|试卷下载
终身会员
搜索
    上传资料 赚现金
    2025届广东省佛山市南海区石门实验学校九上数学开学达标检测模拟试题【含答案】
    立即下载
    加入资料篮
    2025届广东省佛山市南海区石门实验学校九上数学开学达标检测模拟试题【含答案】01
    2025届广东省佛山市南海区石门实验学校九上数学开学达标检测模拟试题【含答案】02
    2025届广东省佛山市南海区石门实验学校九上数学开学达标检测模拟试题【含答案】03
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2025届广东省佛山市南海区石门实验学校九上数学开学达标检测模拟试题【含答案】

    展开
    这是一份2025届广东省佛山市南海区石门实验学校九上数学开学达标检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,在平行四边形中,,,的平分线交于点,则的长是( )
    A.4B.3C.3.5D.2
    2、(4分)如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有( )
    A.1个B.2个C.3个D.4个
    3、(4分)下列命题是真命题的是( )
    A.对角线相等的四边形是平行四边形B.对角线互相平分且相等的四边形是平行四边形
    C.对角线互相平分的四边形是平行四边形D.对角线互相垂直的四边形是平行四边形
    4、(4分)若点、在反比例函数图像上,则、大小关系是( )
    A.B.C.D.
    5、(4分)某医药研究所开发了一种新药,在试验效果时发现,如果成人按规定剂量服用,服药后血液中的含药量逐渐增多,一段时间后达到最大值,接着药量逐步衰减直至血液中含药量为0,每毫升血液中含药量(微克)随时间(小时)的变化如图所示,下列说法:(1)2小时血液中含药量最高,达每毫升6微克.(2)每毫升血液中含药量不低于4微克的时间持续达到了6小时.(3)如果一病人下午6:00按规定剂量服此药,那么,第二天中午12:00,血液中不再含有该药,其中正确说法的个数是()
    A.0B.1
    C.2D.3
    6、(4分)使代数式有意义的x的取值范围( )
    A.x>2B.x≥2C.x>3D.x≥2且x≠3
    7、(4分)下列调查中,适合采用普查的是( )
    A.了解一批电视机的使用寿命
    B.了解全省学生的家庭1周内丢弃塑料袋的数量
    C.了解某校八(2)班学生每天用于课外阅读的时间
    D.了解苏州市中学生的近视率
    8、(4分)用反证法证明“若 a⊥c,b⊥c,则 a∥b”时,应假设( )
    A.a 不垂直于 cB.a垂直于bC.a、b 都不垂直于 cD.a 与 b 相交
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)计算_________.
    10、(4分)某校女子排球队的15名队员中有4个人是13岁,7个人是14岁,4个人是15岁,则该校女好排球队队员的平均年龄是____岁.
    11、(4分)化简:=__.
    12、(4分)一种病毒长度约为0.0000056mm,数据0.0000056用科学记数法可表示为______.
    13、(4分)如图,在中,,,,若点P是边AB上的一个动点,以每秒3个单位的速度按照从运动,同时点Q从以每秒1个单位的速度运动,当一个动点到达终点时,另一个动点也随之停止运动。在运动过程中,设运动时间为t,若为直角三角形,则t的值为________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)已知:如图,在梯形中,,,是上一点,且,,求证:是等边三角形.
    15、(8分)如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).
    (1)请画出△ABC向左平移5个单位长度后得到的△ABC;
    (2)请画出△ABC关于原点对称的△ABC;
    16、(8分)为了迎接“五·一”小长假的购物高峰,某运动品牌服装专卖店准备购进甲、乙两种服装,甲种服装每件进价180元,售价320元;乙种服装每件进价150元,售价280元.
    (1)若该专卖店同时购进甲、乙两种服装共200件,恰好用去32400元,求购进甲、乙两种服装各多少件?
    (2)该专卖店为使甲、乙两种服装共200件的总利润(利润=售价一进价)不少于26700元, 且不超过26800元,则该专卖店有几种进货方案?
    (3)在(2)的条件下,专卖店准备在5月1日当天对甲种服装进行优惠促销活动,决定对甲种服装每件优惠a(017、(10分)八年级教师对试卷讲评课中学生参与的深度与广度进行评价调查,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名八年级学生的参与情况,绘制成如图所示的频数分布直方图和扇形统计图均不完整),请根据图中所给信息解答下列问题:
    (1)在这次评价中,一共抽查了多少名学生?
    (2)求扇形统计图中,项目“主动质疑”所在的扇形的圆心角的度数;
    (3)请将条形统计图补充完整.
    18、(10分)△ABC在平面直角坐标系xOy中的位置如图所示.
    (1)作△ABC关于点C成中心对称的△A1B1C1.
    (2)将△A1B1C1向右平移4个单位,作出平移后的△A2B2C2.
    (3)在x轴上求作一点P,使PA1+PC2的值最小,并写出点P的坐标(不写解答过程,直接写出结果)
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,分别以直角△ABC的斜边AB,直角边AC为边向△ABC外作等边△ABD和等边△ACE,F为AB的中点,DE与AB交于点G,EF与AC交于点H,∠ACB=90°,∠BAC=30°.给出如下结论:
    ①EF⊥AC;②四边形ADFE为菱形;③AD=4AG;④FH=BD
    其中正确结论的为______(请将所有正确的序号都填上).
    20、(4分)若一元二次方程有两个相等的实数根,则的值是________。
    21、(4分)在平面直角坐标系xOy中,已知抛物线的顶点在轴上,P,Q()是此抛物线上的两点.若存在实数,使得,且成立,则的取值范围是__________.
    22、(4分)如图,这个图案是用形状、大小完全相同的等腰梯形密铺而成的,则这个图案中的等腰梯形的底角(指锐角)是_________度.
    23、(4分)某射手在相同条件下进行射击训练,结果如下:
    该射手击中靶心的概率的估计值是______(精确到0.01).
    二、解答题(本大题共3个小题,共30分)
    24、(8分)先化简,再求值:,其中a=-.
    25、(10分)先化简,再求值: ,其中x=
    26、(12分)解方程:(1)2x 2+4x+2=0; (2) x 2 x  4  0
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    根据平行四边形的性质可得,再根据角平分线的性质可推出,根据等角对等边可得,即可求出的长.
    【详解】
    ∵四边形ABCD是平行四边形


    ∵是的平分线




    故答案为:B.
    本题考查了平行四边形的线段长问题,掌握平行四边形的性质、平行线的性质、角平分线的性质、等角对等边是解题的关键.
    2、C
    【解析】
    要使△ABP与△ABC全等,必须使点P到AB的距离等于点C到AB的距离,即3个单位长度,所以点P的位置可以是P1,P2,P4三个,故选C.
    3、C
    【解析】
    根据对角线互相平分的四边形是平行四边形;对角线互相平分且相等的四边形是矩形;对角线互相平分的四边形是平行四边形;对角线互相垂直平分的四边形是菱形,即可做出解答。
    【详解】
    解:A、对角线相等的四边形是平行四边形,说法错误,应是对角线互相平分的四边形是平行四边形;B、对角线互相平分且相等的四边形是平行四边形,说法错误,应是矩形;C、对角线互相平分的四边形是平行四边形,说法正确;D、对角线互相垂直平分的四边形不一定是平行四边形,错误;故选:C.
    本题主要考查了平行四边形,以及特殊的平行四边形的判定,关键是熟练掌握各种四边形的判定方法.
    4、A
    【解析】
    根据点A(2,y1)与点B(3,y2)都在反比例函数的图象上,可以求得y1、y2的值,从而可以比较y1、y2的大小,本题得以解决.
    【详解】
    ∵点A(2,y1)与点B(3,y2)都在反比例函数的图象上,
    ∴y1=,y2=,
    ∵-3<-2,
    ∴,
    故选A.
    本题考查反比例函数图象上点的坐标特征,解答本题的关键是明确题意,利用反比例函数的性质解答.
    5、D
    【解析】
    通过观察图象获取信息列出函数解析式,并根据一次函数的性质逐一进行判断即可。
    【详解】
    解:由图象可得,服药后2小时内,血液中的含药量逐渐增多,在2小时的时候达到最大值,最大值为每毫升6微克,故(1)是正确的;
    设当0≤x≤2时,设y=kx,
    ∴2k=6,解得k=3
    ∴y=3x
    当y=4时,x=
    设直线AB的解析式为y=ax+b,得
    解得a=- ; b=
    ∴y=-x+
    当y=4时,x=
    ∴每毫升血液中含药量不低于4微克的时间持续-小时,
    故(2)正确
    把y=0代入y=-x+得
    x=18
    前一天下午六点到第二天上午12点时间为18小时,所以(3)正确。
    故正确的说法有3个.
    故选:D
    主要考查了函数图象的读图能力.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.
    6、D
    【解析】
    试题分析:分式有意义:分母不为0;二次根式有意义,被开方数是非负数.
    根据题意,得解得,x≥2且x≠1.
    考点:(1)、二次根式有意义的条件;(2)、分式有意义的条件
    7、C
    【解析】
    由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.
    【详解】
    A、了解一批电视机的使用寿命适合抽样调查;
    B、了解全省学生的家庭1周内丢弃塑料袋的数量适合抽样调查;
    C、了解某校八(2)班学生每天用于课外阅读的时间适合全面调查;
    D、了解苏州市中学生的近视率适合抽样调查;
    故选C.
    本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查,事关重大的调查往往选用普查.
    8、D
    【解析】
    反证法的步骤中,第一步是假设结论不成立,反面成立,即可解答.
    【详解】
    解:用反证法证明“在同一平面内,若a⊥c,b⊥c,则a∥b”,
    应假设:a不平行b或a与b相交.
    故选择:D.
    本题考查了反证法,解此题关键要懂得反证法的意义及步骤.
    反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、19+6
    【解析】
    根据完全平方公式展开计算即可。
    【详解】
    解:18+6+1=19+6
    本题考查了用完全平方公式进行实数的计算,理解和掌握乘法公式是关键。
    10、14
    【解析】
    根据甲权平均数公式求解即可.
    【详解】
    (4×13+7×14+4×15)÷15=14岁.
    故答案为:14.
    本题重点考查了加权平均数的计算公式,希望同学们要牢记公式,并能够灵活运用.
    数据x1、x2、……、xn的加权平均数:(其中w1、w2、……、wn分别为x1、x2、……、xn的权数).
    11、1
    【解析】
    利用同分母分式加减法法则:同分母的分式相加减,分母不变,把分子相加减,即可得出答案.
    【详解】
    解:
    =1.
    故答案是:1.
    考查了分式的加减法,熟练掌握运算法则是解本题的关键.
    12、5.1×10-1
    【解析】
    绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
    【详解】
    解:0.0000051=5.1×10-1.
    故答案为:5.1×10-1.
    本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
    13、或或
    【解析】
    由已知得出∠B=60°,AB=2BC=18,①当∠BQP=90°时,则∠BPQ=30°,BP=2BQ,得出18-3t=2t,解得t=;②当∠QPB=90°时,则∠BQP=30°,BQ=2BP,若0<t<6时,则t=2(18-3t),解得t=,若6<t≤9时,则t=2(3t-18),解得t=.
    【详解】
    解:∵∠C=90°,∠A=30°,BC=9,
    ∴∠B=60°,AB=2BC=18,
    ①当∠BQP=90°时,如图1所示:则AC∥PQ,
    ∴∠BPQ=30°,BP=2BQ,
    ∵BP=18-3t,BQ=t,
    ∴18-3t=2t,
    解得:t=;
    ②当∠QPB=90°时,如图2所示:
    ∵∠B=60°,
    ∴∠BQP=30°,
    ∴BQ=2BP,
    若0<t<6时,
    则t=2(18-3t),
    解得:t=,
    若6<t≤9时,
    则t=2(3t-18),
    解得:t=;
    故答案为:或或.
    本题考查了含30°角直角三角形的判定与性质、平行线的判定与性质等知识,熟练掌握含30°角直角三角形的性质是解题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、见解析.
    【解析】
    由已知条件证得四边形AECD是平行四边形,则CE=AD,从而得出CE=CB,然后根据有一个角是60°的等腰三角形是等边三角形即可证得结论.
    【详解】
    证明:,,
    四边形是平行四边形,



    是等边三角形.
    本题考查了等腰梯形的性质,等边三角形的判定,平行四边形的判定和性质,熟练掌握各定理是解题的关键.
    15、【解析】
    试题分析:根据平移的性质可知(-4,1),(-1,2),(-2,4),然后可画图;根据关于原点对称的性质横纵坐标均变为相反数,可得(-1,-1),(-4,-2),(-3,-4),然后可画图.
    试题解析:
    (1)△A1B1C1如图所示;
    (2)△A2B2C2如图所示;
    考点:坐标平移,关于原点对称的性质
    16、(1)购进甲、乙两种服装2件、1件(2)共有11种方案(3)购进甲种服装70件,乙种服装130件
    【解析】
    (1)设购进甲种服装x件,则乙种服装是(200-x)件,根据两种服装共用去32400元,即可列出方程,从而求解.
    (2)设购进甲种服装y件,则乙种服装是(200-y)件,根据总利润(利润=售价-进价)不少于26700元,且不超过2620元,即可得到一个关于y的不等式组,解不等式组即可求得y的范围,再根据y是正整数整数即可求解.
    (3)首先求出总利润W的表达式,然后针对a的不同取值范围进行讨论,分别确定其进货方案.
    【详解】
    解:(1)设购进甲种服装x件,则乙种服装是(200-x)件,
    根据题意得:12x+150(200-x)=32400,
    解得:x=2,200-x=200-2=1.
    ∴购进甲、乙两种服装2件、1件.
    (2)设购进甲种服装y件,则乙种服装是(200-y)件,根据题意得:
    ,解得:70≤y≤2.
    ∵y是正整数,∴共有11种方案.
    (3)设总利润为W元,则W=(140-a)y+130(200-y),即w=(10-a)y+3.
    ①当0<a<10时,10-a>0,W随y增大而增大,
    ∴当y=2时,W有最大值,此时购进甲种服装2件,乙种服装1件.
    ②当a=10时,(2)中所有方案获利相同,所以按哪种方案进货都可以.
    ③当10<a<20时,10-a<0,W随y增大而减小,
    ∴当y=70时,W有最大值,此时购进甲种服装70件,乙种服装130件.
    17、(1)560人;(2)54°;(3)补图见解析.
    【解析】
    分析:(1)由“专注听讲”的学生人数除以占的百分比求出调查学生总数即可;
    (2)由“主动质疑”占的百分比乘以360°即可得到结果;
    (3)求出“讲解题目”的学生数,补全统计图即可;
    详解:(1)根据题意得:224÷40%=560(名),
    则在这次评价中,一个调查了560名学生;
    故答案为:560;
    (2)根据题意得:×360°=54°,
    则在扇形统计图中,项目“主动质疑”所在的扇形的圆心角的度数为54度;
    故答案为:54;
    (3)“讲解题目”的人数为560-(84+168+224)=84,补全统计图如下:
    点睛:此题考查了频率(数)分布直方图,扇形统计图,以及用样本估计总体,弄清题中的数据是解本题的关键.
    18、(1)见解析(2)见解析(3)(,0)
    【解析】
    解;作图如图所示,可得P点坐标为:(,0)。
    (1)延长AC到A1,使得AC=A1C1,延长BC到B1,使得BC=B1C1,即可得出图象。
    (2)根据△A1B1C1将各顶点向右平移4个单位,得出△A2B2C2。
    (3)作出A1关于x轴的对称点A′,连接A′C2,交x轴于点P,再利用相似三角形的性质求出P点坐标即可。
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、①③④
    【解析】
    根据已知先判断△ABC≌△EFA,则∠AEF=∠BAC,得出EF⊥AC,由等边三角形的性质得出∠BDF=30°,从而证得△DBF≌△EFA,则AE=DF,再由FE=AB,得出四边形ADFE为平行四边形而不是菱形,根据平行四边形的性质得出AD=4AG,从而得到答案.
    【详解】
    解:∵△ACE是等边三角形,
    ∴∠EAC=60°,AE=AC,
    ∵∠BAC=30°,
    ∴∠FAE=∠ACB=90°,AB=2BC,
    ∵F为AB的中点,
    ∴AB=2AF,
    ∴BC=AF,
    ∴△ABC≌△EFA,
    ∴FE=AB,
    ∴∠AEF=∠BAC=30°,
    ∴EF⊥AC,故①正确,
    ∵EF⊥AC,∠ACB=90°,
    ∴HF∥BC,
    ∵F是AB的中点,
    ∴HF=BC,
    ∵BC=AB,AB=BD,
    ∴HF=BD,故④说法正确;
    ∵AD=BD,BF=AF,
    ∴∠DFB=90°,∠BDF=30°,
    ∵∠FAE=∠BAC+∠CAE=90°,
    ∴∠DFB=∠EAF,
    ∵EF⊥AC,
    ∴∠AEF=30°,
    ∴∠BDF=∠AEF,
    ∴△DBF≌△EFA(AAS),
    ∴AE=DF,
    ∵FE=AB,
    ∴四边形ADFE为平行四边形,
    ∵AE≠EF,
    ∴四边形ADFE不是菱形;
    故②说法不正确;
    ∴AG=AF,
    ∴AG=AB,
    ∵AD=AB,
    则AD=4AG,故③说法正确,
    故答案为①③④.
    考点:菱形的判定;等边三角形的性质;含30度角的直角三角形.
    20、
    【解析】
    根据根的判别式和已知得出(﹣3)2﹣4c=0,求出方程的解即可.
    【详解】
    ∵一元二次方程x2﹣3x+c=0有两个相等的实数根,
    ∴△=(﹣3)2﹣4c=0,
    解得:c=,故答案为.
    本题考查根的判别式和解一元一次方程,能熟记根的判别式的内容是解此题的关键.
    21、
    【解析】
    由抛物线顶点在x轴上,可得函数可以化成,即可化成完全平方公式,可得出,原函数可化为,将带入可解得的值用m表示,再将,且转化成PQ的长度比与之间的距离大可得出只含有m的不等式即可求解.
    【详解】
    解:∵抛物线顶点在x轴上,
    ∴函数可化为的形式,即可化成完全平方公式
    ∴可得:,
    ∴;
    令,可得,由题可知,
    解得:;
    ∴线段PQ的长度为,
    ∵,且,
    ∴,
    ∴,
    解得:;
    故答案为
    本题考查特殊二次函数解析式的特点,可以利用公式法求得a、b之间的关系,也可以利用顶点在x轴上的函数解析式的特点来得出a、b之间的关系;最后利用PQ的长度大于与之间的距离求解不等式,而不是简单的解不等式,这个是解题关键.
    22、60°
    【解析】
    根据图案的特点,可知密铺的一个顶点处的周角,由3个完全相同的等腰梯形的较大内角组成,即可求出等腰梯形的较大内角的度数,进而即可得到答案.
    【详解】
    由图案可知:密铺的一个顶点处的周角,由3个完全相同的等腰梯形的较大内角组成,
    ∴等腰梯形的较大内角为360°÷3=120°,
    ∵等腰梯形的两底平行,
    ∴等腰梯形的底角(指锐角)是:180°-120°=60°.
    故答案是:60°.
    本题主要考查等腰梯形的性质以及平面镶嵌,掌握平面镶嵌的性质是解题的关键.
    23、0.1.
    【解析】
    根据表格中实验的频率,然后根据频率即可估计概率.
    【详解】
    解:由击中靶心频率都在0.1上下波动,
    ∴该射手击中靶心的概率的估计值是0.1.
    故答案为:0.1.
    本题考查了利用频率估计概率的思想,解题的关键是求出每一次事件的频率,然后即可估计概率解决问题.
    二、解答题(本大题共3个小题,共30分)
    24、原式=,把代入得,原式=-1.
    【解析】
    试题分析:根据分式的混合运算法则先化简后再求值.
    试题解析:
    考点:分式的混合运算.
    25、,
    【解析】
    将原式进行因式分解化成最简结果,将x代入其中,计算得到结果.
    【详解】
    解:原式=
    =
    =
    因为x= ,所以原式= .
    考查的是分式的化简求值,掌握分式的混合运算法则是解题的关键.
    26、(1);(2).
    【解析】
    (1)方程两边同时除以2,得x 2+2x+1=0,再按完全平方公式求解;
    (2)方程两边同时乘以2,得x 2-2 x-8=0,再用分解因式法或公式法求解.
    【详解】
    解:(1)方程两边同时除以2,得x 2+2x+1=0,
    ∴.
    ∴x1=x2=-1.
    (2)方程两边同时乘以2,得x 2-2x-8=0,
    ∴(x-4)(x+2)=0.
    ∴x1=4,x2=-2.
    本题考查了一元二次方程的解法,对于(1)题,用完全平方公式法要简单,对于(2)题,用公式法和分解因式法都可以,但分解因式法要简单些,所以对于单纯的解方程题目,要先观察,确定较为简捷的解法,再动手求解.
    题号





    总分
    得分
    批阅人
    相关试卷

    2025届广东省佛山市乐从镇数学九上开学达标检测模拟试题【含答案】: 这是一份2025届广东省佛山市乐从镇数学九上开学达标检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023-2024学年广东省佛山市南海区石门实验学校数学九上期末经典试题含答案: 这是一份2023-2024学年广东省佛山市南海区石门实验学校数学九上期末经典试题含答案,共7页。试卷主要包含了若点在抛物线上,则的值等内容,欢迎下载使用。

    2023-2024学年广东省佛山市南海区石门实验学校八上数学期末复习检测试题含答案: 这是一份2023-2024学年广东省佛山市南海区石门实验学校八上数学期末复习检测试题含答案,共7页。试卷主要包含了在平面直角坐标系中,点P象限,若把分式,下列计算正确的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map