终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2025届贵州省六盘水市六枝特区第九中学九年级数学第一学期开学质量检测模拟试题【含答案】

    立即下载
    加入资料篮
    2025届贵州省六盘水市六枝特区第九中学九年级数学第一学期开学质量检测模拟试题【含答案】第1页
    2025届贵州省六盘水市六枝特区第九中学九年级数学第一学期开学质量检测模拟试题【含答案】第2页
    2025届贵州省六盘水市六枝特区第九中学九年级数学第一学期开学质量检测模拟试题【含答案】第3页
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2025届贵州省六盘水市六枝特区第九中学九年级数学第一学期开学质量检测模拟试题【含答案】

    展开

    这是一份2025届贵州省六盘水市六枝特区第九中学九年级数学第一学期开学质量检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)在四边形中,对角线和交于点,下列条件能判定这个四边形是菱形的是( )
    A.,B.,,
    C.,,D.,,
    2、(4分)要反映台州市某一周每天的最高气温的变化趋势,宜采用( )
    A.条形统计图B.扇形统计图
    C.折线统计图D.频数分布统计图
    3、(4分)点在一次函数的图象上,则等于( )
    A.B.5C.D.1
    4、(4分)下表是校女子排球队12名队员的年龄分布:
    则关于这12名队员的年龄的说法正确的是( )
    A.中位数是14B.中位数是14.5C.众数是15D.众数是5
    5、(4分)如图,阴影部分是一个长方形,它的面积是( )
    A.B.C.D.
    6、(4分)已知一组数据2,3,4,x,1,4,3有唯一的众数4,则这组数据的平均数、中位数分别是( )
    A.3,4B.4,3C.3,3D.4,4
    7、(4分)已知点(k,b)为第四象限内的点,则一次函数y=kx+b的图象大致是( )
    A.B.
    C.D.
    8、(4分)甲、乙两人在相同的条件下,各射靶10次,经过计算:甲、乙射击成绩的平均数都8环,甲射击成绩的方差是1.2,乙射击成绩的方差是1.8,射击成绩稳定的是( )
    A.甲B.乙C.甲、乙一样D.不能确定
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)关于的方程有两个不相等的实数根,则的取值范围为________.
    10、(4分)式子有意义的条件是__________.
    11、(4分)若直线y=kx+b与直线y=2x平行,且与y轴相交于点(0,–3),则直线的函数表达式是__________.
    12、(4分)若一次函数的图像与直线平行,且经过点,则这个一次函数的表达式为______.
    13、(4分)如图,正方形的边长为4,在这个正方形内作等边三角形(三角形的顶点可以在正方形的边上),使它们的中心重合,则的顶点到正方形的顶点的最短距离是___________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)某制笔企业欲将200件产品运往,,三地销售,要求运往地的件数是运往地件数的2倍,各地的运费如图所示.设安排件产品运往地.
    (1)①根据信息补全上表空格.②若设总运费为元,写出关于的函数关系式及自变量的取值范围.
    (2)若运往地的产品数量不超过运往地的数量,应怎样安排,,三地的运送数量才能达到运费最少.
    15、(8分)如图1,在平面直角坐标系中,O为坐标原点,点A(﹣4,0),直线l∥x轴,交y轴于点C(0,3),点B(﹣4,3)在直线l上,将矩形OABC绕点O按顺时针方向旋转α度,得到矩形OA′B′C′,此时直线OA′、B′C′分别与直线l相交于点P、Q.
    (1)当α=90°时,点B′的坐标为 .
    (2)如图2,当点A′落在l上时,点P的坐标为 ;
    (3)如图3,当矩形OA′B′C′的顶点B′落在l上时.
    ①求OP的长度;②S△OPB′的值是 .
    (4)在矩形OABC旋转的过程中(旋转角0°<α≤180°),以O,P,B′,Q为顶点的四边形能否成为平行四边形?如果能,请直接写出点B′和点P的坐标;如果不能,请简要说明理由.
    16、(8分)如果关于x的方程1+=的解,也是不等式组的解,求m的取值范围.
    17、(10分)以下是八(1)班学生身高的统计表和扇形统计图,请回答以下问题.
    八(1)班学生身高统计表
    (1)求出统计表和统计图缺的数据.
    (2)八(1)班学生身高这组数据的中位数落在第几组?
    (3)如果现在八(1)班学生的平均身高是1.63 ,已确定新学期班级转来两名新同学,新同学的身高分别是1.54 和1.77 ,那么这组新数据的中位数落在第几组?
    18、(10分)有一工程需在规定日期x天内完成,如果甲单独工作刚好能够按期完成:如果乙单独工作就要超过规定日期3天.
    (1)甲的工作效率为 ,乙的工作效率为 .(用含x的代数式表示)
    (2)若甲、乙合作2天后余下的工程由乙单独完成刚好在规定日期完成,求x的值.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,A,B两点被池塘隔开,不能直接测量其距离.于是,小明在岸边选一点C,连接CA,CB,分别延长到点M,N,使AM=AC,BN=BC,测得MN=200m,则A,B间的距离为_____m.
    20、(4分)在某次数学测验中,班长将全班50名同学的成绩(得分为整数)绘制成频数分布直方图(如图),从左到右的小长方形高的比为0.6:2:4:2.2:1.2,则得分在70.5到80.5之间的人数为________.
    21、(4分)如图,在Rt△ABC与Rt△DEF中,∠B=∠E=90°,AC=DF,AB=DE,∠A=50°,则∠DFE= ________

    22、(4分)如果+=2012, -=1,那么=_________.
    23、(4分)的非负整数解为______.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)为了了解江城中学学生的身高情况,随机对该校男生、女生的身高进行抽样调查,已知抽取的样本中,男生、女生的人数相同,根据所得数据绘制成如下所示的统计表和如图所示的统计图.
    根据图表中提供的信息,回答下列问题:
    (1)女生身高在B组的有________人;
    (2)在样本中,身高在150≤x<155之间的共有________人,身高人数最多的在________组(填组别序号);
    (3)已知该校共有男生500人,女生480人,请估计身高在155≤x<165之间的学生有多少人.
    25、(10分)如图1,在四边形ABCD中,∠DAB被对角线AC平分,且AC2=AB•AD,我们称该四边形为“可分四边形”,∠DAB称为“可分角”.
    (1)如图2,四边形ABCD为“可分四边形”,∠DAB为“可分角”,求证:△DAC∽△CAB.
    (2)如图2,四边形ABCD为“可分四边形”,∠DAB为“可分角”,如果∠DCB=∠DAB,则∠DAB= °
    (3)现有四边形ABCD为“可分四边形”,∠DAB为“可分角”,且AC=4,BC=2,∠D=90°,求AD的长.
    26、(12分)某班“数学兴趣小组”对函数的图象和性质进行了探究,过程如下,请补充完整.
    (1)自变量的取值范围是全体实数,与的几组对应值列表如下:
    其中,__________.
    (2)根据上表的数据,在如图所示的平面直角坐标系中描点,并画出了函数图象的一部分,请画出该函数图象的另一部分.
    (3)观察图象,写出该函数的两条性质:
    ①____________________________________________________________
    ②____________________________________________________________
    (4)进一步探究函数图象发现:
    ①方程的解是__________.
    ②方程的解是__________.
    ③关于的方程有两个不相等实数根,则的取值范围是__________.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    根据菱形的判定方法逐一进行判断即可.
    【详解】
    A.由,只能判定四边形是平行四边形,不一定是菱形,故该选项错误;
    B. 由,,只能判定四边形是矩形,不一定是菱形,故该选项错误;
    C. 由,,可判断四边形可能是等腰梯形,不一定是菱形,故该选项错误;
    D. 由,能判定四边形是菱形,故该选项正确;
    故选:D.
    本题主要考查菱形的判定,掌握菱形的判定方法是解题的关键.
    2、C
    【解析】
    根据题意,得
    要求直观反映长沙市一周内每天的最高气温的变化情况,结合统计图各自的特点,应选择折线统计图.
    故选C.
    3、D
    【解析】
    根据待定系数法求得一次函数的解析式,解答即可.
    【详解】
    一次函数的图象经过点

    解得:,
    故选:.
    此题主要考查了一次函数图象上点的坐标特征,关键是根据待定系数法求得一次函数的解析式.
    4、C
    【解析】
    根据众数、中位数的定义逐一计算即可判断.
    【详解】
    观察图表可知:人数最多的是5人,年龄是1岁,故众数是1.
    共12人,中位数是第6,7个人平均年龄,因而中位数是1.
    故选:.
    本题主要考查众数、中位数,熟练掌握众数、中位数的定义是解题的关键.
    5、C
    【解析】
    由勾股定理求出直角三角形的斜边长,再由长方形的面积公式即可得出结果.
    【详解】
    由勾股定理得:cm,
    ∴阴影部分的面积=5×1=5(cm2);
    故选:C.
    考查了勾股定理、长方形的性质;熟练掌握勾股定理是解决问题的关键.
    6、C
    【解析】
    根据众数,中位数,平均数的定义即可解答.
    【详解】
    解:已知一组数据2,3,4,x,1,4,3有唯一的众数4,
    只有当x=4时满足条件,
    故平均数= =3,
    中位数=3,
    故答案选C.
    本题考查众数,中位数,平均数的概念,熟悉掌握是解题关键.
    7、B
    【解析】
    试题分析:根据已知条件“点(k,b)为第四象限内的点”推知k、b的符号,由它们的符号可以得到一次函数y=kx+b的图象所经过的象限.
    解:∵点(k,b)为第四象限内的点,
    ∴k>0,b<0,
    ∴一次函数y=kx+b的图象经过第一、三象限,且与y轴交于负半轴,观察选项,B选项符合题意.
    故选B.
    考点:一次函数的图象.
    8、A
    【解析】
    根据方差的概念判断即可.
    【详解】
    在平均数相同的情况下,方差小的更稳定,
    故选A.
    本题考查方差的意义,关键在于牢记方差的概念.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、且
    【解析】
    根据一元二次方程的定义和△的意义得到k≠1且△>1,即(2k+1)2﹣4k•k>1,然后求出两个不等式的公共部分即可.
    【详解】
    ∵关于x的方程kx2+(2k+1)x+k=1有两个不相等的实数根,∴k≠1且△>1,即(2k+1)2﹣4k•k>1,∴k且k≠1.
    故答案为k且k≠1.
    本题考查了一元二次方程ax2+bx+c=1(a≠1)根的判别式△=b2﹣4ac:当△>1时,方程有两个不相等的实数根;当△=1时,方程有两个相等的实数根;当△<1时,方程没有实数根.也考查了一元二次方程的定义.
    10、且
    【解析】
    式子有意义,则x-2≥0,x-3≠0,解出x的范围即可.
    【详解】
    式子有意义,则x-2≥0,x-3≠0,解得:,,故答案为且.
    此题考查二次根式及分式有意义,熟练掌握二次根式的被开方数大于等于0,分式的分母不为0,及解不等式是解决本题的关键.
    11、y=2x–1
    【解析】
    根据两条直线平行问题得到k=2,然后把点(0,-1)代入y=2x+b可求出b的值,从而可确定所求直线解析式.
    【详解】
    ∵直线y=kx+b与直线y=2x平行,
    ∴k=2,
    把点(0,–1)代入y=2x+b得b=–1,
    ∴所求直线解析式为y=2x–1.
    故答案为y=2x–1.
    本题考查了待定系数法求函数解析式以及两条直线相交或平行问题,解题时注意:若直线y=k1x+b1与直线y=k2x+b2平行,则k1=k2.
    12、
    【解析】
    设这个一次函数的表达式y=-1x+b,把代入即可.
    【详解】
    设这个一次函数的表达式y=-1x+b,把代入,得
    -4+b=-1,
    ∴b=3,
    ∴.
    故答案为:.
    本题考查了两条直线的平行问题:若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.例如:若直线y1=k1x+b1与直线y1=k1x+b1平行,那么k1=k1.也考查了待定系数法.
    13、
    【解析】
    当G,O,C共线时,△EFG的顶点到正方形ABCD的顶点的最短,即点G在对角线上,在△AOE中,∠CAE=45°,∠AOE=60°,OE=r,解三角形可求r,即可求最短距离.
    【详解】
    如图:当G,O,C共线时,△EFG的顶点到正方形ABCD的顶点的最短,即点G在对角线上.
    作EM⊥AC于M
    ∵ABCD是正方形,AB=4
    ∴AC=,AO=,∠CAB=45°
    ∵△EFG是等边三角形
    ∴∠GOE=120°
    ∴∠AOE=60°
    设OE为r
    ∵∠AOE=60°,ME⊥AO
    ∴MO=OE=r,ME=MO=r
    ∵∠MAE=45°,AM⊥ME
    ∴∠MAE=∠MEA=45°,
    ∴AM=ME=r,
    ∵AM+MO=AO
    ∴r+r=
    ∴r=
    ∵AG=AM=MO+OG=r+r+r=
    ∴GC=
    故答案为:.
    本题主要考查了两点间距离最短,由题意分析出距离最短的情况是解题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、(1)①见解析;②,;(2)安排运往,,三地的产品件数分别为40件、80件,80件时,运费最少.
    【解析】
    (1)①根据运往B地的产品件数=总件数-运往A地的产品件数-运往B地的产品件数;运费=相应件数×一件产品的运费,即可补全图表;
    ②根据题意列出函数解析式即可;
    (2)根据运往B地的件数不多于运往C地的件数,列出不等式,利用一次函数的性质解答即可;
    【详解】
    解:(1)①根据信息填表
    ②由题意列式(且是整数)(取值范围1分,没写是整数不扣分)
    (2)若运往地的产品数量不超过运往地的数量则:,解得,
    由,
    ∵,
    ∴随的增大而增大,
    ∴当时,最小,.
    此时,.
    所以安排运往,,三地的产品件数分别为40件、80件,80件时,运费最少.
    考查了一次函数的应用,解题的关键是读懂题意,找出之间的数量关系,列出解析式.
    15、(1)(1,4);(2)(﹣,1);(1)①OP= ;② ;(4)在矩形OABC旋转的过程中(旋转角0°<α≤180°),以O,P,B′,Q为顶点的四边形能成为平行四边形,此时点B′的坐标为(5,0),点P的坐标为(4,1).
    【解析】
    (1)根据旋转的得到B′的坐标;
    (2)根据在Rt△OCA′,利用勾股定理即可求解;
    (1)①根据已知条件得到△CPO≌△A′PB′,设OP=x,则CP=A′P=4﹣x,在Rt△CPO中,利用OP2=OC2+CP2,即x2=(4﹣x)2+12即可求出x的值,即可求解;②根据S△OPB′=PB′•OC即可求解;
    (4)当点B′落在x轴上时,由OB′∥PQ,OP∥B′Q,此时四边形OPQB′为平行四边形,再根据平行四边形的性质即可求解.
    【详解】
    解:(1)∵A(﹣4,0),B(﹣4,1),
    ∴OA=4,AB=1.
    由旋转的性质,可知:OA′=OA=4,A′B′=AB=1,
    ∴当α=90°时,点B′的坐标为(1,4).
    故答案为:(1,4).
    (2)在Rt△OCA′中,OA′=4,OC=1,
    ∴A′C==,
    ∴当点A′落在l上时,点P的坐标为(﹣,1).
    故答案为:(﹣,1).
    (1)①当四边形OA′B′C′的顶点B′落在BC的延长线上时,
    在△CPO和△A′PB′中,,
    ∴△CPO≌△A′PB′(AAS),
    ∴OP=B′P,CP=A′P.
    设OP=x,则CP=A′P=4﹣x.
    在Rt△CPO中,OP=x,CP=4﹣x,OC=1,
    ∴OP2=OC2+CP2,即x2=(4﹣x)2+12,
    解得:x=,
    ∴OP=.
    ②∵B′P=OP=,
    ∴S△OPB′=PB′•OC=××1=.
    故答案为:.
    (4)当点B′落在x轴上时,∵OB′∥PQ,OP∥B′Q,
    ∴此时四边形OPQB′为平行四边形.
    过点A′作A′E⊥x轴于点E,如图4所示.
    ∵OA′=4,A′B′=1,
    ∴OB′==5,A′E==,OE==,
    ∴点B′的坐标为(5,0),点A′的坐标为(,).
    设直线OA′的解析式为y=kx(k≠0),
    将A′(,)代入y=kx,得:
    =k,解得:k=,
    ∴直线OA′的解析式为y=x.
    当y=1时,有x=1,
    解得:x=4,
    ∴点P的坐标为(4,1).
    ∴在矩形OABC旋转的过程中(旋转角0°<α≤180°),以O,P,B′,Q为顶点的四边形能成为平行四边形,此时点B′的坐标为(5,0),点P的坐标为(4,1).
    此题主要考查一次函数与几何综合,解题的关键是熟知一次函数的图像与性质、全等三角形的判定与性质.
    16、且.
    【解析】
    先根据分式方程的解法求解方程,再根据分式方程解的情况分类讨论求m的取值,
    再解不等式组,根据不等式组的解集和分式方程解的关系即可求解.
    【详解】
    方程两边同乘,得,,解得,
    当时,,,
    当时,,,
    故当或时有,
    方程的解为,其中且,
    解不等式组得解集,
    由题意得且,解得且,
    的取值范围是且.
    本题主要考查解含参数的分式方程和解不等式组,解决本题的关键是要熟练掌握解含参数的分式方程.
    17、(1)统计表中:第二组人数4人,第四组人数18人,扇形图中:第三组38%,第五组:16%;(2)第四组;(3)第四组.
    【解析】
    (1)用第一组的人数和除以对应的百分比求出总人数,再用总人数分别乘以第二、四组的百分比求得其人数,根据百分比的概念求出第三、五组的百分比可得答案;
    (2)根据中位数的概念求解可得;
    (3)根据中位数的概念求解可得.
    【详解】
    解:(1)第一组人数为1,占被调查的人数百分比为2%,
    ∴被调查的人数为1÷2%=50(人),
    则第二组人数为50×8%=4,
    第四组人数为50×36%=18(人),
    第三组对应的百分比为×100%=38%,
    第五组的百分比为×100%=16%;
    (2)被调查的人数为50人,中位数是第25和26个数据平均数,而第一二三组数据有24个,∴第25和26个数都落在第四组,所以八(1)班学生身高这组数据的中位数落在第四组;
    (3)新学期班级转来两名新同学,此时共有52名同学,1.54 在第五组,1.77 在第二组.而新数据的第一二三组数据有25个数据,第26、27个数据都落在第四组,新数据的中位数是第26、27个数据的平均数,
    所以新数据的中位数落在第四组.
    本题考查了扇形统计图及相关计算.在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.
    18、(1),;(2)规定的时间是6天.
    【解析】
    (1)由“工作效率=工作量÷工作时间”即可得;
    (2)关键描述语为:“由甲、乙两队合作2天,剩下的由乙队独做,也刚好在规定日期内完成”;本题的等量关系为:甲工作2天完成的工作量+乙规定日期完成的工作量=1,把相应数值代入即可求解.
    【详解】
    (1)依题意得,甲的工作效率为 ,乙的工作效率为 .
    故答案为:,;
    (2)依题意得:+=1,
    解得 x=6,
    经检验,x=6是原方程的解且符合实际意义,
    答:规定的时间是6天.
    本题考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、1
    【解析】
    ∵AM=AC,BN=BC,∴AB是△ABC的中位线,
    ∴AB=MN=1m,
    故答案为1.
    20、20
    【解析】
    所有小长方形高的比为0.6:2:4:2.2:1.2,可以求出得分在70.5到80.5之间的人数的小长方形的高占总高的比,进而求出得分在70.5到80.5之间的人数.
    【详解】
    解:人
    故答案为:20
    考查频数分布直方图的制作特点以及反映数据之间的关系,理解各个小长方形的高表示的实际意义,用所占比去乘以总人数就得出相应的人数.
    21、40°
    【解析】
    根据HL可证Rt△ABC≌Rt△DEF,由全等三角形的性质可得∠EDF=∠A=50°,即可求解.
    【详解】
    ∵△ABC和△DEF是直角三角形且AC=DF,AB=DE,
    ∴△ABC≌△DEF.
    ∵∠A=50°,
    ∴∠EDF=∠A=50°,
    ∵△DEF是直角三角形,
    ∴∠EDF+∠DFE=90°.
    ∵∠EDF=50°,
    ∴∠DFE=90°-50°=40°.
    故答案为40°.
    本题主要考查全等三角形的性质与判定,以及直角三角形两个锐角互余,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.
    22、1.
    【解析】
    根据平方差公式进行因式分解,然后代入数值计算即可.
    【详解】
    解:∵m+n=1,m-n=1,
    ∴=(m+n)(m-n)=1×1=1.
    故答案为:1.
    本题考查因式分解的应用,利用平方差公式分解因式,熟记平方差公式的结构特点是解题的关键.
    23、0,1,2
    【解析】
    先按照解不等式的方法求出不等式的解集,然后再在其解集中确定符合题意的非负整数解即可.
    【详解】
    解:移项得:,
    合并同类项,得,
    不等式两边同时除以-7,得,
    所以符合条件的非负整数解是0,1,2.
    本题考查了不等式的解法和非负整数解的知识,准确求解不等式是解决这类问题的关键.
    二、解答题(本大题共3个小题,共30分)
    24、(1)12;(2)16;C;(3) 541人.
    【解析】
    先计算出B组所占百分之再求即可
    将位于这一小组内的频数相加即可求得结果;
    分别计算男、女生的人数,相加即可得解.
    【详解】
    解:(1)女生身高在B组的人数有40×(1−30%−20%−15%−5%)=12人;
    (2) 在样本中,身高在150⩽x

    相关试卷

    2025届贵州省六盘水市水城县文泰学校数学九年级第一学期开学检测试题【含答案】:

    这是一份2025届贵州省六盘水市水城县文泰学校数学九年级第一学期开学检测试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2025届贵州省六盘水市名校数学九上开学教学质量检测模拟试题【含答案】:

    这是一份2025届贵州省六盘水市名校数学九上开学教学质量检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023-2024学年贵州省六盘水市六枝特区第九中学数学九年级第一学期期末调研试题含答案:

    这是一份2023-2024学年贵州省六盘水市六枝特区第九中学数学九年级第一学期期末调研试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,2019的相反数是,一元二次方程的根的情况是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map