2025届广西省崇左市天等县数学九上开学教学质量检测试题【含答案】
展开这是一份2025届广西省崇左市天等县数学九上开学教学质量检测试题【含答案】,共17页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)函数中,自变量x的取值范围是( )
A.x>1B.x<1C.D.
2、(4分)方程 x2 x 的解是( )
A.x 1B.x1 1 , x2 0
C.x 0D.x1 1 , x2 0
3、(4分)把一元二次方程配方后,下列变形正确的是( )
A.B.C.D.
4、(4分)在△ABC中,∠A:∠B:∠C=1:1:2,则下列说法错误的是( )
A.a2+c2=b2B.c2=2a2C.a=bD.∠C=90°
5、(4分)关于的方程(为常数)有两个相等的实数根,那么k的值为( )
A.B.C.D.
6、(4分)关于x的一元二次方程kx2-3x+1=0有两个不相等的实数根,则k的取值范围( )
A.B.且k≠0C.D.且k≠0
7、(4分)已知是方程的一个根,那么代数式的值为( )
A.5B.6C.7D.8
8、(4分)下列字母中既是中心对称图形又是轴对称图形的是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)廖老师为了了解学生周末利用网络进行学习的时间,在所任教班级随机调查了10名学生,其统计数据如下表:
则这10名学生周末利用网络进行学习的平均时间是________小时.
10、(4分)已知方程组的解为,则一次函数y=﹣x+1和y=2x﹣2的图象的交点坐标为_____.
11、(4分)对我国首艘国产航母002型各零部件质量情况的调查,最适合采用的调查方式是_____.
12、(4分)为了解某小区居民的用水情况,随机抽查了20户家庭的月用水量,结果如下表:
则这组数据的中位数是_____.
13、(4分)已知y与x+1成正比例,且x=1时,y=2.则x=-1时,y的值是______.
三、解答题(本大题共5个小题,共48分)
14、(12分)某中学对全校1200名学生进行“校园安全知识”的教育活动,从1200名学生中随机抽取部分学生进行测试,成绩评定按从高分到低分排列分为四个等级,绘制了图①、图②两幅不完整的统计图,请结合图中所给信息解答下列问题:
(1)求本次抽查的学生共有______人;
(2)将条形统计图和扇形统计图补充完整;
(3)扇形统计图中“”所在扇形圆心角的度数为______;
(4)估计全校“”等级的学生有______人
15、(8分)某图书馆计划选购甲、乙两种图书.甲图书每本价格是乙图书每本价格的2.5倍,如果用900元购买图书,则单独购买甲图书比单独购买乙图书要少18本.
(1)甲、乙两种图书每本价格分别为多少元?
(2)如果该图书馆计划购买乙图书的本数比购买甲图书本数的2倍多8本,且用于购买甲、乙两种图书的总费用不超过1725元,那么该图书馆最多可以购买多少本乙图书?
16、(8分)如图,在▱ABCD中,点O是对角线AC、BD的交点,点E是边CD的中点,点F在BC的延长线上,且CF=BC,求证:四边形OCFE是平行四边形.
17、(10分)如图,∠BAC的平分线交△ABC的外接圆于点D,∠ABC的平分线交AD于点E.
(1)求证:DE=DB;
(2)若∠BAC=90°,BD=4,求△ABC外接圆的半径.
18、(10分)解不等式组:,并把解集在数轴上表示出来。
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)甲、乙两班举行电脑汉字输入速度比赛,参赛学生每分钟输入汉字的个数经统计计算后结果如下表:
某同学根据上表分析得出如下结论:(l)甲、乙两班学生成绩的平均水平相同;(2)乙班优秀(每分钟输入汉字超过150个为优秀)的人数多于甲班优秀的人数;(3)甲班的成绩波动比乙班的成绩波动小、上述结论中正确的是______.(填序号)
20、(4分)如图,将矩形ABCD的四个角向内翻折后,恰好拼成一个无缝隙无重叠的四边形EFGH,EH=8cm,EF=15cm,则边AD的长是______cm.
21、(4分)如图,矩形的面积为,平分,交于,沿将折叠,点的对应点刚好落在矩形两条对角线的交点处.则的面积为________.
22、(4分)已知P1(x1,y1),P2(x2 ,y2)两点都在反比例函数的图象上,且x1< x2 < 0,则y1 ____ y2.(填“>”或“<”)
23、(4分)表①给出了直线l1上部分(x,y)坐标值,表②给出了直线l2上部分点(x,y)坐标值,那么直线l1和直线l2的交点坐标为_______.
二、解答题(本大题共3个小题,共30分)
24、(8分)根据下列条件分别确定函数y=kx+b的解析式:
(1)y与x成正比例,当x=5时,y=6;
(2)直线y=kx+b经过点(3,6)与点(2,-4).
25、(10分)如图,△ABC中,D是BC上的一点.若AB=10,BD=6,AD=8,AC=17,求△ABC的面积.
26、(12分)某花圃用花盆培育某种花苗,经过试验发现,每盆花的盈利与每盆株数构成一定的关系.每盆植入3株时,平均每株盈利3元;以同样的栽培条件,若每盆每增加1株,平均单株盈利就减少0.5元.
(1)若每盆增加x株,平均每盆盈利y元,写出y关于x的函数表达式;
(2)要使每盆的盈利为10元,且每盆植入株数尽可能少,问每盆应植入多少株?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负数的条件,要使在实数范围内有意义,必须.故选C.
2、B
【解析】
先变形得一元二次方程的一般形式,再用分解因式法解方程即可.
【详解】
解:移项,得x2-x=0,
原方程即为,
所以,x=0或x-1=0,
所以x1 1 , x2 0.
故选B.
本题考查了一元二次方程的解法,熟知一元二次方程的四种解法(完全开平方法、配方法、公式法和分解因式法)并能根据方程的特点灵活应用是求解的关键.
3、A
【解析】
先把-1移到右边,然后两边都加4,再把左边写成完全平方的形式即可.
【详解】
∵,
∴,
∴,
∴.
故选A.
本题考查了配方法解一元二次方程,配方法的一般步骤:①把常数项移到等号的右边;②把二次项的系数化为1;③等式两边同时加上一次项系数一半的平方.
4、A
【解析】
根据三角形内角和定理分别求出∠A、∠B、∠C,根据勾股定理、等腰三角形的概念判断即可.
【详解】
设∠A、∠B、∠C分别为x、x、2x,
则x+x+2x=180°,
解得,x=45°,
∴∠A、∠B、∠C分别为45°、45°、90°,
∴a2+b2=c2,A错误,符合题意,
c2=2a2,B正确,不符合题意;
a=b,C正确,不符合题意;
∠C=90°,D正确,不符合题意;
故选:A.
考查的是三角形内角和定理、勾股定理,掌握三角形内角和等于180°是解题的关键.
5、A
【解析】
解:∵方程有两相等的实数根,
∴△=b2-4ac=12-8k=0,
解得:k=
故选A.
本题考查根的判别式.
6、B
【解析】
根据一元二次方程的定义和根的判别式得出k≠0且△=(-3)2-4k×1>0,求出即可.
【详解】
∵关于x的一元二次方程kx2-3x+1=0有两个不相等的实数根,
∴k≠0且△=(-3)2-4k×1>0,
解得:k<且k≠0,
故选B.
本题考查了一元二次方程的定义和根的判别式,能得出关于k的不等式是解此题的关键.
7、C
【解析】
因为a是方程x2−2x−1=0的一个根,所以a2−2a=1,那么代数式2a2−4a+5可化为2(a2−2a)+5,然后把a2−2a=1代入即可.
【详解】
解:∵a是方程x2−2x−1=0的一个根,
∴a2−2a=1,
∴2a2−4a+5
=2(a2−2a)+5
=2×1+5
=7,
故选:C.
本题考查了一元一次方程的解以及代数式求值,注意解题中的整体代入思想.
8、A
【解析】
根据中心对称图形及轴对称图形的概念即可解答.
【详解】
选项A是轴对称图形,也是中心对称图形;
选项B是轴对称图形,不是中心对称图形;
选项C不是轴对称图形,也不是中心对称图形;
选项D不是轴对称图形,是中心对称图形.
故选A.
本题考查了中心对称图形及轴对称图形的概念,熟知中心对称图形及轴对称图形的判定方法是解决问题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、2.1
【解析】
依据加权平均数的概念求解可得.
【详解】
解:这10名学生周末利用网络进行学习的平均时间是:
;
故答案为:2.1.
本题主要考查加权平均数,解题的关键是掌握加权平均数的定义.
10、(1,0)
【解析】
试题分析:二元一次方程组是两个一次函数变形得到的,所以二元一次方程组的解,就是函数图象的交点坐标
试题解析:∵方程组的解为,
∴一次函数y=-x+1和y=2x-2的图象的交点坐标为(1,0).
考点:一次函数与二元一次方程(组).
11、普查
【解析】
根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.
【详解】
对我国首艘国产航母002型各零部件质量情况的调查是事关重大的调查,最适合采用的调查方式是普查.
故答案为:普查
本题考查了抽样调查和全面调查的选择,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
12、5吨
【解析】
找中位数要把数据从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.
【详解】
表中数据为从小到大排列,吨处在第10位、第11位,为中位数,
故这组数据的中位数是吨.
故答案为:吨.
考查了中位数,将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.
13、2
【解析】
设y=k(x+1),把x=1,y=2代入,求的k,确定x,y的关系式,然后把x=-1,代入解析式求对应的函数值即可.
【详解】
解:∵y与x+1成正比例,
∴设y=k(x+1),
∵x=1时,y=2,
∴2=k×2,即k=1,
所以y=x+1.
则当x=-1时,y=-1+1=2.
故答案为2.
本题考查了正比例函数关系式为:y=kx(k≠2)),只需一组对应量就可确定解析式.也考查了给定自变量会求对应的函数值.
三、解答题(本大题共5个小题,共48分)
14、(1)60;(2)见解析;(3);(4)1.
【解析】
(1)由A组人数除以其所占百分比可得总抽查人数;
(2)用B的人数除以总抽查人数可得其百分比,求得D所占百分比再乘以总抽查人数即为D的人数;
(3)用360°乘以A所占百分比即可;
(4)利用样本估计总体思想求解可得.
【详解】
解:(1)本次抽查的学生人数为:(人)
(2)B所占百分比为,D所占百分比为,抽查学生中D等级的学生人数为(人) ,补全条形统计图如下所示:
(3)“”所在扇形圆心角的度数为
(4)全校“”等级的学生有(人)
本题考查了扇形统计图、条形统计图,观察统计图获得有效信息是解题关键,扇形统计图直接反映部分占总体的百分比大小,条形统计图直接反映部分的具体数据.
15、(1)甲图书每本价格为75元,乙图书每本价格为30元;(2)图书馆最多可以购买30本乙图书.
【解析】
(1)根据题意,可以列出相应的分式方程,从而可以求得乙种图书每本的价格;
(2)根据题意可以列出相应的不等式,从而可以求得该图书馆最多可以购买多少本甲种图书。
【详解】
解:(1)设乙图书每本价格为元,则甲图书每本价格为元.
由题意得,,
解得. 经检验,是原方程的根且符合题意.
所以甲图书每本价格为75元,乙图书每本价格为30元.
(2)设设购买乙图书本,则购买甲图书本.
由题意得,.
解得.
因为最大可以取30.
所以图书馆最多可以购买30本乙图书.
本题考查分式方程的应用、-元-次不等式的应用,解答本题的关键是明确题意,列出相应的分式方程和不等式,注意分式方程要检验
16、证明见解析.
【解析】
利用三角形中位线定理判定OE∥BC,且OE=BC.结合已知条件CF=BC,则OE//CF,由“有一组对边平行且相等的四边形为平行四边形”证得结论.
【详解】
∵四边形ABCD是平行四边形,∴点O是BD的中点.
又∵点E是边CD的中点,∴OE是△BCD的中位线,∴OE∥BC,且OE=BC.
又∵CF=BC,∴OE=CF.
又∵点F在BC的延长线上,∴OE∥CF,
∴四边形OCFE是平行四边形.
本题考查了平行四边形的性质和三角形中位线定理.此题利用了“平行四边形的对角线互相平分”的性质和“有一组对边平行且相等的四边形为平行四边形”的判定定理.熟记相关定理并能应用是解题的关键.
17、 (1)证明见解析(2)2
【解析】
试题分析:由角平分线得出,得出,由圆周角定理得出证出再由三角形的外角性质得出即可得出
由得:,得出由圆周角定理得出是直径,由勾股定理求出即可得出外接圆的半径.
试题解析:(1)证明:平分
又
平分
连接,
是直径.
平分
∴半径为
18、,解集在数轴上表示见解析
【解析】
试题分析:先解不等式组中的每一个不等式,得到不等式组的解集,再把不等式的解集表示在数轴上即可.
试题解析:
由①得:
由②得:
∴不等式组的解集为:
解集在数轴上表示为:
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(1),(2).
【解析】
平均水平的判断主要分析平均数;优秀人数的判断从中位数不同可以得到;波动大小比较方差的大小.
【详解】
解:从表中可知,平均字数都是135,(1)正确;
甲班的中位数是149,乙班的中位数是151,比甲的多,而平均数都要为135,说明乙的优秀人数多于甲班的,(2)正确;
甲班的方差大于乙班的,则说明乙班的波动小,所以(3)错误.
(1)(2)正确.
故答案为:(1)(2).
本题考查了平均数,中位数,方差的意义.平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.
20、
【解析】
通过设各线段参数,利用勾股定理和射影定理建立各参数的关系方程,即可解决.
【详解】
解:设AH=e,AE=BE=f,BF=HD=m
在Rt△AHE中,e2+f2=82
在Rt△EFH中,f2=em
在Rt△EFB中,f2+m2=152
(e+m)2=e2+m2+2em=189
AD=e+m=3
故答案为3
本题考查了翻折的性质,利用直角三角形建立方程关系求解.
21、
【解析】
先证明△AEB≌△FEB≌△DEF,从而可知S△ABE =S△DAB,即可求得△ABE的面积.
【详解】
解:由折叠的性质可知:△AEB≌△FEB
∴∠EFB=∠EAB=90°
∵ABCD为矩形
∴DF=FB
∴EF垂直平分DB
∴ED=EB
在△DEF和△BEF中
DF=BF EF=EF ED=EB
∴△DEF≌△BEF
∴△AEB≌△FEB≌△DEF
∴.
故答案为1.
本题主要考查的是折叠的性质、矩形的性质、线段垂直平分线的性质和判定、全等三角形的判定和性质,证得△AEB≌△FEB≌△DEF是解题的关键.
22、>
【解析】
根据反比例函数的增减性,k=1>0,且自变量x<0,图象位于第三象限,y随x的增大而减小,从而可得结论.
【详解】
在反比例函数y=中,k=1>0,
∴该函数在x<0内y随x的增大而减小.
∵x1<x1<0,
∴y1>y1.
故答案为:>.
本题考查了反比例函数的性质,解题的关键是得出反比例函数在x<0内y随x的增大而减小.本题属于基础题,难度不大,解决该题型题目时,根据系数k的取值范围确定函数的图象增减性是关键.
23、(2,-1)
【解析】
【分析】通过观察直线l1上和l2上部分点的坐标值,会发现当x=2时,y的值都是-1,即两直线都经过点(2,-1),即交点.
【详解】通过观察表格可知,直线l1和直线l2都经过点(2,-1),
所以直线l1和直线l2交点坐标为(2,-1),
故答案为:(2,-1)
【点睛】本题考查了两直线相交的问题,仔细观察图表数据,判断出两直线的交点坐标是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1);(2).
【解析】
(1)先根据正比例函数的定义可得,再利用待定系数法即可得;
(2)直接利用待定系数法即可得.
【详解】
(1)y与x成正比例
又当时,
解得
则;
(2)由题意,将点代入得:
解得
则.
本题考查了利用待定系数法求正比例函数和一次函数的解析,掌握待定系数法是解题关键.
25、84
【解析】
根据AB=10,BD=6,AD=8,利用勾股定理的逆定理求证△ABD是直角三角形,再利用勾股定理求出CD的长,然后利用三角形面积公式即可得出答案.
【详解】
解:在△ABD中,
∵BD2+AD2=62+82=100=AB2,
∴△ABD是直角三角形,
∴△ADC也是直角三角形
∴DC2+AD2=AC2,即DC2=AC2-AD2=172-82=225,
∴DC=15 .
∴BC=BD+DC=6+15=21,
∴S△ABC==84 .
此题主要考查学生对勾股定理和勾股定理的逆定理的理解和掌握,解答此题的关键是利用勾股定理的逆定理求证△ABD是直角三角形.
26、(1)y=﹣2.5x2+1.5x+9;(2)4株
【解析】
(1)设每盆花苗增加x株,则每盆花苗有(x+3)株, 平均单株盈利为(3﹣2.5x)元,根据“每盆盈利=每盆花苗株数×单株盈利”,列函数式即可;
(2)由题(1)得“每盆花苗株数×单株盈利=1”,解一元二次方程,在两根中取较小正整数就为增加的株数,则每盆的株数可求.
【详解】
(1)解:由题意知:每盆花苗增加x株,则每盆花苗有(x+3)株,
平均单株盈利为:(3﹣2.5x)元,
则:y=(x+3)(3﹣2.5x)=﹣2.5x2+1.5x+9
(2)解:由题意得:(x+3)(3﹣2.5x)=1.
化简,整理得x2﹣3x+2=2.
解这个方程,得x1=1,x2=2,
则3+1=4,2+3=5,
答:每盆应植4株.
本题考查一元二次方程的应用,解题关键在于读懂题意列出方程.
题号
一
二
三
四
五
总分
得分
时间(单位:小时)
4
3
2
l
0
人数
3
4
1
1
1
月用水量/吨
4
5
6
8
户数
5
7
5
3
班级
参加人数
中位数
方差
平均数
甲
55
149
191
135
乙
55
151
110
135
相关试卷
这是一份2025届广西崇左市宁明县九上数学开学检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年广西省崇左市名校数学九上开学检测模拟试题【含答案】,共29页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2023-2024学年广西省崇左市天等县数学九上期末联考模拟试题含答案,共11页。试卷主要包含了如图,在中,,,,则等于等内容,欢迎下载使用。