2025届广东省佛山南海区四校联考数学九年级第一学期开学学业水平测试模拟试题【含答案】
展开
这是一份2025届广东省佛山南海区四校联考数学九年级第一学期开学学业水平测试模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)若式子在实数范围内有意义,则x的取值范围是( )
A.x≥B.x>C.x≥D.x>
2、(4分)以下列各组数为边长,能构成直角三角形的是( )
A.B.C.D.
3、(4分)用反证法证明“三角形的三个外角中至多有一个锐角”,应先假设
A.三角形的三个外角都是锐角
B.三角形的三个外角中至少有两个锐角
C.三角形的三个外角中没有锐角
D.三角形的三个外角中至少有一个锐角
4、(4分)如图,矩形中,,,点是边上一点,连接,把沿折叠,使点落在点处,当为直角三角形时,的长为( )
A.3B.C.2或3D.3或
5、(4分)如图两张长相等,宽分别是1和3的矩形纸片上叠合在一起,重叠部分为四边形ABCD,且AB+BC=6,则四面行ABCD的面积为( )
A.3B.C.9D.
6、(4分) 炎炎夏日,甲安装队为A小区安装88台空调,乙安装队为B小区安装80台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装2台,设乙队每天安装x台,根据题意,下面所列方程正确的是( )
A.B.C.D.
7、(4分)某电子产品经过连续两次降价,售价由元降到了元.设平均每月降价的百分率为,根据题意列出的方程是( )
A.B.
C.D.
8、(4分)如图,Rt△ABC中,∠ACB=90°,AC=BC=2,若把Rt△ABC绕边AB所在直线旋转一周,则所得几何体的表面积为( )
A.4πB.4πC.8πD.8π
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知一元二次方程,则根的判别式△=____________.
10、(4分)如图,在矩形中,,,点是边上一点,连接,将沿折叠,使点落在点处.当为直角三角形时,__.
11、(4分)如图,与是位似图形,位似比为,已知,则的长为________.
12、(4分)在盒子里放有三张分别写有整式a+1、a+2、2的卡片,从中随机抽取两张卡片,把两张卡片上的整式分别作为分子和分母,则能组成分式的概率是_____.
13、(4分)如图,在Rt△ABC中,∠C=90°,AC=6,BC=1.D,E分别为边BC,AC上一点,将△ADE沿着直线AD翻折,点E落在点F处,如果DF⊥BC,△AEF是等边三角形,那么AE=_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)某校八年级师生为了响应“绿水青山就是金山银山”的号召,在今年3月的植树月活动中到某荒山植树,如图是抽查了其中20名师生植树棵数的统计图.
(1)求这20名师生种树棵数的平均数、众数、中位数;
(2)如果该校八年级共有师生500名,所植树的存活率是90%,估计所植的树共有多少棵存活?
15、(8分)如图,网格中的图形是由五个小正方形组成的,根据下列要求画图(涂上阴影).
(1)在图①中,添加一块小正方形,使之成为轴对称图形,且只有一条对称轴;(画一种情况即可)
(2)在图②中,添加一块小正方形,使之成为中心对称图形,但不是轴对称图形;
(3)在图③中,添加一块小正方形,使之成为既是中心对称图形又是轴对称图形.
16、(8分)为了迎接“六一”国际儿童节,某童装品牌专卖店准备购进甲、乙两种童装,这两种童装的进价和售价如下表:
如果用5000元购进甲种童装的数量与用6000元购进乙种童装的数量相同.
(1)求m的值;
(2)要使购进的甲、乙两种童装共200件的总利润(利润=售价﹣进价)不少于8980元,且甲种童装少于100件,问该专卖店有哪几种进货方案?
17、(10分)已知:如图,在菱形ABCD中,AC、BD交于点O,菱形的周长为8,∠ABC=60°,求BD的长和菱形ABCD的面积.
18、(10分)先化简,再求值:(,其中
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)△ABC中,AB=15,AC=13,高AD=12,则△ABC的面积为______________.
20、(4分)正比例函数y=kx的图象与直线y=﹣x+1交于点P(a,2),则k的值是_____.
21、(4分)矩形(非正方形)四个内角的平分线围成的四边形是__________形.(埴特殊四边形)
22、(4分)已知点和都在第三象限的角平分线上,则_______.
23、(4分)化简3﹣2=_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)先阅读下列材料,再解答下列问题:
材料:因式分解:(x+y)2+2(x+y)+1.
解:将“x+y”看成整体,令x+y=A,则
原式=A2+2A+1=(A+1)2.
再将“A”还原,得原式=(x+y+1)2.
上述解题用到的是“整体思想”,“整体思想”是数学解题中常用的一种思想方法,请你解答下列问题:
(1)因式分解:1+2(x-y)+(x-y)2=_______________;
(2)因式分解:(a+b)(a+b-4)+4;
(3)求证:若n为正整数,则式子(n+1)(n+2)(n2+3n)+1的值一定是某一个整数的平方.
25、(10分)如图,在□ABCD 中,E、F为对角线AC上的两点,且AE=CF.
(1)求证:四边形DEBF是平行四边形;
(2)如果DE=3,EF=4,DF=5,求EB、DF两平行线之间的距离.
26、(12分)某区在实施居民用水额定管理前,对居民生活用水情况进行了调查,下表是通过简单随机抽样获得的50个家庭去年的月均用水量(单位:吨),并将调查数据进行了如下整理:
4.7 2.1 3.1 2.3 5.2 2.8 7.3 4.3 4.8 6.7
4.5 5.1 6.5 8.9 2.2 4.5 3.2 3.2 4.5 3.5
3.5 3.5 3.6 4.9 3.7 3.8 5.6 5.5 5.9 6.2
5.7 3.9 4.0 4.0 7.0 3.7 9.5 4.2 6.4 3.5
4.5 4.5 4.6 5.4 5.6 6.6 5.8 4.5 6.2 7.5
(1)把上面的频数分布表和频数分布直方图补充完整;
(2)从直方图中你能得到什么信息?(写出两条即可)
(3)为了鼓励节约用水,要确定一个用水量的标准,超出这个标准的部分按1.5倍价格收费,若要使60%的家庭收费不受影响,你觉得家庭月均用水量应该定为多少?为什么?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
根据:二次根式的被开方数必须大于或等于0,才有意义.
【详解】
若式子在实数范围内有意义,则2x-3≥0,即x≥.
故选A
本题考核知识点:二次根式有意义问题.解题关键点:熟记二次根式有意义条件.
2、C
【解析】
欲判断能否构成直角三角形,只需验证两小边的平方和是否等于最长边的平方.
【详解】
解:A、∵12+()2≠22,∴此组数据不能作为直角三角形的三边长,故本选项错误;
B、∵22+22≠32,∴此组数据不能作为直角三角形的三边长,故本选项错误;
C、∵12+()2=()2,∴此组数据能作为直角三角形的三边长,故本选项正确;
D、∵42+52≠62,∴此组数据不能作为直角三角形的三边长,故本选项错误.
故选:C.
此题主要考查了勾股定理逆定理,解答此题关键是掌握勾股定理的逆定理:已知三角形ABC的三边满足a2+b2=c2,则三角形ABC是直角三角形.
3、B
【解析】
反证法的步骤中,第一步是假设结论不成立,反面成立.
【详解】
解:用反证法证明“三角形的三个外角中至多有一个锐角”,应先假设三角形的三个外角中至少有两个锐角,
故选B.
考查了反证法,解此题关键要懂得反证法的意义及步骤在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.
4、D
【解析】
当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,先利用勾股定理计算出AC=5,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=3,可计算出CB′=2,设BE=x,则EB′=x,CE=4-x,然后在Rt△CEB′中运用勾股定理可计算出x.
②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形.
【详解】
当△CEB′为直角三角形时,有两种情况:
①当点B′落在矩形内部时,如答图1所示。
连结AC,
在Rt△ABC中,AB=3,BC=4,
∴AC=
∵∠B沿AE折叠,使点B落在点B′处,
∴∠AB′E=∠B=90°,
当△CEB′为直角三角形时,只能得到∠EB′C=90°,
∴点A. B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,
∴EB=EB′,AB=AB′=3,
∴CB′=5−3=2,
设BE=x,则EB′=x,CE=4−x,
在Rt△CEB′中,
∵EB′2+CB′2=CE2,
∴x2+22=(4−x)2,解得x=,
∴BE=;
②当点B′落在AD边上时,如答图2所示。
此时ABEB′为正方形,
∴BE=AB=3.
综上所述,BE的长为或3.
故选:D.
此题主要考查矩形的折叠问题,解题的关键是根据题意分情况讨论.
5、D
【解析】
过D分别作DE⊥BC,DF⊥BA,分别交BC、BA延长线于E、F,由矩形性质可得四边形ABCD是平行四边形,根据AB+BC=6,利用平行四边形面积公式可求出AB的长,即可求出平行四边形ABCD的面积.
【详解】
过D分别作DE⊥BC,DF⊥BA,分别交BC、BA延长线于E、F,
∵两张长相等,宽分别是1和3的矩形纸片上叠合在一起,重叠部分为四边形ABCD,
∴AD//BC,AB//CD,DF=3,DE=1,
∴四边形ABCD是平行四边形,
∴SABCD=AB×DF=BC×DE,即3AB=BC,
∵AB+BC=6,
∴AB+3AB=6,
解得:AB=,
∴SABCD=AB×DF=×3=.
故选D.
本题考查了矩形的性质及平行四边形的判定及面积公式,正确作出辅助线并根据平行四边形面积公式求出AB的长是解题关键.
6、D
【解析】
关键描述语为:“两队同时开工且恰好同时完工”,那么等量关系为:甲队所用时间=乙队所用时间.
【详解】
乙队用的天数为:,甲队用的天数为:.则所列方程为:.
故选D.
本题考查了由实际问题抽象出分式方程,找到相应的等量关系是解决问题的关键,注意工作时间=工作总量÷工作效率.
7、B
【解析】
可根据:原售价×(1-降价的百分率)2=降低后的售价得出两次降价后的价格,然后即可列出方程.
【详解】
设平均每月降价的百分率为,则依题意得:,故选B.
本题考查列一元二次方程,解题的关键读懂题意,掌握原售价×(1-降价的百分率)2=降低后的售价.
8、D
【解析】
解:Rt△中,∠ACB=90°,,
∴AB=4,
∴所得圆锥底面半径为5,
∴几何体的表面积,
故选D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、0
【解析】
根据一元二次方程根的判别式,将本题中的a、b、c带入即可求出答案.
【详解】
解:∵一元二次方程,
整理得:,
可得:,
∴根的判别式;
故答案为0.
本题考查一元二次方程根的判别式,首先把方程化成一般形式,得出一元二次方程的二次项系数、一次项系数与常数项,再根据根的判别式公式求解,解题中需注意符号问题.
10、或1
【解析】
当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如图1所示.连结AC,先利用勾股定理计算出AC=13,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即ΔABE沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=1,可计算出CB′=8,设BE=a,则EB′=a,CE=12-a,然后在Rt△CEB′中运用勾股定理可计算出a.②当点B′落在AD边上时,如图2所示.此时ABEB′为正方形.
【详解】
当△CEB′为直角三角形时,有两种情况:
①当点B′落在矩形内部时,如图1所示,
连结AC,
在Rt△ABC中,AB=1,BC=12,
∴AC==13,
∵将ΔABE沿AE折叠,使点B落在点B′处,
∴∠AB′E=∠B=90°,
当△CEB′为直角三角形时,只能得到∠EB′C=90°,
∴点A、B′、C共线,即将ΔABE沿AE折叠,使点B落在对角线AC上的点B′处,设:,则,,
,
由勾股定理得:,
解得:;
②当点B′落在AD边上时,如图2所示,
此时ABEB′为正方形,∴BE=AB=1,
综上所述,BE的长为或1,
故答案为:或1.
本题考查了矩形的性质,折叠问题,勾股定理等知识,熟练掌握折叠前后两图形全等,即对应线段相等;对应角相等是解题的关键.注意本题有两种情况,需要分类讨论,避免漏解.
11、1
【解析】
由△ABC与△DEF是位似图形,位似比为2:3,可得AB:DE=2:3,继而可求得DE的长.
【详解】
∵△ABC与△DEF是位似图形,位似比为2:3,
∴AB:DE=2:3,
∴DE=1.
故答案为:1.
本题考查了位似图形的性质.解题的关键是掌握位似图形是相似图形的特殊形式,位似比等于相似比的特点.
12、.
【解析】
解:画树状图得:
∴一共有6种等可能的结果,把两张卡片上的整式分别作为分子和分母,能组成分式的有4个,
∴能组成分式的概率是
故答案为.
此题考查了列表法或树状图法求概率.注意树状图法与列表法可以不重不漏的表示出所有等可能的结果.用到的知识点为:概率=所求情况数与总情况数之比.
13、2.
【解析】
由题意可得∠CAD=30°,∠AEF=60°,根据勾股定理可求CD=2,由AC∥DF,则∠AEF=∠EFD=60°,且DE=DF,可得∠DEF=∠DFE=60°,可得∠DEC=60°.根据勾股定理可求EC的长,即可求AE的长.
【详解】
如图:
∵折叠,
∴∠EAD=∠FAD,DE=DF,
∴∠DFE=∠DEF;
∵△AEF是等边三角形,
∴∠EAF=∠AEF=60°,
∴∠EAD=∠FAD=30°;
在Rt△ACD中,AC=6,∠CAD=30°,
∴CD=2;
∵FD⊥BC,AC⊥BC,
∴AC∥DF,
∴∠AEF=∠EFD=60°,
∴∠FED=60°;
∵∠AEF+∠DEC+∠DEF=110°,
∴∠DEC=60°;
∵在Rt△DEC中,∠DEC=60°,CD=2,
∴EC=2;
∵AE=AC﹣EC,
∴AE=6﹣2=2;
故答案为:2.
本题考查了翻折问题,等边三角形的性质,勾股定理,求∠CED 度数是本题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)平均数是3.4棵,众数是4棵,中位数是3.5棵;(2)1.
【解析】
(1)根据平均数、众数和中位数的定义分别进行解答即可;
(2)用平均每人植的棵数乘以存活率,再乘以总人数即可得出答案.
【详解】
(1)这20名师生种树棵数的平均数是(2×4+3×6+4×8+5×2)=3.4(棵),这组数据的众数是4棵;
把这些数从小到大排列,最中间的数是第10、11个数的平均数,则中位数是3.5(棵);
(2)根据题意得:
3.4×90%×500=1(棵).
答:估计所植的树共有1棵存活.
本题考查了平均数、中位数以及众数,熟练掌握定义和计算公式是解题的关键.
15、(1)如图①所示,见解析;(2)如图②所示,见解析;(3)如图③所示,见解析.
【解析】
利用轴对称图形和中心对称图形的定义,以及两者之间的区别解题画图即可
【详解】
(1)如图①所示:
(2)如图②所示:
(3)如图③所示:
本题考查轴对称图形和中心对称图形的定义,基础知识扎实是解题关键
16、(1)m=100(2)两种方案
【解析】
(1)用总价除以单价表示出购进童装的数量,根据两种童装的数量相等列出方程求解即可;
(2)设购进甲种童装x件,表示出乙种童装(200-x)件,然后根据总利润列出一元一次不等式,求出不等式组的解集后,再根据童装的件数是正整数解答;设总利润为W,表示出利润,求得最值即可.
【详解】
(1)根据题意可得:,
解得:m=100,
经检验m=100是原方程的解;
(2)设甲种童装为x件,可得:,
解得:98≤x<100,
因为x取整数,
所以有两种方案:
方案一:甲98,乙102;
方案二:甲99,乙101;
本题考查了分式方程的应用,一元一次不等式组的应用,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系和不等关系,解决问题.
17、BD=2,S菱形ABCD=2.
【解析】
先根据菱形的性质得出AB=BC=2,AO=CO,BO=DO,AC⊥BD,然后证明△ABC是等边三角形,进而求出AC的长度,再利用勾股定理即可得出BD的长度,最后利用S菱形ABCD=AC×BD即可求出面积.
【详解】
∵菱形ABCD的周长为8,
∴AB=BC=2,AO=CO,BO=DO,AC⊥BD,
.
∵∠ABC=60°,
∴△ABC是等边三角形,
∴AC=AB=BC=2,
∴AO=1.
,
∴BO==,
∴BD= ,
∴S菱形ABCD=AC×BD=2.
本题主要考查菱形的性质,勾股定理,掌握菱形的性质是解题的关键.
18、,.
【解析】
先根据分式混合运算的法则把原式进行化简,再把a=1+代入进行计算即可
【详解】
解:原式===,
当a=1+时,
=.
本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、84或24
【解析】
分两种情况考虑:
①当△ABC为锐角三角形时,如图1所示,
∵AD⊥BC,
∴∠ADB=∠ADC=90°,
在Rt△ABD中,AB=15,AD=12,
根据勾股定理得:BD==9,
在Rt△ADC中,AC=13,AD=12,
根据勾股定理得:DC==5,
∴BC=BD+DC=9+5=14,
则S△ABC=BC⋅AD=84;
②当△ABC为钝角三角形时,如图2所示,
∵AD⊥BC,
∴∠ADB=90°,
在Rt△ABD中,AB=15,AD=12,
根据勾股定理得:BD==9,
在Rt△ADC中,AC=13,AD=12,
根据勾股定理得:DC==5,
∴BC=BD−DC=9−5=4,
则S△ABC=BC⋅AD=24.
综上,△ABC的面积为24或84.
故答案为24或84.
点睛:此题考查了勾股定理,利用了分类讨论的数学思想,灵活运用勾股定理是解本题的关键.
20、-1
【解析】
将点P的坐标代入两个函数表达式即可求解.
【详解】
解:将点P的坐标代入两个函数表达式得:
,
解得:k=-1.
故答案为:-1.
本题考查的是直线交点的问题,只需要把交点坐标代入两个函数表达式即可求解.
21、正方
【解析】
此类题根据矩形性质,三角形内角和定理及角平分线定义得到所求的四边形的各个角为90°,进而求解.
【详解】
∵AF,BE是矩形的内角平分线.
∴∠ABF=∠BAF-90°.
故∠1=∠2=90°.
同理可证四边形GMON四个内角都是90°,则四边形GMON为矩形.
又∵有矩形ABCD且AF、BE、DK、CJ为矩形ABCD四角的平分线,
∴有等腰直角△DOC,等腰直角△AMD,等腰直角△BNC,AD=BC.
∴OD=OC,△AMD≌△BNC,
∴NC=DM,
∴NC-OC=DM-OD,
即OM=ON,
∴矩形GMON为正方形,
故答案为正方.
本题考查的是矩形性质,角平分线定义,联系三角形内角和的知识可求解.
22、-6
【解析】
本题应先根据题意得出第三象限的角平分线的函数表达式,在根据、的坐标得出、的值,代入原式即可.
【详解】
解:点A(-2,x)和都在第三象限的角平分线上,
,,
.
故答案为:.
本题考查了第三象限的角平分线上的点的坐标特点及代数式求值,注意第三象限的角平分线上的点的横纵坐标相等.
23、
【解析】
直接合并同类二次根式即可.
【详解】
原式=(3﹣2)=.
故答案为.
本题考查的是二次根式的加减法,即二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.
二、解答题(本大题共3个小题,共30分)
24、 (1)(x-y+1)2;(2)见解析;(3)见解析.
【解析】
分析:(1)把(x-y)看作一个整体,直接利用完全平方公式因式分解即可;(2)令A=a+b,带入后因式分解即可将原式因式分解;(3)将原式转化为(n²+3n) [(n+1)(n+2)]+1,进一步整理为(n²+3n+1) ²,根据n为正整数,从而说明原式是整数的平方.
本题解析:
(1).1+2(x-y)+(x+y) ²=(x﹣y+1)2;
(2)令A=a+b,则原式变为A(A﹣4)+4=A2﹣4A+4=(A﹣2)2,
故(a+b)(a+b﹣4)+4=(a+b﹣2)2;
(3)(n+1)(n+2)(n2+3n)+1=(n2+3n)[(n+1)(n+2)]+1
=(n2+3n)(n2+3n+2)+1
=(n2+3n)2+2(n2+3n)+1
=(n2+3n+1)2,
∵n为正整数,
∴n2+3n+1也为正整数,
∴代数式(n+1)(n+2)(n2+3n)+1的值一定是某一个整数的平方.
点睛;本题考查了因式分解的应用,解题的关键是认真审题你,理解题意,掌握整体思想解决问题.
25、(1)详见解析;(2)2.1.
【解析】
(1)根据平行四边形的性质可得AD=BC,AD∥BC,继而可得∠DAE=∠BCF,然后即可利用SAS证明△ADF≌△CBE,进一步即可证明DF=EB,DF∥EB,即可证得结论;
(2)先根据勾股定理的逆定理得出DE⊥EF,然后根据三角形的面积即可求出结果.
【详解】
(1)证明:∵四边形ABCD是平行四边形,
∴AD=BC,AD∥BC,∴∠DAE=∠BCF,
∵AE=CF,∴AF=CE,
∴△ADF≌△CBE(SAS),
∴DF=EB,∠DFA=∠BEC,
∴DF∥EB,
∴四边形DEBF是平行四边形;
(2)解:∵,,
∴,∴DE⊥EF.
过点E作EG⊥DF于G,如图,则,即3×1=EG×5,∴EG=2.1.
∴EB、DF两平行线之间的距离为2.1.
本题考查了平行四边形的性质和判定、全等三角形的判定和性质、两平行线之间的距离的定义、勾股定理的逆定理和三角形的面积等知识,属于常见题型,熟练掌握平行四边形的判定和性质是解题的关键.
26、(1)见解析;(2)答案不唯一;(3)我觉得家庭月均用水量应该定为5吨
【解析】
(1)根据题中给出的50个数据,从中分别找出5.0<x≤6.5与 6.5<x≤8.0 的个数,进行划记,得到对应的频数,进而完成频数分布表和频数分布直方图;
(2)从直方图可以看出:居民月平均用水量大部分在2.0至6.5之间;居民月平均用水量在3.5<x≤5.0范围内的最多,有19户;
居民月均用水量在8.0<x≤9.5范围内的最少,只有2户等.
(3)根据共有50个家庭,要使60%的家庭收费不受影响,即要使30户的家庭收费不受影响,而11+19=30,故家庭月均用水量应该定为5吨,即可得出答案.
【详解】
(1)(1)5.0<x≤6.5共有13个,则频数是13,
6.5<x≤8.0共有5个,则频数是5,
填表如下:
如图:
(2)从直方图可以看出:①居民月平均用水量大部分在2.0至6.5之间;②居民月平均用水量在3.5<x≤5.0范围内的最多,有19户;
③居民月均用水量在8.0<x≤9.5范围内的最少,只有2户等.
(3)因为在2.0至5.0之间的用户数为11+19=30,而30÷50=0.6,所以要使60%的家庭收费不受影响,我觉得家庭月均用水量应该定为5吨.
本题考查读频数分布直方图和频数分布表的能力及利用统计图表获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.
题号
一
二
三
四
五
总分
得分
价格
甲
乙
进价(元/件)
m
m+20
售价(元/件)
150
160
分组
划记
频数
2.0<x≤3.5
正正一
11
3.5<x≤5.0
19
5.0<x≤6.5
13
6.5<x≤8.0
正
5
8.0<x≤9.5
2
合计
50
相关试卷
这是一份2024-2025学年广东省佛山南海区四校联考数学九年级第一学期开学复习检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2023-2024学年广东省佛山市南海区九年级数学第一学期期末学业水平测试模拟试题含答案,共8页。
这是一份广东省佛山南海区四校联考2023-2024学年数学九年级第一学期期末质量检测试题含答案,共7页。