2025届广东省湛江地区六校联考数学九年级第一学期开学达标检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)已知三条线段长a、b、c满足a2=c2﹣b2,则这三条线段首尾顺次相接组成的三角形的形状是( )
A.等腰三角形B.等边三角形
C.直角三角形D.等腰直角三角形
2、(4分)已知线段CD是由线段AB平移得到的,点A(–1,4)的对应点为C(4,7),则点B(–4,–1)的对应点D的坐标为( )
A.(1,2)B.(2,9)C.(5,3)D.(–9,–4)
3、(4分)如图,直线y=-x+m与y=nx+4n(n≠0)的交点的横坐标为-1.则下列结论:①m<0,n>0;②直线y=nx+4n一定经过点(-4,0);③m与n满足m=1n-1;④当x>-1时,nx+4n>-x+m,其中正确结论的个数是( )
A.1个B.1个C.3个D.4个
4、(4分)函数中,自变量x的取值范围是( )
A.B.C.D.x为任意实数
5、(4分)下列分式约分正确的是( )
A.B.C.D.
6、(4分)在下列关于的方程中,是二项方程的是( )
A.B.C.D.
7、(4分)如图,在平行四边形ABCD中,AE平分∠BAD,交BC于点E且AB=AE,延长AB与DE的延长线相交于点F,连接AC、CF.下列结论:①△ABC≌△EAD;②△ABE是等边三角形;③BF=AD;④S△BEF=S△ABC;⑤S△CEF=S△ABE;其中正确的有( )
A.2个B.3个C.4个D.5个
8、(4分)如图,一次函数y=mx+n与y=mnx(m≠0,n≠0)在同一坐标系内的图象可能是( )
A.B.
C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)直线与平行,且经过(2,1),则+=____________.
10、(4分)给出下列3个分式:,它们的最简公分母为__________.
11、(4分)在菱形中,在菱形所在平面内,以对角线为底边作顶角是的等腰则_________________.
12、(4分)比较大小:(填“>”或“<”或“=”).
13、(4分)函数的图象位于第________象限.
三、解答题(本大题共5个小题,共48分)
14、(12分)某中学八⑴班、⑵班各选5名同学参加“爱我中华”演讲比赛,其预赛成绩(满分100分)如图所示:
(1)根据上图填写下表:
(2)根据两班成绩的平均数和中位数,分析哪班成绩较好?
(3)如果每班各选2名同学参加决赛,你认为哪个班实力更强些?请说明理由.
15、(8分)一家蔬菜公司收购到某种绿色蔬菜140吨,准备加工后进行销售,销售后获利的情况如下表所示:
已知该公司的加工能力是:每天能精加工5吨或粗加工15吨,但两种加工不能同时进行.受季节等条件的限制,公司必须在一定时间内将这批蔬菜全部加工后销售完.
(1)如果要求12天刚好加工完140吨蔬菜,则公司应安排几天精加工,几天粗加工?
(2)如果先进行精加工,然后进行粗加工.
①试求出销售利润元与精加工的蔬菜吨数之间的函数关系式;
②若要求在不超过10天的时间内,将140吨蔬菜全部加工完后进行销售,则加工这批蔬菜最多获得多少利润?此时如何分配加工时间?
16、(8分)已知一次函数的图象经过(﹣4,15),(6,﹣5)两点,如果这条直线经过点P(m,2),求m的值.
17、(10分)如图,△ABC中,点P是AC边上一个动点,过P作直线EF∥BC,交∠ACB的平分线于点E,交∠ACB的外角∠ACD平分线于点F.
(1)请说明:PE=PF;
(2)当点P在AC边上运动到何处时,四边形AECF是矩形?为什么?
18、(10分)如图,为线段上一动点,分别过点作,,连接.已知,设.
(1)用含的代数式表示的值;
(2)探究:当点满足什么条件时,的值最小?最小值是多少?
(3)根据(2)中的结论,请构造图形求代数式的最小值.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,将矩形纸片ABCD沿直线AF翻折,使点B恰好落在CD边的中点E处,点F在BC边上,若CD=4,则AD=_____.
20、(4分)如图,在▱ABCD中,E为CD的中点,连接AE并延长,交BC的延长线于点G,BF⊥AE,垂足为F,若AD=AE=1,∠DAE=30°,则EF=_____.
21、(4分)若数据8,9,7,8,x,3的平均数是7,则这组数据的众数是________.
22、(4分)若a4·ay=a19,则 y=_____________.
23、(4分)如图,在矩形中,,,点E在边AB上,点F是边BC上不与点B、C重合的一个动点,把沿EF折叠,点B落在点处.若,当是以为腰的等腰三角形时,线段的长为__________.
二、解答题(本大题共3个小题,共30分)
24、(8分)一次函数的图象经过和两点.
(1)求一次函数的解析式.
(2)当时,求的值.
25、(10分)为推动阳光体育活动的广泛开展,引导学生积极参加体育锻炼,学校准备购买一批运动鞋供学生借用.现从各年级随机抽取了部分学生的鞋号,绘制了如下的统计图①和图②,请根据图中提供的信息,解答下列问题:
(1)本次接受随机抽样调查的学生人数为 人,图①中的m的值为 ,图①中“38号”所在的扇形的圆心角度数为 ;
(2)本次调查获取的样本数据的众数是 ,中位数是 ;
(3)根据样本数据,若学校计划购买200双运动鞋,建议购买36号运动鞋多少双?
26、(12分)州教育局为了解我州八年级学生参加社会实践活动情况,随机抽查了某县部分八年级学生第一学期参加社会实践活动的天数,并用得到的数据检测了两幅统计图,下面给出了两幅不完整的统计图(如图)
请根据图中提供的信息,回答下列问题:
(1)a= ,并写出该扇形所对圆心角的度数为 ,请补全条形图.
(2)在这次抽样调查中,众数和中位数分别是多少?
(3)如果该县共有八年级学生2000人,请你估计“活动时间不少于7天”的学生人数大约有多少人?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据勾股定理的逆定理判断即可.
【详解】
∵三条线段长a、b、c满足a2=c2﹣b2,
∴a2+b2=c2,
即三角形是直角三角形,
故选C.
本题考查了勾股定理的逆定理、等腰三角形的判定、等边三角形的判定、等腰直角三角形等知识点,能熟记勾股定理的逆定理的内容是解此题的关键.
2、A
【解析】
∵线段CD是由线段AB平移得到的,
而点A(−1,4)的对应点为C(4,7),
∴由A平移到C点的横坐标增加5,纵坐标增加3,
则点B(−4,−1)的对应点D的坐标为(1,2).
故选A
3、D
【解析】
①由直线y=-x+m与y轴交于负半轴,可得m<0;y=nx+4n(n≠0)的图象从左往右逐渐上升,可得n>0,即可判断结论①正确;
②将x=-4代入y=nx+4n,求出y=0,即可判断结论②正确;
③由整理即可判断结论③正确;
④观察函数图象,可知当x>-1时,直线y=nx+4n在直线y=-x+m的上方,即nx+4n>-x+m,即可判断结论④正确.
【详解】
解:①∵直线y=-x+m与y轴交于负半轴,∴m<0;
∵y=nx+4n(n≠0)的图象从左往右逐渐上升,∴n>0,
故结论①正确;
②将x=-4代入y=nx+4n,得y=-4n+4n=0,
∴直线y=nx+4n一定经过点(-4,0).
故结论②正确;
③∵直线y=-x+m与y=nx+4n(n≠0)的交点的横坐标为-1,
∴当x=-1时,y=1+m=-1n+4n,
∴m=1n-1.
故结论③正确;
④∵当x>-1时,直线y=nx+4n在直线y=-x+m的上方,
∴当x>-1时,nx+4n>-x+m,
故结论④正确.
故选:D.
本题考查了一次函数图象上点的坐标特征、一次函数与一元一次不等式以及一次函数的图象,逐一分析四条结论的正误是解题的关键.
4、B
【解析】
根据二次根式的性质:被开方数大于等于0可以确定x的取值范围.
【详解】
函数中,
解得,
故选:B.
此题考查函数自变量的取值范围,正确列式是解题的关键.
5、D
【解析】
解:A. ,故本选项错误;B. 不能约分,故本选项错误;
C. ,故本选项错误;D. ,故本选项正确;
故选D
6、D
【解析】
二项方程的左边只有两项,其中一项含未知数x,这项的次数就是方程的次数;另一项是常数项;方程的右边是0,结合选项进行判断即可.
【详解】
解:A、x3=x即x3-x=0不是二项方程;
B、x3=0不是二项方程;
C、x4-x2=1,即x4-x2-1=0,不是二项方程;
D、81x4-16=0是二项方程;
故选:D.
本题考查了高次方程,掌握方程的项数是解题关键.
7、B
【解析】
根据平行四边形的性质可得AD//BC,AD=BC,根据平行线的性质可得∠BEA=∠EAD,根据等腰三角形的性质可得∠ABE=∠BEA,即可证明∠EAD=∠ABE,利用SAS可证明△ABC≌△EAD;可得①正确;由角平分线的定义可得∠BAE=∠EAD,即可证明∠ABE=∠BEA=∠BAE,可得AB=BE=AE,得出②正确;由S△AEC=S△DEC,S△ABE=S△CEF得出⑤正确;题中③和④不正确.综上即可得答案.
【详解】
∵四边形ABCD是平行四边形,
∴AD∥BC,AD=BC,
∴∠BEA=∠EAD,
∵AB=AE,
∴∠ABE=∠BEA,
∴∠EAD=∠ABE,
在△ABC和△EAD中,,
∴△ABC≌△EAD(SAS);故①正确;
∵AE平分∠BAD,
∴∠BAE=∠DAE,
∴∠ABE=∠BEA=∠BAE,
∴∠BAE=∠BEA,
∴AB=BE=AE,
∴△ABE是等边三角形;②正确;
∴∠ABE=∠EAD=60°,
∵△FCD与△ABC等底(AB=CD)等高(AB与CD间的距离相等),
∴S△FCD=S△ABC,
∵△AEC与△DEC同底等高,
∴S△AEC=S△DEC,
∴S△ABE=S△CEF;⑤正确.
若AD=BF,则BF=BC,题中未限定这一条件,
∴③不一定正确;
如图,过点E作EH⊥AB于H,过点A作AG⊥BC于G,
∵△ABE是等边三角形,
∴AG=EH,
若S△BEF=S△ABC,则BF=BC,题中未限定这一条件,
∴④不一定正确;
综上所述:正确的有①②⑤.
故选:B.
本题考查平行四边形的性质、等边三角形的判定与性质、全等三角形的判定与性质,熟练掌握等底、等高的三角形面积相等的性质是解题关键.
8、C
【解析】
根据m、n同正,同负,一正一负时利用一次函数的性质进行判断.
【详解】
解:①当mn>0时,m、n同号,y=mnx过一三象限;同正时,y=mx+n经过一、二、三象限,同负时,y=mx+n过二、三、四象限;
②当mn<0时,m、n异号,y=mnx过二四象限,m>0,n<0时,y=mx+n经过一、三、四象限;m<0,n>0时,y=mx+n过一、二、四象限;
故选:C.
本题考查了一次函数的性质,熟练掌握一次函数的性质是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、6
【解析】
∵直线y=kx+b与y=−5x+1平行,
∴k=−5,
∵直线y=kx+b过(2,1),
∴−10+b=1,
解得:b=11.
∴k+b=-5+11=6
10、a2bc.
【解析】
解:观察得知,这三个分母都是单项式,确定这几个分式的最简公分母时,相同字母取次数最高的,不同字母连同它的指数都取着,系数取最小公倍数,所以它们的最简公分母是a2bc.
故答案为:a2bc.
考点:分式的通分.
11、105°或45°
【解析】
根据菱形的性质求出∠ABD=∠DBC=75°利用等腰三角形的性质求出∠EBD=∠EDB=30°,再分点E在BD右侧时,点E在BD左侧时,分别求出答案即可.
【详解】
∵四边形ABCD是菱形,
∴AB=AD=BC=CD,∠C=∠ABC=∠ADC=150°,
∴∠ABD=∠DBC=75°,
∵EB=ED,∠DEB=120°,
∴∠EBD=∠EDB=30°,
当点E在DB左侧时,∠EBC=∠EBD+∠CBD=105°,
当点在DB右侧时,∠BC=∠CBD-∠BD=45°,
故答案为:105°或45°.
此题考查菱形的性质,等腰三角形的性质,正确理解题意分情况求解是解题的关键.
12、
【解析】
试题分析:两个负数比较大小,绝对值越大的数反而越小.-3=-;-2=-,根据1812可得:--.
考点:二次根式的大小比较
13、二、四
【解析】
根据反比例函数的性质:y=,k>0时,图象位于一三象限,k<0时,图象位于二、四象限,可得答案.
【详解】
解:反比例函数y=-的k=-6<0,
∴反比例函数y=-的图象位于第二、四象限,
故答案为二、四.
本题考查反比例函数的性质,解题关键是利用y=,k>0时,图象位于一三象限,k<0时,图象位于二、四象限判断.
三、解答题(本大题共5个小题,共48分)
14、(1)85,1;(2)八⑴班的成绩较好;(3)八⑵班实力更强些,理由见解析
【解析】
(1)根据中位数和众数的定义填空.
(2)根据平均数和中位数比较两个班的成绩.
(3)比较每班前两名选手的成绩即可.
【详解】
解:(1)由条形图数据可知:中位数填85,众数填1.
故答案为:85,1;
(2)因两班平均数相同,
但八(1)班的中位数高,
所以八(1)班的成绩较好.
(3)如果每班各选2名选手参加决赛,我认为八(2)班实力更强些.因为,虽然两班的平均数相同,但在前两名的高分区中八(2)班的成绩为1分和1分,而八(1)班的成绩为1分和85分.
本题考查了运用平均数,中位数与众数解决实际问题的能力.平均数是指在一组数据中所有数据之和再除以数据的个数.
15、(1)应安排4天进行精加工,8天进行粗加工
(2)①=
②安排1天进行精加工,9天进行粗加工,可以获得最多利润为元
【解析】
解:(1)设应安排天进行精加工,天进行粗加工,
根据题意得
解得
答:应安排4天进行精加工,8天进行粗加工.
(2)①精加工吨,则粗加工()吨,根据题意得
=
②要求在不超过10天的时间内将所有蔬菜加工完,
解得
又在一次函数中,,
随的增大而增大,
当时,
精加工天数为=1,
粗加工天数为
安排1天进行精加工,9天进行粗加工,可以获得最多利润为元.
16、2.5
【解析】
一次函数的解析式为y=kx+b,图像经过(﹣4,15),(6,﹣5)两点,把这两点代入函数即可求出k、b的值,再把P(m,2)代入函数即可求出m值.
【详解】
解:设一次函数解析式为y=kx+b,
把(﹣4,15),(6,﹣5)代入得,
解得:,
所以一次函数解析式为y=﹣2x+7,
把P(m,2)代入y=﹣2x+7,可得:﹣2m+7=2,
解得:m=2.5.
本题主要考查了待定系数法求一次函数解析式,牢牢掌握该法是解答本题的关键.
17、(1)详见解析;(2)当点P在AC中点时,四边形AECF是矩形,理由详见解析.
【解析】
(1)首先证明∠E=∠2根据等角对等边可得EP=PC,同理可得PF=PC,进而得到EP=PF;
(2)当点P在AC中点时,四边形AECF是矩形,首先根据对角线互相平分的四边形是平行四边形可得四边形AECF是平行四边形,再证明∠ECF=90°即可.
【详解】
(1)∵CE平分∠BCA,
∴∠1=∠2,
∵EF∥BC,
∴∠E=∠1,
∴∠E=∠2,
∴EP=PC,
同理PF=PC,
∴EP=PF;
(2)结论:当点P在AC中点时,四边形AECF是矩形,
理由:∵PA=PC,PE=PF,
∴四边形AECF是平行四边形,
∵∠1=∠2,∠3=∠4,∠1+∠2+∠3+∠4=180°,
∴∠2+∠3=90°,
即∠ECF=90°,
∴平行四边形AECF是矩形.
本题考查了等腰三角形的判定与性质,平行四边形的判定,矩形的判定,熟练掌握相关知识是解题的关键.
18、(1);(2)三点共线时;(3)2
【解析】
试题分析:(1)由于△ABC和△CDE都是直角三角形,故可由勾股定理表示;
(2)若点C不在AE的连线上,根据三角形中任意两边之和大于第三边知,AC+CE>AE,故当A、C、E三点共线时,AC+CE的值最小;
(3)由(1)(2)的结果可作BD=1,过点B作AB⊥BD,过点D作ED⊥BD,使AB=2,ED=3,连接AE交BD于点C,则AE的长即为代数式的最小值,然后构造矩形AFDB,Rt△AFE,利用矩形的直角三角形的性质可求得AE的值.
(1);
(2)当三点共线时,的值最小.
(3)如下图所示,作,过点作,过点作,使,.连结交于点,的长即为代数式的最小值.
过点作交的延长线于点,得矩形,
则,1.
所以,即的最小值为2.
考点:本题考查的是轴对称-最短路线问题
点评:本题利用了数形结合的思想,求形如的式子的最小值,可通过构造直角三角形,利用勾股定理求解.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、2
【解析】
依据四边形ABCD是矩形,E是CD的中点,可得AB=CD=4,DE=2,由折叠可得,AE=AB=4,再根据勾股定理,即可得到AD的长.
【详解】
∵四边形ABCD是矩形,E是CD的中点,
∴AB=CD=4,DE=2,
由折叠可得,AE=AB=4,
又∵∠D=90°,
∴Rt△ADE中,
故答案为:2
本题主要考查了折叠问题以及勾股定理的运用,解题时注意:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,对应边和对应角相等.
20、﹣1
【解析】
首先证明△ADE≌△GCE,推出EG=AE=AD=CG=1,再求出FG即可解决问题.
【详解】
∵四边形ABCD是平行四边形,
∴AD∥BG,AD=BC,
∴∠DAE=∠G=30°,
∵DE=EC,∠AED=∠GEC,
∴△ADE≌△GCE,
∴AE=EG=AD=CG=1,
在Rt△BFG中,∵FG=BG•cs30°=,
∴EF=FG-EG=-1,
故答案为-1.
本题考查平行四边形的性质、全等三角形的判定和性质、锐角三角函数等知识,解题的关键是熟练掌握基本知识.
21、7,1
【解析】
由题意知,,
解得x=7,
这组数据中7,1各出现两次,出现次数最多,
故众数是7,1.
22、1
【解析】
利用同底数幂相乘,底数不变指数相加计算,再根据指数相同列式求解即可.
【详解】
解: a4•ay=a4+y=a19,∴4+y=19,解得y=1
故答案为:1.
本题主要考查同底数幂相乘,底数不变指数相加的性质,熟练掌握性质是解题的关键.
23、16或2
【解析】
等腰三角形一般分情况讨论:(1)当DB'=DC=16;(2)当B'D=B'C时,作辅助线,构建平行四边形AGHD和直角三角形EGB',计算EG和B'G的长,根据勾股定理可得B'D的长;
【详解】
∵四边形ABCD是矩形,
∴DC=AB=16,AD=BC=1.
分两种情况讨论:
(1)如图2,当DB'=DC=16时,即△CDB'是以DB'为腰的等腰三角形
(2)如图3,当B'D=B'C时,过点B'作GH∥AD,分别交AB与CD于点G、H.
∵四边形ABCD是矩形,
∴AB∥CD,∠A=90°
又GH∥AD,
∴四边形AGHD是平行四边形,又∠A=90°,
∴四边形AGHD是矩形,
∴AG=DH,∠GHD=90°,即B'H⊥CD,
又B'D=B'C,
∴DH=HC=,AG=DH=8,
∵AE=3,
∴BE=EB'=AB-AE=16-3=13,
EG=AG-AE=8-3=5,
在Rt△EGB'中,由勾股定理得:
GB′=,
∴B'H=GH×GB'=1-12=6,
在Rt△B'HD中,由勾股定理得:B′D=
综上,DB'的长为16或2.
故答案为: 16或2
本题是四边形的综合题,考查了矩形的性质,勾股定理,等腰三角形一般需要分类讨论 .
二、解答题(本大题共3个小题,共30分)
24、 (1) ;(2)6.
【解析】
(1)利用待定系数法,把点与代入解析式列出方程组即可求得解析式;
(2)把x=3代入(1)中得到的解析式即可求得y值.
【详解】
解:(1)∵一次函数的图象经过点与,
∴,
解得:,
∴一次函数的解析式为.
(2)中,
当时,.
本题考查了一次函数,运用待定系数法求一次函数的解析式是必备技能,要熟练掌握.
25、(1)40,15,1°;(2)35,1;(3)50双.
【解析】
(1)根据条形统计图求出总人数即可;由扇形统计图以及单位1,求出m的值即可;用“38号”的百分比乘以10°,即可得圆心角的度数;
(2)找出出现次数最多的即为众数,将数据按照从小到大顺序排列,求出中位数即可;
(3)根据题意列出算式,计算即可得到结果.
【详解】
(Ⅰ)本次接受随机抽样调查的学生人数为6+12+10+8+4=40,图①中m的值为100-30-25-20-10=15;
10°×10%=1°;
故答案为:40,15,1°.
(2)∵在这组样本数据中,35出现了12次,出现次数最多,
∴这组样本数据的众数为35;
∵将这组样本数据从小到大得顺序排列,其中处于中间的两个数都为1,
∴中位数为(1+1)÷2=1;
故答案为:35,1.
(3)∵在40名学生中,鞋号为1的学生人数比例为25%,
∴由样本数据,估计学校各年级中学生鞋号为1的人数比例约为25%,
则计划购买200双运动鞋,1号的双数为:200×25%=50(双).
此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.
26、(1)10,36°.补全条形图见解析;(2)5天,6天;(3)1.
【解析】
(1)根据各部分所占的百分比等于1列式计算即可求出a,用360°乘以所占的百分比求出所对的圆心角的度数,求出8天的人数,补全条形统计图即可.
(2)众数是在一组数据中,出现次数最多的数据.中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).
(3)用总人数乘以“活动时间不少于7天”的百分比,计算即可得解.
【详解】
(1)a=1﹣(40%+20%+25%+5%)=1﹣90%=10%.
用360°乘以所占的百分比求出所对的圆心角的度数:360°×10%=36°.
240÷40=600,
8天的人数,600×10%=60,
故答案为10,36°.
补全条形图如下:
(2)∵参加社会实践活动5天的最多,∴众数是5天.
∵600人中,按照参加社会实践活动的天数从少到多排列,第300人和301人都是6天,
∴中位数是6天.
(3)∵2000×(25%+10%+5%)=2000×40%=1.
∴估计“活动时间不少于7天”的学生人数大约有1人.
题号
一
二
三
四
五
总分
得分
批阅人
平均数
中位数
众数
八(1)班
85
85
八(2)班
85
80
销售方式
粗加工后销售
精加工后销售
每吨获利(元)
1000
2000
2024年广东省高州市九校联考九年级数学第一学期开学达标检测模拟试题【含答案】: 这是一份2024年广东省高州市九校联考九年级数学第一学期开学达标检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年广东省湛江市霞山职业高级中学数学九年级第一学期开学达标检测模拟试题【含答案】: 这是一份2024-2025学年广东省湛江市霞山职业高级中学数学九年级第一学期开学达标检测模拟试题【含答案】,共24页。试卷主要包含了选择题,第四象限,解答题等内容,欢迎下载使用。
广东省湛江地区六校联考2023-2024学年数学九年级第一学期期末考试模拟试题含答案: 这是一份广东省湛江地区六校联考2023-2024学年数学九年级第一学期期末考试模拟试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,如图,过反比例函数,三角形的内心是等内容,欢迎下载使用。