![2025届广西南宁中学春季学期九上数学开学联考模拟试题【含答案】第1页](http://www.enxinlong.com/img-preview/2/3/16225244/0-1728278270714/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2025届广西南宁中学春季学期九上数学开学联考模拟试题【含答案】第2页](http://www.enxinlong.com/img-preview/2/3/16225244/0-1728278270816/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2025届广西南宁中学春季学期九上数学开学联考模拟试题【含答案】第3页](http://www.enxinlong.com/img-preview/2/3/16225244/0-1728278270840/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2025届广西南宁中学春季学期九上数学开学联考模拟试题【含答案】
展开
这是一份2025届广西南宁中学春季学期九上数学开学联考模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为扩大销售,尽快减少库存,商场决定釆取降价措施,调查发现,每件衬衫,每降价1元,平均每天可多销售2件,若商场每天要盈利1200元,每件衬衫应降价( )
A.5元 B.10元 C.20元 D.10元或20元
2、(4分)如图,E是边长为4的正方形ABCD的对角线BD上一点,且BE=BC,P为CE上任意一点,PQ⊥BC于点Q,PR⊥BR于点R,则PQ+PR的值是( )
A.2B.2C.2D.
3、(4分)无论取什么数,总有意义的分式是( )
A.B.C.D.
4、(4分)如图,已知矩形中,与相交于,平分交于,,则的度数为( )
A.B.C.D.
5、(4分)若关于的不等式组的整数解共5个,则的取值范围是( )
A.B.C.D.
6、(4分)如图,有一块直角三角形纸片,两直角边AB=6,BC=8,将△ABC折叠,使AB落在斜边AC上,折痕为AD,则BD的长为( )
A.6B.5C.4D.3
7、(4分)如图,点A,B,E在同一条直线上,正方形ABCD,BEFG的面积分别为m,n,H为线段DF的中点,则BH的长为( )
A.B.C.D.
8、(4分)同学在“爱心捐助”活动中,捐款数额为:8、10、10、4、6(单位:元),这组数据的中位数是( )
A.10B.8C.9D.6
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)一组数据5,7,2,5,6的中位数是_____.
10、(4分)在中,若,则_____________
11、(4分)如图,在平面直角坐标系中,点A、B的坐标分别为(1,3)、(n,3).若直线y = 2x与线段AB有公共点,则n的取值范围是____________.
12、(4分)如图,已知矩形ABCD,AB在y轴上,AB=2,BC=3,点A的坐标为(0,1),在AD边上有一点E(2,1),过点E的直线与BC交于点F.若EF平分矩形ABCD的面积,则直线EF的解析式为________.
13、(4分)甲、乙两地相距200千米,汽车从甲地匀速行驶到乙地,汽车行驶时间关于行驶速度的函数表达式是_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)已知关于x的一元二次方程.
(1)当m为何值时,方程有两个不相等的实数根;
(2)若边长为5的菱形的两条对角线的长分别为方程两根的2倍,求m的值.
15、(8分)先化简,再求值:﹣2(x﹣1),其中x=.
16、(8分)直线与轴、轴分別交于、两点,是的中点,是线段上一点.
(1)求点、的坐标;
(2)若四边形是菱形,如图1,求的面积;
(3)若四边形是平行四边形,如图2,设点的横坐标为,的面积为,求关于的函数关系式.
17、(10分)因式分解:
(1)a(x﹣y)﹣b(y﹣x)2
(2)2x3﹣8x2+8x.
18、(10分) 写出同时具备下列两个条件的一次函数关系式_____.(写出一个即可)
(1)y随x的增大而减小;(2)图象经过点(1,﹣2).
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知﹣=16,+=8,则﹣=________.
20、(4分)如图,矩形纸片ABCD中,AD=5,AB=1.若M为射线AD上的一个动点,将△ABM沿BM折叠得到△NBM.若△NBC是直角三角形.则所有符合条件的M点所对应的AM长度的和为_____.
21、(4分)如图,将直线OA向上平移1个单位,得到一个一次函数的图象,那么这个一次函数的关系式是_______.
22、(4分)如图,矩形ABCD的对角线AC=8cm,∠AOD=120°,则AB的长为 cm.
23、(4分)平面直角坐标系中,将点A(1,﹣2)向上平移1个单位长度后与点B重合,则点B的坐标是(________).
二、解答题(本大题共3个小题,共30分)
24、(8分)列方程(组)及不等式(组)解应用题:
水是生命之源.为了鼓励市民节约用水,江夏区水务部门实行居民用水阶梯式计量水价政策;若居民每户每月用水量不超过10立方米,每立方米按现行居民生活用水水价收费(现行居民生活用水水价=基本水价+污水处理费);若每户每月用水量超过10立方米,则超过部分每立方米在基本水价基础上加价100%,但每立方米污水处理费不变.
下面表格是某居民小区4月份甲、乙两户居民生活用水量及缴纳生活用水水费的情况统计:
4月份居民用水情况统计表
(注:污水处理的立方数=实际生活用水的立方数)
(1)求每立方米的基本水价和每立方米的污水处理费各是多少?
(2)设这个小区某居民用户5月份用水立方米,需要缴纳的生活用水水费为元.若他5月份生活用水水费计划不超过64元,该用户5月份最多可用水多少立方米?
25、(10分)如图,在四边形AOBC中,AC∥OB,顶点O是原点,顶点A的坐标为(0,8),AC=24cm,OB=26cm,点P从点A出发,以1cm/s的速度向点C运动,点Q从点B同时出发,以3m/s的速度向点O运动.规定其中一个动点到达端点时,另一个动点也随之停止运动;从运动开始,设P(Q)点运动的时间为ts.
(1)求直线BC的函数解析式;
(2)当t为何值时,四边形AOQP是矩形?
26、(12分)解方程:=-.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
设每件衬衫应降价x元,则每天可销售(1+2x)件,根据每件的利润×销售数量=总利润,即可得出关于x的一元二次方程,解之取其较大值即可得出结论.
【详解】
设每件衬衫应降价x元,则每天可销售(1+2x)件,
根据题意得:(40-x)(1+2x)=110,
解得:x1=10,x2=1.
∵扩大销售,减少库存,
∴x=1.
故选C.
本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.
2、A
【解析】
如图,连接BP,设点C到BE的距离为h,
则S△BCE=S△BCP+S△BEP,
即BE⋅h=BC⋅PQ+BE⋅PR,
∵BE=BC,
∴h=PQ+PR,
∵正方形ABCD的边长为4,
∴h=4×=.
故答案为.
3、A
【解析】
根据偶次幂具有非负性可得x+3>0,再由分式有意义的条件可得答案.
【详解】
∵x⩾0,
∴x+3>0,
∴无论x取什么数时,总有意义的分式是,
故选:A.
此题考查分式有意义的条件,解题关键在于掌握其性质.
4、B
【解析】
因为DE平分∠ADC,可证得△ECD为等腰直角三角形,得EC=CD, 因为∠BDE=15°,可求得∠CDO=60°,易证△CDO为等边三角形,等量代换可得CE=CO,即∠COE=∠CEO,而∠ECO=30°,利用三角形内角和为180°,即可求得∠COE=75°.
【详解】
解:∵四边形ABCD为矩形,且DE平分∠ADC,
∴∠CDE=∠CED=45,即△ECD为等腰直角三角形,
∴CE=CD,
∵∠BDE=15°,
∴∠CDO=45°+15°=60°,
∵OD=OC,
∴△CDO为等边三角形,即OC=OD=CD,
∴CE=OC,
∴∠COE=∠CEO,
而∠OCE=90°-60°=30°,
∴∠COE=∠CEO==75°.
故选B.
本题考查三角形与矩形的综合,难度一般,熟练掌握矩形的性质是顺利解题的关键.
5、B
【解析】
求出不等式组的解集,再根据已知得出关于m的不等式组,即可打得出答案.
【详解】
解不等式①得:x
相关试卷
这是一份2025届广西南宁市第47中学九上数学开学质量跟踪监视模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届广西南宁二中学九上数学开学质量跟踪监视试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年广州越秀区执信中学九上数学开学联考模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
![英语朗读宝](http://www.enxinlong.com/img/images/27f0ad84943772f8cdf3a353ba2877c5.jpg)