360,
经检验x=360是原方程的根,
1.5×360=540(元),
因此,A,B两种健身器材的单价分别是360元,540元;
(2)设购买A种型号健身器材m套,则购买B种型号的健身器材(50﹣m)套,
根据题意,可得:360m+540(50﹣m)≤21000,
解得:m≥,
因此,A种型号健身器材至少购买34套.
本题考查的知识点是分式方程以及一元一次不等式的实际应用,读懂题意,找出题目中的等量关系式是解此题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、2, 0≤x≤2或≤x≤2.
【解析】
(2)由图象直接可得答案;
(2)根据图象求出甲乙的函数解析式,再求出方程组的解集即可解答
【详解】
(2)由 函数图象可知,乙比甲晚出发2小时.
故答案为2.
(2)在整个运动过程中,甲、乙两人之间的距离随x的增大而增大时,有两种情况:
一是甲出发,乙还未出发时:此时0≤x≤2;
二是乙追上甲后,直至乙到达终点时:
设甲的函数解析式为:y=kx,由图象可知,(4,20)在函数图象上,代入得:20=4k,
∴k=5,
∴甲的函数解析式为:y=5x①
设乙的函数解析式为:y=k′x+b,将坐标(2,0),(2,20)代入得: ,
解得 ,
∴乙的函数解析式为:y=20x﹣20 ②
由①②得 ,
∴ ,
故 ≤x≤2符合题意.
故答案为0≤x≤2或≤x≤2.
此题考查函数的图象和二元一次方程组的解,解题关键在于看懂图中数据
20、①②
【解析】
观察图象可判断①②,由图象所给数据可求得甲、乙两车离开A城的距离y与时间t的关系式,可求得两函数图象的交点,可判断③,再令两函数解析式的差为50,可求得t,可判断④,进而得出答案.
【详解】
由图象可知,A. B两城市之间的距离为300km,甲行驶的时间为5小时,而乙是在甲出发1小时后出发的,且用时3小时,即比甲早到1小时,
∴①②都正确;
设甲车离开A城的距离y与t的关系式为y甲=kt,
把(5,300)代入可求得,k=60,
∴y甲=60t,
设乙车离开A城的距离y与t的关系式为y乙=mt+n,
把(1,0)和(4,300)代入可得
解得
∴y乙=100t−100,
令y甲=y乙可得:60t=100t−100,
解得t=2.5,
即甲、乙两直线的交点横坐标为t=2.5,
此时乙出发时间为1.5小时,即乙车出发1.5小时后追上甲车,
∴③不正确;
令|y甲−y乙|=50,可得|60t−100t+100|=50,即|100−40t|=50,
当100−40t=50时,可解得t=,
当100−40t=−50时,可解得t=,
又当t=时,y甲=50,此时乙还没出发,
当t=时,乙到达B城,y甲=250;
综上可知当t的值为或或或t=时,两车相距50千米,
∴④不正确;
综上,正确的有①②,
故答案为:①②
本题考查了函数图像的实际应用,准确从图中获取信息并进行分析是解题的关键.
21、(22008-1,22008)
【解析】
先求出A1、A2、A3的坐标,找出规律,即可求解.
【详解】
∵直线y=x+1和y轴交于A1,
∴A1的交点为(0,1)
∵四边形A1B1C1O是正方形,
∴OC1=OA1=1,
把x=1代入直线得y=2,
∴A2(1,2)
同理A3(3,4)
…
∴An的坐标为(2n-1-1,2n-1)
故A2019的坐标为(22008-1,22008)
此题主要考查一次函数的图像,解题的关键是根据题意找到规律进行求解.
22、22.1
【解析】∵一组数据:25,29,20,x,11,它的中位数是21,所以x=21,
∴这组数据为11,20,21,25,29,
∴平均数=(11+20+21+25+29)÷5=22.1.
故答案是:22.1.
【点睛】找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.
23、:2或﹣1.
【解析】
试题解析:当k>0时,y值随x值的增大而增大,
∴,解得:,
此时=2;
当k<0时,y值随x值的增大减小,
∴,解得:,
此时=-1.
综上所述:的值为2或-1.
二、解答题(本大题共3个小题,共30分)
24、(1)见解析;(2);说明见解析,
【解析】
(1)参考5个同样大小的正方形纸片摆放成“十”字型,按图1所示的方法分割后可拼接成一个新的正方形的方法去解.
(2)采用逆向思维的方式画出"复原"图并结合这个图形即可快捷的求出所求.
【详解】
(1)如图2所示:拼接成的四边形是平行四边形;
(2)正确画出图形(如图3)
故平行四边形的面积为:.
本题第二问较难,主要不知采用逆向思维的方式得到所求的图形进而求出所求图形的面积,把它返回到5个相同的平行四边形的状态,那么其中一个的面积为原图形的,那么平行四边形MNPQ的面积就是.
25、(1)垂直,理由见解析;(2)△ABD,△BCD是等腰△,△APH是等腰△,△PHC 是等腰△.
【解析】
(1)由题意可证△ADP≌△DPC,△AEB≌△DFC可得∠DAP=∠DCF=∠ABE,通过角的换算可证AP⊥BE.
(2)根据正方形的性质可得△ABD,△BCD是等腰△,由AP⊥PH,∠ABC=90°可得A,B,H,P四点共圆,可证△APH,△PHC是等腰△
【详解】
(1)垂直,
理由是∵四边形ABCD是正方形,
∴AD=CD=AB,∠BAD=∠CDA=90°,∠ADB=∠CDB=45°,且DP=DP,
∴△ADP≌△CDP,
∴∠DCF=∠DAP,AP=PC
又AE=DF,∠BAD=∠CDA=90°,AB=CD,
∴△ABE≌△DCF,
∴∠ABE=∠DCF,
∴∠ABE=∠DAP
∵∠ABE+∠AEB=90°,
∴∠DAP+∠AEB=90°,即∠AGE=90°,
∴AP⊥BE
(2)∵AB=BC=CD=DA
∴△ABD,△BCD是等腰△
∵AP⊥PH,∠ABC=90°
∴A,B,H,P四点共圆
∴∠PAH=∠DBC=45°
∴∠PAH=∠PHA=45°
∴PA=PH
∴△APH是等腰△
∵AP=PH,AP=PC,
∴PC=PH
∴△PHC 是等腰△.
本题考查了正方形的性质,全等三角形的性质和判定,关键是利用这些性质解决问题.
26、(1)7(2)(3)①详见解析;②10
【解析】
(1)按顺序先利用完全平方公式展开,进行二次根式的化简,进行平方运算,然后再按运算顺序进行计算即可;
(2)按顺序先利用平方差公式进行展开,进行二次根式的除法,进行负指数幂的运算,然后再按运算顺序进行计算即可;
(3)①先证明四边形DEBF是平行四边形,然后再根据有一个角是直角的平行四边形是矩形即可得结论;
②先利用勾股定理求出BC长,再根据平行四边形的性质可得AD长,再证明DF=AD即可得.
【详解】
(1)原式=2+2+1-2+4
=7;
(2)原式=4-3++4
=5+=;
(3)①∵四边形ABCD是平行四边形,
∴AB//CD,即BE//DF,
又∵DF=BE,
∴四边形DEBF是平行四边,
又∵DE⊥AB,
∴∠DEB=90°,
∴平行四边形BFDE是矩形;
②∵四边形BFDE是矩形,
∴∠BFD=90°,
∴∠BFC=90°,
∴BC==10,
∵四边形ABCD是平行四边形,
∴AD=BC=10,AB//CD,
∴∠FAB=∠DFA,
∵∠DAF=∠FAB,
∴∠DAF=∠DFA,
∴DF=AD=10.
本题考查了二次根式的混合运算,平行四边形的性质,矩形的判定与性质,勾股定理等知识,熟练掌握相关知识是解题的关键.
题号
一
二
三
四
五
总分
得分
销售量/件
7
8
10
11
15
人数
1
3
3
4
1
2024年广东省潮州市潮安区雅博学校数学九年级第一学期开学监测模拟试题【含答案】: 这是一份2024年广东省潮州市潮安区雅博学校数学九年级第一学期开学监测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
广东省潮州潮安区五校联考2023-2024学年数学九年级第一学期期末统考模拟试题含答案: 这是一份广东省潮州潮安区五校联考2023-2024学年数学九年级第一学期期末统考模拟试题含答案,共7页。试卷主要包含了若x=2y,则的值为,由3x=2y,可得比例式为,把一副三角板如图等内容,欢迎下载使用。
广东省潮州潮安区五校联考2023-2024学年数学九上期末学业水平测试模拟试题含答案: 这是一份广东省潮州潮安区五校联考2023-2024学年数学九上期末学业水平测试模拟试题含答案,共8页。