![2025届广西北海市银海区数学九上开学考试试题【含答案】第1页](http://www.enxinlong.com/img-preview/2/3/16225208/0-1728277779909/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2025届广西北海市银海区数学九上开学考试试题【含答案】第2页](http://www.enxinlong.com/img-preview/2/3/16225208/0-1728277779976/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2025届广西北海市银海区数学九上开学考试试题【含答案】第3页](http://www.enxinlong.com/img-preview/2/3/16225208/0-1728277780011/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2025届广西北海市银海区数学九上开学考试试题【含答案】
展开
这是一份2025届广西北海市银海区数学九上开学考试试题【含答案】,共24页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)若分式(x≠0,y≠0)中x,y同时扩大3倍,则分式的值( )
A.扩大3倍B.缩小3倍C.改变D.不改变
2、(4分)不列调查方式中,最合适的是( )
A.调查某品牌电脑的使用寿命,采用普查的方式
B.调查游客对某国家5A级景区的满意程度情况,采用抽样调查的方式
C.调查“神舟七号”飞船的零部件质量情况,采用抽样调查的方式
D.调查苏州地区初中学生的睡眠时间,采用普查的方式
3、(4分)如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是( )
A.乙前4秒行驶的路程为48米
B.在0到8秒内甲的速度每秒增加4米/秒
C.两车到第3秒时行驶的路程相等
D.在4至8秒内甲的速度都大于乙的速度
4、(4分)如图,在矩形ABCD中,AB=5cm,BC=4cm动点P从B点出发,沿B-C-D-A方向运动至A处停止.设点P运动的路程为x,△ABP的面积为y,x,y关系(),
A.B.C.D.
5、(4分)某专卖店专营某品牌的衬衫,店主对上一周中不同尺码的衬衫销售情况统计如表:
该店主决定本周进货时,增加了一些 尺码的衬衫,影响该店主决策的统计量是( )
A.众数B.方差C.平均数D.中位数
6、(4分)下列图形中,第(1)个图形由4条线段组成,第(2)个图形由10条线段组成,第(3)个图形由18条线段组成,…………第(6)个图形由( )条线段组成.
A.24B.34C.44D.54
7、(4分)已知一次函数y=kx+b(k≠0)图象经过第二、三、四象限,则一次函数y=﹣bx+kb图象可能是( )
A.B.C.D.
8、(4分) 如图,△ABC是等边三角形,P是三角形内一点,PD∥AB,PE∥BC,PF∥AC,若△ABC的周长为18,则PD+PE+PF=( )
A.18B.9
C.6D.条件不够,不能确定
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知x+y=6,xy=3,则x2y+xy2的值为_____.
10、(4分)已知△ABC的三个顶点为A(-1,1),B(-1,3),C(-3,-3),将△ABC向右平移m(m>0)个单位后,△ABC某一边的中点恰好落在反比例函数y= 的图象上,则m的值为________.
11、(4分)函数y=(k+1)x﹣7中,当k满足_____时,它是一次函数.
12、(4分)如图,矩形ABCD的两条对角线相交于点O,∠AOB=60°,AB=2,则AC= _________
13、(4分)为了解某小区居民的用水情况,随机抽查了20户家庭的月用水量,结果如下表:
则这组数据的中位数是_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图1,点是正方形的中心,点是边上一动点,在上截取,连结,.初步探究:在点的运动过程中:
(1)猜想线段与的关系,并说明理由.
深入探究:
(2)如图2,连结,过点作的垂线交于点.交的延长线于点.延长交的延长线于点.
①直接写出的度数.
②若,请探究的值是否为定值,若是,请求出其值;反之,请说明理由
15、(8分)如图,△ABC的中线BD,CE交于点O,F,G分别是BO,CO的中点.
(1)填空:四边形DEFG是 四边形.
(2)若四边形DEFG是矩形,求证:AB=AC.
(3)若四边形DEFG是边长为2的正方形,试求△ABC的周长.
16、(8分)我市某校为了创建书香校园,去年购进一批图书.经了解,科普书的单价比文学书的单价多4元,用12000元购进的科普书与用8000元购进的文学书本数相等.
(1)文学书和科普书的单价各多少钱?
(2)今年文学书和科普书的单价和去年相比保持不变,该校打算用10000元再购进一批文学书和科普书,问购进文学书550本后至多还能购进多少本科普书?
17、(10分)在直角坐标系中,直线l1经过(2,3)和(-1,-3):直线l2经过原点O,且与直线l1交于点P(-2,a).
(1)求a的值;
(2)(-2,a)可看成怎样的二元一次方程组的解?
18、(10分)两个含有二次根式的代数式相乘,积不含有二次根式,称这两个代数式互为有理化因式,例如: 与、与等都是互为有理化因式,在进行二次根式计算时,利用有理化因式,可以化去分母中的根号.例如: ;;…….
请仿照上述过程,化去下列各式分母中的根号.
(1)
(2) (n为正整数).
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,将平行四边形ABCD沿EF对折,使点A落在点C处,若∠A=60°,AD=6,AB=12,则AE的长为_______.
20、(4分)某大学自主招生考试只考数学和物理,计算综合得分时,按数学占60%,物理点40%计算.已知孔明数学得分为95分,综合得分为93分,那么孔明物理得分是__________分.
21、(4分)如图,在平行四边形ABCD中,对角线AC与BD相交于点O,点E为BC边的中点,连接OE,若AB=4,则线段OE的长为_____.
22、(4分)抛物线,当时,的取值范围是__________.
23、(4分)已知反比例函数的图象经过点(1,-2),则k=_________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,矩形的两边,的长分别为3,8,且点,均在轴的负半轴上,是的中点,反比例函数的图象经过点,与交于点.
(1)若点坐标为,求的值;
(2)若,且点的横坐标为,则点的横坐标为______(用含的代数式表示),点的纵坐标为______,反比例函数的表达式为______.
25、(10分)为了解某校八年级150名女生的身高情况,从中随机抽取10名女生,测得身高并绘制如下条形统计图.
(1)求出这10名女生的身高的中位数和众数;
(2)依据样本估计该校八年级全体女生的平均身高;
(3)请你根据这个样本,在该校八年级中,设计一个挑选50名女生组成方队的方案(要求选中女生的身高尽可能接近).
26、(12分)某校举行了“文明在我身边”摄影比赛,已知每幅参赛作品成绩记为x分(60≤x≤100).校方从600幅参赛作品中随机抽取了部分步赛作品,统计了它们的成绩,并绘制了如下不完整的统计图表.
“文明在我身边”摄影比赛成绩统计表
根据以上信息解答下列问题:
(1)统计表中a= ,b= ,c= .
(2)补全数分布直方图;
(3)若80分以上的作品将被组织展评,试估计全校被展评作品数量是多少?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
可将式中的x,y都用3x,3y来表示,再将化简后的式子与原式对比,即可得出答案.
【详解】
将原式中的x,y分别用3x,3y表示
.
故选D.
考查的是对分式的性质的理解,分式中元素扩大或缩小N倍,只要将原数乘以或除以N,再代入原式求解,是此类题目的常见解法.
2、B
【解析】
本题考查的是普查和抽样调查的选择.调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.
【详解】
A. 调查某品牌电脑的使用寿命,考查会给被调查对象带来损伤破坏,应选择抽样调查的方式;
B. 调查游客对某国家5A级景区的满意程度情况,采用抽样调查的方式,节省人力、物力、财力,是合适的;
C. 要保证“神舟七号”飞船成功发射,精确度要求高、事关重大,往往选用普查;
D. 调查苏州地区初中学生的睡眠时间,费大量的人力物力是得不尝失的,采取抽样调查即可;
故选B
此题考查全面调查与抽样调查,解题关键在于对与必要性结合起来
3、C
【解析】
A.根据图象可得,乙前4秒行驶的路程为12×4=48米,正确;
B.根据图象得:在0到8秒内甲的速度每秒增加4米秒/,正确;
C.根据图象可得两车到第3秒时行驶的路程不相等,故本选项错误;
D.在4至8秒内甲的速度都大于乙的速度,正确;
故选C.
4、B
【解析】
易得当点P在BC上由B到C运动时△ABP的面积逐渐增大,由C到D运动5cm ,△ABP的面积不变,由D到A运动4cm,△ABP的面积逐渐减小直至为0,由此可以作出判断.
【详解】
函数图象分三段:①当点P在BC上由B到C运动4cm,△ABP的面积逐渐增大;
②当点P在CD上由C到D运动5cm,△ABP的面积不变;
③当点P在DA上由D到A运动4cm,△ABP的面积逐渐减小,直至为0.
由此可知,选项B正确.
故选B.
本题考查了动点问题的函数图象,解决本题应首先看清横轴和纵轴表示的量.
5、A
【解析】
平均数、中位数、众数是描述一组数据集中程度的统计量;方差、标准差是描述一组数据离散程度的统计量.销量大的尺码就是这组数据的众数.
【详解】
解:由于众数是数据中出现次数最多的数,
故影响该店主决策的统计量是众数.
故选:A.
本题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.掌握以上知识是解题的关键.
6、D
【解析】
由题意可知:第一个图形有4条线段组成,第二个图形有4+6=10条线段组成,第三个图形有4+6+8=18条线段组成,第四个图形有4+6+8+10=28条线段组成…由此得出,第6个图形4+6+8+10+12+14=54条线段组成,由此得出答案即可.
【详解】
解:∵第一个图形有4条线段组成,
第二个图形有4+6=10条线段组成,
第三个图形有4+6+8=18条线段组成,
第四个图形有4+6+8+10=28条线段组成,
…
由此得出,
∴第6个图形4+6+8+10+12+14=54条线段组成,
故选:D.
此题考查图形的变化规律,找出图形之间的联系,得出数字的运算规律,利用规律解决问题是解答此题的关键.
7、A
【解析】
首先根据一次函数的性质确定k,b的符号,再确定一次函数y=﹣bx+kb系数的符号,判断出函数图象所经过的象限.
【详解】
∵一次函数y=kx+b经过第二,三,四象限,
∴k0,
所以一次函数y=−bx+kb的图象经过一、二、三象限,
故选:A.
本题考查一次函数图象与系数的关系,解决此类题目的关键是确定k、b的正负.
8、C
【解析】
因为要求PD+PE+PF的值,而PD、PE、PF并不在同一直线上,构造平行四边形,把三条线段转化到一条直线上,求出等于AB,根据三角形的周长求出AB即可.
【详解】
延长EP交AB于点G,延长DP交AC与点H.
∵PD∥AB,PE∥BC,PF∥AC,∴四边形AFPH、四边形PDBG均为平行四边形,∴PD=BG,PH=AF.
又∵△ABC为等边三角形,∴△FGP和△HPE也是等边三角形,∴PE=PH=AF,PF=GF,∴PE+PD+PF=AF+BG+FG=AB1.
故选C.
本题考查了平行四边形的判定与性质,熟练掌握性质定理和判定定理是解题的关键.平行四边形的五种判定方法与平行四边形的性质相呼应,每种方法都对应着一种性质,在应用时应注意它们的区别与联系.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
先提取公因式xy,整理后把已知条件直接代入计算即可.
【详解】
∵x+y=6,xy=3,
∴x2y+xy2=xy(x+y)=3×6=1.
故答案为1.
本题考查了提公因式法分解因式,提取公因式后整理成已知条件的形式是解本题的关键.
10、
【解析】
根据中点的坐标和平移的规律,利用点在函数图像上,可解出m的值.
【详解】
△ABC的三个顶点为A(-1,1),B(-1,3),C(-3,3)
∴AB的中点(-1,2),BC的中点(-2,0),AC的中点(-2,-1)
∴AB边的中点平移后为(-1+m,2),AC中点平移后为(-2+m,-1)
∵△ABC某一边中点落在反比例函数上
∴2(-1+m)=3或-1×(-2+m)=3
m=2.5或-1(舍去).
故答案是:.
考查了反比例函数图象上点的坐标特点,关键是掌握反比例函数图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.
11、k≠﹣1.
【解析】
根据一次函数的定义即可解答.
【详解】
根据一次函数定义得,k+1≠0,
解得k≠﹣1.
故答案为:k≠﹣1.
本题考查了一次函数的定义,熟知形如y=kx+b(k≠0)的函数是一次函数是解决问题的关键.
12、1
【解析】
解:∵在矩形ABCD中,AO=AC,BO=BD,AC=BD,∴AO=BO.又∵∠AOB=60°,∴△AOB为等边三角形,∴AC=2AB=1.
13、5吨
【解析】
找中位数要把数据从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.
【详解】
表中数据为从小到大排列,吨处在第10位、第11位,为中位数,
故这组数据的中位数是吨.
故答案为:吨.
考查了中位数,将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.
三、解答题(本大题共5个小题,共48分)
14、(1)EO⊥FO,EO=FO;理由见解析;(2)①;②=2
【解析】
(1)由正方形的性质可得BO=CO,∠ABO=∠ACB=45°,∠BOC=90°,由“SAS”可证△BEO≌△CFO,可得OE=OF,∠BOE=∠COF,可证EO⊥FO;
(2)①由等腰直角三角形的性质可得∠EOG的度数;
②由∠EOF=∠ABF=90°,可得点E,点O,点F,点B四点共圆,可得∠EOB=∠BFE,通过证明△BOH∽△BIO,可得,即可得结论.
【详解】
解:(1)OE=OF,OE⊥OF,连接AC,BD,
∵点O是正方形ABCD的中心
∴点O是AC,BD的交点
∴BO=CO,∠ABO=∠ACB=45°,∠BOC=90°
∵CF=BE,∠ABO=∠ACB,BO=CO,
∴△BEO≌△CFO(SAS)
∴OE=OF,∠BOE=∠COF
∵∠COF+∠BOF=90°,
∴∠BOE+∠BOF=90°
∴∠EOF=90°,
∴EO⊥FO.
(2)
①∵OE=OF,OE⊥OF,
∴△EOF是等腰直角三角形,OG⊥EF
∴∠EOG=45°
②BH•BI的值是定值,
理由如下:
如图,连接DB,
∵AB=BC=CD=2
∴BD=2,
∴BO=
∵∠AOB=∠COB=45°,∠HBE=∠GBI=90°
∴∠HBO=∠IBO=135°
∵∠EOF=∠ABF=90°
∴点E,点O,点F,点B四点共圆
∴∠EOB=∠BFE,
∵EF⊥OI,AB⊥HF
∴∠BEF+∠BFE=90°,∠BEF+∠EIO=90°
∴∠BFE=∠BIO,
∴∠BOE=∠BIO,且∠HBO=∠IBO
∴△BOH∽△BIO
∴
∴BH•BI=BO2=2
本题相似综合题,考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,证明△BOH∽△BIO是本题的关键.
15、(1)平行;(2)见解析;(3).
【解析】
(1)根据三角形中位线定理得出DE∥BC,DE=BC,FG∥BC,FG=BC,那么DE∥FG,DE=FG,利用有一组对边平行且相等的四边形是平行四边形即可得出四边形DEFG是平行四边形;
(2)先由矩形的性质得出OD=OE=OF=OG.再根据重心的性质得到OB=2OD,OC=2OE,等量代换得出OB=OC.利用SAS证明△BOE≌△COD,得出BE=CD,然后根据中点的定义即可证明AB=AC;
(3)连接AO并延长交BC于点M,先由三角形中线的性质得出M为BC的中点,由(2)得出AB=AC,根据等腰三角形三线合一的性质得出AM⊥BC,再由三角形中位线定理及三角形重心的性质得出BC=2FG=1,AM=AO=6,由勾股定理求出AB=2,进而得到△ABC的周长.
【详解】
(1)解:∵△ABC的中线BD,CE交于点O,
∴DE∥BC,DE=BC,
∵F,G分别是BO,CO的中点,
∴FG∥BC,FG=BC,
∴DE∥FG,DE=FG,
∴四边形DEFG是平行四边形.
故答案为平行;
(2)证明:∵四边形DEFG是矩形,
∴OD=OE=OF=OG.
∵△ABC的中线BD,CE交于点O,
∴点O是△ABC的重心,
∴OB=2OD,OC=2OE,
∴OB=OC.
在△BOE与△COD中,
,
∴△BOE≌△COD(SAS),
∴BE=CD,
∵E、D分别是AB、AC中点,
∴AB=AC;
(3)解:连接AO并延长交BC于点M.
∵三角形的三条中线相交于同一点,△ABC的中线BD、CE交于点O,
∴M为BC的中点,
∵四边形DEFG是正方形,
由(2)可知,AB=AC,
∴AM⊥BC.
∵正方形DEFG边长为2,F,G分别是BO,CO的中点,
∴BC=2FG=1,BM=MC=BC=2,AO=2EF=1,
∴AM=AO=6,
∴AB===2,
∴△ABC的周长=AB+AC+BC=1+1.
本题考查了平行四边形的判定与性质,三角形中位线性质定理,矩形的性质,三角形重心的性质,等腰三角形的性质,全等三角形的判定与性质,其中三角形的中位线性质定理为证明线段相等和平行提供了依据.
16、(1)文学书和科普书的单价分别是8元和1元.(2)至多还能购进466本科普书.
【解析】
(1)设文学书的单价为每本x元,则科普书的单价为每本(x+4)元,依题意得:
,
解得:x=8,
经检验x=8是方程的解,并且符合题意.
∴x+4=1.
∴购进的文学书和科普书的单价分别是8元和1元.
②设购进文学书550本后至多还能购进y本科普书.依题意得
550×8+1y≤10000,
解得,
∵y为整数,
∴y的最大值为466
∴至多还能购进466本科普书.
17、(1)a=-5;(2)可以看作二元一次方程组的解.
【解析】
(1)首先利用待定系数法求得直线的解析式,然后直接把P点坐标代入可求出a的值;
(2)利用待定系数法确定l2得解析式,由于P(-2,a)是l1与l2的交点,所以点(-2,-5)可以看作是解二元一次方程组所得.
【详解】
.解:(1)设直线 的解析式为y=kx+b,将(2,3),(-1,-3)代入,
,解得,所以y=2x-1.
将x=-2代入,得到a=-5;
(2)由(1)知点(-2,-5)是直线与直线 交点,则:y=2.5x;
因此(-2,a)可以看作二元一次方程组的解.
故答案为:(1)a=-5;(2)可以看作二元一次方程组的解.
本题综合考查待定系数法求一次函数解析式、一次函数图象上点的坐标特征以及一次函数与二元一次方程组.
18、(1);(2).
【解析】
(1)与互为有理化因式,根据题意给出的方法,即可求出答案.
(2)与互为有理化因式,根据题意给出的方法即可求出答案.
【详解】
解:(1)
=
=
(2)
=
=
本题考查了分母有理化,能找出分母的有理化因式是解此题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、8.4.
【解析】
过点C作CG⊥AB的延长线于点G,设AE=x,由于▱ABCD沿EF对折可得出AE=CE=x, 再求出∠BCG=30°,BG=BC=3, 由勾股定理得到,则EG=EB+BG=12-x+3=15-x,在△CEG中,利用勾股定理列出方程即可求出x的值.
【详解】
解:过点C作CG⊥AB的延长线于点G,
∵▱ABCD沿EF对折,
∴AE=CE
设AE=x,则CE=x,EB=12-x,
∵AD=6,∠A=60°,
∴BC=6, ∠CBG=60°,
∴∠BCG=30°,
∴BG=BC=3,
在△BCG中,由勾股定理可得:
∴EG=EB+BG=12-x+3=15-x
在△CEG中,由勾股定理可得:
解得:
故答案为:8.4
本题考查平行四边形的综合问题,解题的关键是证明△D′CF≌△ECB,然后利用勾股定理列出方程,本题属于中等题型.
20、90
【解析】
试题分析:设物理得x分,则95×60%+40%x=93,截得:x=90.
考点:加权平均数的运用
21、2
【解析】
证出OE是△ABC的中位线,由三角形中位线定理即可求得答案.
【详解】
解:∵四边形ABCD是平行四边形,
∴OA=OC;
又∵点E是BC的中点,
∴OE是△ABC的中位线,
∴OE=AB=2,
故答案为:2.
此题考查了平行四边形的性质以及三角形中位线的定理;熟练掌握平行四边形的性质和三角形中位线定理是解题的关键.
22、
【解析】
首先根据二次函数的的二次项系数大于零,可得抛物线开口向下,再计算抛物线的对称轴 ,判断范围内函数的增减性,进而计算y的范围.
【详解】
解:根据二次函数的解析式可得
由a=2>0,可得抛物线的开口向上
对称轴为:
所以可得在范围内,二次函数在 ,y随x的增大而减小,在 上y随x的增大而增大.
所以当 取得最小值,最小值为:
当取得最大值,最大值为:
所以
故答案为
本题主要考查抛物线的性质,关键在于确定抛物线的开口方向,对称轴的位置,进而计算y的范围.
23、-1
【解析】
由k=xy即可求得k值.
【详解】
解: 将(1,-1)代入中,k=xy=1×(-1)=-1
故答案为:-1.
本题考查求反比例函数的系数.
二、解答题(本大题共3个小题,共30分)
24、(1);(2) ,1,.
【解析】
(1)根据矩形的性质,可得A,E的坐标,根据待定系数法即可求解;
(2)根据勾股定理,可得AE的长,根据线段的和差,可得FB,可得F的占比,根据待定系数法,可得m的值,即可求解.
【详解】
解:(1)∵四边形是矩形,
∴,即轴,
,,
∵是的中点,
∴,
∵点坐标为,
∴,∴,
∴点的坐标为.
把点代入反比例函数得,,∴.
(2)如图,连接AE,∵点E的横坐标为a,BC=3
∴点F的横坐标为a-3,
又∵在Rt△ADE中,AE=
∴AF=AE+2=7,BF=8-7=1
∴点F的纵坐标为1,
∴E(a,4),F(a-3,1)
∵反比例函数经过E,F
∴4a=1(a-3)
解得a=-1,
∴E(-1,4)
∴k=-4,
故反比例函数的解析式为
此题主要考查反比例函数与几何综合,解题的关键是熟知勾股定理、反比例函数的图像与性质.
25、 (1)众数162,中位数161.5;(2)161cm;(3).
【解析】
(1)根据统计图中的数据可以求得这组数据的中位数和众数;
(2)根据加权平均数的求法可以解答本题;
(3)根据题意可以设计出合理的方案,注意本题答案不唯一.
【详解】
解:(1)这10名女生的身高为:154、158、158、161、161、162、162、162、165、167,
∴这10名女生的身高的中位数是:cm,众数是162cm,
即这10名女生的身高的中位数和众数分别是161.5cm、162cm;
(2)平均身高.
(3)可以先将八年级身高是162cm的所有女生挑选出来,若不够,再挑选身高与162cm最接近的,直到挑选到50人为止.
本题考查条形统计图、用样本估计总体、加权平均数、中位数、众数,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
26、(1)12,3,0.34;(2)见解析;(3)180幅
【解析】
(1)由频数和频率求得总数,根据频率频数总数求得、、的值;
(2)根据(1)中所求数据补全图形即可得;
(3)总数乘以80分以上的频率即可.
【详解】
解:(1),
,
,
故答案为12,3,0.34;
(2)补全数分布直方图
(3)全校被展评作品数量(幅,
答:全校被展评作品数量180幅.
本题考查读频数(率分布直方图的能力和利用统计图获取信息的能力,以及条形统计图;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.
题号
一
二
三
四
五
总分
得分
尺码
39
40
41
42
43
平均每天销售数量(件)
10
12
20
12
12
月用水量/吨
4
5
6
8
户数
5
7
5
3
分数段
频数
频率
60≤x
相关试卷
这是一份2025届广西北海市银海区数学九年级第一学期开学达标检测模拟试题【含答案】,共20页。试卷主要包含了选择题,四象限,则k的取值可能是,解答题等内容,欢迎下载使用。
这是一份2024年广西壮族自治区北海市数学九上开学达标检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份广西北海市银海区2023-2024学年九年级数学第一学期期末检测模拟试题含答案,共9页。试卷主要包含了考生要认真填写考场号和座位序号,下列事件中,是随机事件的是等内容,欢迎下载使用。
![文档详情页底部广告位](http://www.enxinlong.com/img/images/257d7bc79dd514896def3dc0b2e3f598.jpg)