2025届广东省惠州市名校数学九年级第一学期开学达标检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)一次函数的图象不经过( )
A.第一象限B.第二象限C.第三象限D.第四象限
2、(4分)下列图形中,是轴对称图形的是( )
A.B.C.D.
3、(4分)小亮在同一直角坐标系内作出了和的图象,方程组的解是( )
A.B.C.D.
4、(4分)根据如图所示的程序计算函数y的值,若输入的x值是﹣3和2时,输出的y值相等,则b等于( )
A.5B.﹣5C.7D.3和4
5、(4分)已知E、F、G、H分别是菱形ABCD的边AB、BC、CD、AD的中点,则四边形EFGH的形状一定是( )
A.平行四边形B.矩形C.菱形D.正方形
6、(4分)下列给出的四个点中,不在直线y=2x-3上的是 ( )
A.(1, -1)B.(0, -3)C.(2, 1)D.(-1,5)
7、(4分)如图,平行四边形ABCD中,AE平分∠BAD,若CE=4cm,AD=5cm,则平行四边形ABCD的周长是( )
A.25cmB.20cmC.28cmD.30cm
8、(4分)下列成语所描述的事件为随机事件的是( )
A.守株待兔B.水中捞月C.瓮中捉鳖D.拔苗助长
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,购买“黄金1号”王米种子,所付款金额y元与购买量x(千克)之间的函数图象由线段OA和射线AB组成,则购买1千克“黄金1号”玉米种子需付款___元,购买4千克“黄金1号”玉米种子需___元.
10、(4分)若关于x的方程x2+mx-3=0有一根是1,则它的另一根为________.
11、(4分)用反证法证明“如果,那么.”是真命题时,第一步应先假设________ .
12、(4分)把(a-2)根号外的因式移到根号内,其结果为____.
13、(4分)若二次根式有意义,则的取值范围为_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在矩形ABCD中,E是AD的中点,将△ABE沿BE折叠,点A的对应点为点G.
(1)填空:如图1,当点G恰好在BC边上时,四边形ABGE的形状是___________形;
(2)如图2,当点G在矩形ABCD内部时,延长BG交DC边于点F.
求证:BF=AB+DF;
若AD=AB,试探索线段DF与FC的数量关系.
15、(8分)如图1,点是菱形对角线的交点,已知菱形的边长为12,.
(1)求的长;
(2)如图2,点是菱形边上的动点,连结并延长交对边于点,将射线绕点顺时针旋转交菱形于点,延长交对边于点.
①求证:四边形是平行四边形;
②若动点从点出发,以每秒1个单位长度沿的方向在和上运动,设点运动的时间为,当为何值时,四边形为矩形.
16、(8分)如图,平行四边形中,点分别是的中点.求证.
17、(10分)解方程组:.
18、(10分)如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB上一点,过点D作DE⊥BC,交直线MN于点E,垂足为F,连接CD,BE.
(1)当点D是AB的中点时,四边形BECD是什么特殊四边形?说明你的理由.
(2)在(1)的条件下,当∠A=__________°时,四边形BECD是正方形.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,点P是∠BAC的平分线AD上一点,PE⊥AC于点E,且AP=2,∠BAC=60°,有一点F在边AB上运动,当运动到某一位置时△FAP面积恰好是△EAP面积的2倍,则此时AF的长是______.
20、(4分)在直角三角形ABC中,∠B=90°,BD是AC边上的中线,∠A=30°,AB=5,则△ADB的周长为___________
21、(4分)若关于的方程的一个根是,则方程的另一个根是________.
22、(4分)计算所得的结果是______________。
23、(4分)若点A(x1,y1)和点B(x1+1,y2)都在一次函数y=2018x-2019的图象上,则y1_______y2(选择“>”、“<”或“=”填空).
二、解答题(本大题共3个小题,共30分)
24、(8分)已知某开发区有一块四边形的空地ABCD,如图所示,现计划在空地上种植草皮,经测量∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m,若每平方米草皮需要200元,问要多少投入?
25、(10分)如图,直线和相交于点C,分别交x轴于点A和点B点P为射线BC上的一点。
(1)如图1,点D是直线CB上一动点,连接OD,将沿OD翻折,点C的对应点为,连接,并取的中点F,连接PF,当四边形AOCP的面积等于时,求PF的最大值;
(2)如图2,将直线AC绕点O顺时针方向旋转α度,分别与x轴和直线BC相交于点S和点R,当是等腰三角形时,直接写出α的度数.
26、(12分)甲、乙两车都从A地前往B地,如图分别表示甲、乙两车离A地的距离S(千米)与时间t(分钟)的函数关系.已知甲车出发10分钟后乙车才出发,甲车中途因故停止行驶一段时间后按原速继续驶向B地,最终甲、乙两车同时到达B地,根据图中提供的信息解答下列问题:
(1)甲、乙两车行驶时的速度分别为多少?
(2)乙车出发多少分钟后第一次与甲车相遇?
(3)甲车中途因故障停止行驶的时间为多少分钟?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
根据一次函数的性质即可得到结果.
,
图象经过一、三、四象限,不经过第二象限,
故选B.
2、B
【解析】
轴对称图形:把一个图形沿某条直线对折,直线两旁的部分能完全重合,根据轴对称图形的概念对各选项分析判断即可得解.
【详解】
解:A、不符合定义,不是轴对称图形,故本选项错误; B、符合定义是轴对称图形,故本选项正确; C、不符合定义,不是轴对称图形,故本选项错误; D、不符合定义,不是轴对称图形,故本选项错误.
故选:B.
本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.
3、B
【解析】
由数形结合可得,直线和的交点即为方程组
的解,可得答案.
【详解】
解:由题意得:直线和的交点即为方程组
的解,可得图像上两直线的交点为(-2,2),
故方程组的解为,
故选B.
本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.
4、A
【解析】
把x=﹣3与x=2代入程序中计算,根据y值相等即可求出b的值.
【详解】
当x=﹣3时,y=9,当x=2时,y=4+b,
由题意得:4+b=9,
解得:b=5,
故选A.
此题考查了函数值,弄清程序中的关系式和理解自变量取值范围是解本题的关键.
5、B
【解析】
本题没有图,需要先画出图形,如图所示
连接AC、BD交于O,根据三角形的中位线定理推出EF∥BD∥HG,EH∥AC∥FG,得出四边形EFGH是平行四边形,根据菱形性质推出AC⊥BD,推出EF⊥EH,即可得出答案.
【详解】
解:四边形EFGH的形状为矩形,
理由如下:
连接AC、BD交于O,
∵E、F、G、H分别是AB、AD、CD、BC的中点,
∴EF∥BD,FG∥AC,HG∥BD,EH∥AC,
∴EF∥HG,EH∥FG,
∴四边形EFGH是平行四边形,
∵四边形ABCD是菱形,
∴AC⊥BD,
∵EF∥BD,EH∥AC,
∴EF⊥EH,
∴∠FEH=90°,
∴平行四边形EFGH是矩形,
故答案为:B.
本题考查了矩形的判定,菱形的性质,平行四边形的判定,平行线性质等知识点的运用,主要考查学生能否正确运用性质进行推理,题目比较典型,难度适中.
6、D
【解析】
只需把每个点的横坐标即x的值分别代入y=2x-3,计算出对应的y值,然后与对应的纵坐标比较即可
A、当x=1时,y=-1,(1,-1)在直线y=2x-3上;
B、当x=0时,y=-3,(0,-3)在直线y=2x-3上;
C、当x=2时,y=1,(2,1)在直线y=2x-3上;
D、当x=-1时,y=-5,(-1,5)不在直线y=2x-3上.
故选D.
7、C
【解析】
只要证明AD=DE=5cm,即可解决问题.
【详解】
解:∵四边形ABCD是平行四边形,
∴AB∥CD,AD=BC=5cm,CD=AB,
∴∠EAB=∠AED,
∵∠EAB=∠EAD,
∴∠DEA=∠DAE,
∴AD=DE=5cm,
∵EC=4cm,
∴AB=DC=9cm,
∴四边形ABCD的周长=2(5+9)=28(cm),
故选C.
本题考查平行四边形的判定和性质、等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
8、A
【解析】
根据事件发生的可能性大小判断相应事件的类型即可.
【详解】
解:A、是随机事件,故A符合题意;
B、是不可能事件,故B不符合题意;
C、是必然事件,故C不符合题意;
D、是不可能事件,故D不符合题意;
故选A.
本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、5 1.
【解析】
由图象可求出当0≤x≤2时,y与x的函数关系式为y=5x,当x>2时,y与x的函数关系式为y=4x+2,然后根据所求解析式分别求出当x=1和x=4时y的值即可.
【详解】
解:当0≤x≤2时,设y与x的函数关系式为y=kx,
2k=10,得k=5,
∴当0≤x≤2时,y与x的函数关系式为y=5x,
当x=1时,y=5×1=5,
当x>2时,设y与x的函数关系式为y=ax+b,
,得 ,
即当x>2时,y与x的函数关系式为y=4x+2,
当x=4时,y=4×4+2=1,
故答案为:5,1.
一次函数在实际生活中的应用是本题的考点,根据图象求出函数解析式是解题的关键.
10、-1
【解析】
设方程x2+mx-1=0的两根为x1、x2,根据根与系数的关系可得出x1•x2=﹣1,结合x1=1即可求出x2,此题得解.
【详解】
解:设方程x2+mx-1=0的两根为x1、x2,则:x1•x2=﹣1.
∵x1=1,∴x2=﹣1.
故答案为:﹣1.
本题考查了根与系数的关系,熟练掌握两根之积等于是解题的关键.
11、a≥0
【解析】
用反正法证明命题应先假设结论的反面成立,本题结论的反面应是.
【详解】
解: “如果,那么.”是真命题时 ,用反证法证明第一步应假设.
故答案为:
本题考查了反证法,熟练掌握反证法的证明步骤是解题的关键.
12、-
【解析】
根据二次根式有意义的条件,可知2-a>0,解得a<2,即a-2<0,因此可知(a-2)根号外的因式移到根号内后可得(a-2)=.
故答案为-.
13、.
【解析】
根据二次根式有意义的条件:二次根号下被开方数≥0,即可解答.
【详解】
根据题意得,,
解得.
故答案为:.
本题考查二次根式有意义的条件,熟练掌握二次根号下被开方数≥0是解题关键.
三、解答题(本大题共5个小题,共48分)
14、正方形
【解析】
分析:(1)如图1,当点G恰好在BC边上时,四边形ABGE的形状是正方形,理由为:由折叠得到两对边相等,三个角为直角,确定出四边形ABEG为矩形,再由矩形对边相等,等量代换得到四条边相等,即邻边相等,即可得证;
(2)①如图2,连接EF,由ABCD为矩形,得到两组对边相等,四个角为直角,再由E为AD中点,得到AE=DE,由折叠的性质得到BG=AB,EG=AE=ED,且∠EGB=∠A=90°,利用HL得到直角三角形EFG与直角△EDF全等,利用全等三角形对应边相等得到DF=FG,由BF=BG+GF,等量代换即可得证;
②CF=DF,理由为:不妨假设AB=DC=a,DF=b,表示出AD=BC,由①得:BF=AB+DF,进而表示出BF,CF,在直角△BCF中,利用勾股定理列出关系式,整理得到a=2b,由CD-DF=FC,代换即可得证.
详解:(1)正方形;
(2)①如图2,连结EF,
在矩形ABCD中,AB=DC,AD=BC,∠A=∠C=∠D=90°,
∵E是AD的中点,
∴AE=DE,
∵△ABE沿BE折叠后得到△GBE,
∴BG=AB,EG=AE=ED,∠A=∠BGE=90°
∴∠EGF=∠D=90°,
在Rt△EGF和Rt△EDF中,
∵EG=ED,EF=EF,
∴Rt△EGF≌Rt△EDF,
∴ DF=FG,
∴ BF=BG+GF=AB+DF;
②不妨假设AB=DC=,DF=,
∴AD=BC=,
由①得:BF=AB+DF
∴BF=,CF=,
在Rt△BCF中,由勾股定理得:
∴,
∴,
∵,
∴,即:CD=DF,
∵CF=DF-DF,
∴3CF=DF.
点睛:此题属于四边形综合题,涉及的知识有:矩形的性质,折叠的性质,正方形的判定,全等三角形的判定与性质,勾股定理,熟练掌握图形的判定与性质是解本题的关键.
15、(1);(2)①见解析;②或或或.
【解析】
(1)解直角三角形求出BO即可解决问题;
(2)①想办法证明OE=OG,HO=FO即可解决问题;
②分四种情形画出图形,(Ⅰ)如图1,当时,,关于对称,(Ⅱ)如图2,当,关于对称时,,(Ⅲ)如图3,此时与图2中的的位置相同,(Ⅳ)如图4,当,关于对称时,四边形EFGH是矩形.分别求解即可解决问题;
【详解】
解:(1)∵四边形为菱形,,
∴.
∵,
∴,
∴,
∴.
(2)①∵四边形ABCD是菱形,
∴AB∥CD,BO=OD,
∴∠EBO=∠GDO
∵∠BOE=∠DOG,
∴△EOB≌△GOD,
∴EO=GO,同理可得HO=FO,
∴四边形EFGH是平行四边形.
②②I.如图2-1,当点、都在上时,四边形是矩形,作的平分线,
,
.
,
,
,作于.设,则,
,
,
,
,
时,四边形是矩形.
II.如解图2-2,当点在上,点在上,四边形是矩形.
由菱形和矩形都是轴对称图形可知,,
,
,
,
,
,
时,四边形是矩形.
III. 如解图2-3,当点、都在上时,四边形是矩形.
由同理可证:,
时,四边形是矩形.
IV. 如解图2-4,当点在上,点在上,四边形是矩形.
由菱形、矩形都是轴对称图形可知,,
,
,过点作,
,
,
,
,
,
,
时,四边形是矩形.
综上所述,为,,,时,四边形是矩形.
本题考查了四边形综合、菱形的性质、矩形的判定和性质、勾股定理、全等三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.
性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.
16、见解析
【解析】
根据平行四边形的性质和已知可证AE=CF,∠BAE=∠DCF,AB=CD,故根据SAS可证△ABE≌△DCF.
【详解】
证明:四边形是平行四边形,
,
点分别是的中点,
,
,
在和中,,
.
本题考查了平行四边形的判定和全等三角形的判定.掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.
17、,,,.
【解析】
由①得(x﹣y)(x﹣2y)=0,即x﹣y=0,x﹣2y=0,然后将原方程组化为或求解即可.
【详解】
,
由①,得(x﹣y)(x﹣2y)=0,
∴x﹣y=0,x﹣2y=0,
所以原方程组可以变形为或,
解方程组,得,;
解方程组,得,,
所以原方程组的解为: ,,,.
本题考查了二元二次方程组的解法,解题思路类似与二元一次方程组,通过代入消元法转化为一元二次方程求解即可.
18、 (1)菱形,理由见解析;(2)1.
【解析】
①先证出BD=CE,得出四边形BECD是平行四边形,再由直角三角形斜边上的中线性质得出CD=AB=BD,即可得出四边形BECD是菱形;
②当∠A=1°时,△ABC是等腰直角三角形,由等腰三角形的性质得出CD⊥AB,即可得出四边形BECD是正方形.
【详解】
解:(1)四边形BECD是菱形,理由如下:
∵D为AB中点,
∴AD=BD,
∵CE=AD,
∴BD=CE,
∵BD∥CE,
∴四边形BECD是平行四边形,
∵∠ACB=90°,D为AB中点,
∴CD=AB=BD,
∴四边形BECD是菱形;
故答案为:菱形;
(2)当∠A=1°时,四边形BECD是正方形;理由如下:
∵∠ACB=90°,
当∠A=1°时,△ABC是等腰直角三角形,
∵D为AB的中点,
∴CD⊥AB,
∴∠CDB=90°,
∴四边形BECD是正方形;
故答案为:1.
本题是四边形综合题目,考查了平行四边形的判定与性质、正方形的判定、菱形的判定、直角三角形斜边上的中线性质;熟练掌握平行四边形的判定与性质,并能进行推理论证是解决问题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1.
【解析】
作PH⊥AB于H,根据角平分线的性质得到PH=PE,根据余弦的定义求出AE,根据三角形的面积公式计算即可.
【详解】
作PH⊥AB于H,
∵AD是∠BAC的平分线,PE⊥AC,PH⊥AB,
∴PH=PE,
∵P是∠BAC的平分线AD上一点,
∴∠EAP=30°,
∵PE⊥AC,
∴∠AEP=90°,
∴AE=AP×cs∠EAP=3,
∵△FAP面积恰好是△EAP面积的2倍,PH=PE,
∴AF=2AE=1,
故答案为1.
本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.
20、
【解析】
先作出Rt△ABC,根据∠A=30°,AB=5,可求得BC、 AC的长度,然后根据直角三角形斜边中线等于斜边的一半求出中线BD的长度,继而可求得△ADB的周长.
【详解】
解:如图所示,
∵∠ABC=90°,∠A=30°,AB=5,
∴设BC=x,则AC=2x
∵
∴
∴x=5
∴BC=5,AC=10
在直角三角形ABC中,∠ABC==90°,BD是AC边上的中线
∴
∴△ADB的周长为:
故答案为:
本题考查了勾股定理、含30°角的直角三角形和直角三角形斜边的中线等知识,解答本题的关键是根据勾股定理求出直角边的长度.
21、-2
【解析】
根据一元二次方程根与系数的关系求解即可.
【详解】
设方程的另一个根为x1,
∵方程的一个根是,
∴x1+0=﹣2,即x1=﹣2.
故答案为:﹣2.
本题主要考查一元二次方程的根与系数的关系(韦达定理),
韦达定理:若一元二次方程ax2+bx+c=0(a≠0)有两个实数根x1,x2,那么x1+x2=﹣,x1x2=.
22、1
【解析】
由于二次根式的乘除运算是同级运算,从左到右依次计算即可.
【详解】
原式1.
故答案为:1.
本题考查了二次根式的乘除法运算;由于后两项互为倒数,有些同学往往先将它们约分,从而得出结果为5的错误结论,需注意的是同级运算要从左到右依次计算.
23、<
【解析】
先根据直线y=1018x-1019判断出函数图象的增减性,再根据各点横坐标的大小进行判断即可.
【详解】
∵直线y=1018x-1019,k=1018>0,
∴y随x的增大而增大,
又∵x1<x1+1,
∴y1<y1.
故答案为:<.
本题考查的是一次函数的增减性,即一次函数y=kx+b(k≠0)中,当k>0,y随x的增大而增大;当k<0,y随x的增大而减小.
二、解答题(本大题共3个小题,共30分)
24、7200元
【解析】
仔细分析题目,需要求得四边形的面积才能求得结果.连接BD,在直角三角形ABD中可求得BD的长,由BD、CD、BC的长度关系可得三角形DBC为一直角三角形,DC为斜边;由此看,四边形ABCD由Rt△ABD和Rt△DBC构成,则容易求解.
【详解】
连接BD,
在Rt△ABD中,BD2=AB2+AD2=32+42=52,
在△CBD中,CD2=132,BC2=122,
而122+52=132,
即BC2+BD2=CD2,
∴∠DBC=90°,
S四边形ABCD=S△BAD+S△DBC=⋅AD⋅AB+DB⋅BC=×4×3+×12×5=36.
所以需费用36×200=7200(元).
此题考查勾股定理的应用,解题关键在于作辅助线和利用勾股定理进行计算.
25、(1)PF的最大值是;(2)的度数:,,,.
【解析】
(1)设P(m,-m+6),连接OP.根据S四边形AOCP=S△AOP+S△OCP=,构建方程求出点P坐标,取OB的中点Q,连接QF,QP,求出FQ,PQ,根据PF≤PQ+QF求解即可.
(2)分四种情形:①如图2-1中,当RS=RB时,作OM⊥AC于M.②如图2-2中,当BS=BR时,③如图2-3中,当SR=SB时,④如图2-4中,当BR=BS时,分别求解即可解决问题.
【详解】
解:(1)在中,当时,;
当时,﹒
∴,
设,连接OP
∴
∴
∴ ∴
取OB的中点Q,连接FQ,PQ
在中,当时,
∴ ∴
又∵点F是的中点,
∴
∵
所以PF的最大值是
(2)①如图2-1中,当RS=RB时,作OM⊥AC于M.
∵tan∠OAC==,
∴∠OAC=60°,
∵OC=OB=6,
∴∠OBC=∠OCB=45°,
∵∠OM′S=∠BRS=90°,
∴OM′∥BR,
∴∠AOM′=∠OBC=45°,
∵∠AOM=30°,
∴α=45°-30°=15°.
②如图2-2中,当BS=BR时,易知∠BSR=22.5°,
∴∠SOM′=90°-22.5°=67.5°,
∴α=∠MOM′=180°-30°-67.5°=82.5°
③如图2-3中,当SR=SB时,α=180°-30°=150°.
④如图2-4中,当BR=BS时,α=150°+(90°-67.5°)=172.5°.
综上所述,满足条件的α的值为15°或82.5°或150°或172.5°.
本题属于一次函数综合题,考查了旋转变换,四边形的面积,最短问题等知识,解题的关键是学会利用两点之间线段最短解决最值问题,学会用分类讨论的思想思考问题,属于中考压轴题.
26、(1)甲车的速度是千米每分钟,乙车的速度是1千米每分钟;
(2)乙车出发20分钟后第一次与甲车相遇;
(3)甲车中途因故障停止行驶的时间为25分钟.
【解析】
(1)分别根据速度=路程÷时间列式计算即可得解;
(2)设甲车离A地的距离S与时间t的函数解析式为s=kt+b(k≠0),利用待定系数法求出乙函数解析式,再令s=20求出相应的t的值,然后求解即可;
(3)求出甲继续行驶的时间,然后用总时间减去停止前后的时间,列式计算即可得解.
【详解】
解:(千米/分钟),
∴甲车的速度是千米每分钟.
(千米/分钟),
∴ 乙车的速度是1千米每分钟.
(2)设甲车离A地的距离S与时间t的函数解析式为:()
将点(10,0)(70,60)代入得:
解得:,即
当y=20时,解得t=30,
∵甲车出发10分钟后乙车才出发,
∴ 30-10=20分钟,乙车出发20分钟后第一次与甲车相遇.
(3)∵(分钟)
∵ 70-30-15=25(分钟),
∴ 甲车中途因故障停止行驶的时间为25分钟.
题号
一
二
三
四
五
总分
得分
批阅人
2025届广东省湛江地区六校联考数学九年级第一学期开学达标检测模拟试题【含答案】: 这是一份2025届广东省湛江地区六校联考数学九年级第一学期开学达标检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届北京市大兴区名校九年级数学第一学期开学达标检测模拟试题【含答案】: 这是一份2025届北京市大兴区名校九年级数学第一学期开学达标检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年惠州市第五中学数学九年级第一学期开学达标检测模拟试题【含答案】: 这是一份2024年惠州市第五中学数学九年级第一学期开学达标检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。