贵州省贵阳市南明区小碧中学2024-2025学年九年级上学期9月月考数学试题
展开
这是一份贵州省贵阳市南明区小碧中学2024-2025学年九年级上学期9月月考数学试题,共5页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(每小题3分,共36分每小题均有A、B、C、D四个选项,其中只有一个选项正确)
1.下列方程中,是一元二次方程的是( )
A.B.C.D.
2.一元二次方程的一次项系数是( )
A.2B.1C.D.4
3.若是一元二次方程的根,则( )
A.B.C.2D.4
4.已知,是方程的两个实数根,则代数式的值是( )
A.9B.C.11D.
5.关于x的一元二次方程的解为( )
A.B.C.,D.,
6.用配方法解方程,下列变形正确的是( )
A.B.C.D.
7.一元二次方程的根的情况是( )
A.有两个不等的实数根B.有两个相等的实数根
C.只有一个实数根D.无实数根
8.已知m是关于x的一元二次方程的一个根,则的值为( )
A.B.6C.4D.
9.若关于x的一元二次方程无实数根,则m的取值范围是( )
A.B.C.D.
10.三角形的两边长分别为3和5,第三边长是方程的根,则这个三角形的周长是( )
A.8B.10C.12D.10或12
11.参加足球友谊赛的每两支球队之间都要进行一场比赛,共比赛了45场,设参加比赛的球队有x支,根据题意,下面列出的方程正确的是( )
A.B.C.D.
12.如图,将边长为的正方形ABCD沿其对角线AC剪开,再把沿着AD方向平移,得到.若两个三角形重叠部分的面积为,则它平移的距离等于( )
A.B.C.D.
二、填空题(每小题4分,共16分)
13.已知,则______.
14.若方程是关于x的一元二次方程,则m的值为______.
15.一个两位数,个位数字比十位数字少1,且个位数字与十位数字的乘积等于72,则这个两位数是______.
16.对于两个不相等的实数a,b,我们规定符号表示a,b中的较大值,如:,.按照这个规定,若,则x的值是______.
三、解答题(本大题共9题,共98分解答应写出必要的文字说明、证明过程或演算步骤)
17.(本题满分12分)用适当的方法解下列方程:
(1);(2).
18.(本题满分10分)数学课上,老师出了一道关于解一元二次方程的题:.
小明同学的做法如下:
解:两边同时除以,得.……….第一步
去括号,得.……….第二步
移项,得.……….第三步
合并同类项,得.……….第四步
(1)上面的运算过程中从第______步开始出现了错误;
(2)请写出正确的解题过程.
19.(本题满分10分)关岭火龙果是安顺市关岭县的特产,也是中国国家地理标志产品.随着种植技术的改进,火龙果产量逐年增加,已知2022年该火龙果的产量为350t,预计2024年该火龙果的产量为423.5t,求这两年该火龙果产量的年均增长率.
20.(本题满分10分)已知关于x的一元二次方程.
(1)求证:无论m取何值,方程总有两个不等的实数根;
(2)若,是原方程的两根,且,求m的值.
21.(本题满分10分)某单位要新建一个矩形的活动区(图中阴影部分),根据规划,活动区的长和宽分别为和,同时要在它四周外围修建宽度相等的小路.已知活动区和小路的总面积为.求小路的宽度.
22.(本题满分10分)某商场销售一批衬衫,平均每天可售出20件,每件盈利40元.为了扩大销售,增加盈利,尽量减少库存,商场决定采取适当的降价措施.经调查发现,每件衬衫每降价1元,平均每天可多售出2件.
(1)若每件衬衫降价4元,则商场每天销售该衬衫可盈利______元;
(2)若商场平均每天要通过销售该衬衫盈利1200元,且让顾客尽可能多得实惠,则每件衬衫应降价多少元?
23.(本题满分12分)阅读材料:解方程:,我们可以将视为一个整体,然后设,则,原方程化为.解得,.
当时,,所以,所以;
当时,,所以,所以.
所以原方程的解为,,,.
请利用以上知识解决下列问题:
已知,求的值.
24.(本题满分12分)已知矩形ABCD的两边AB,AD的长是关于x的方程的两个实数根.
(1)当m为何值时,四边形ABCD为正方形?并说明理由;
(2)若AB的长为2,求矩形ABCD的对角线长.
25.(本题满分12分)【概念理解】如果关于x的一元二次方程有两个实数根,其中一个实数根是另一个实数根的2倍,那么称这样的方程是“倍根方程”.例如一元二次方程的两个根是,,则方程是“倍根方程”
【初步运用】
(1)通过计算,一元二次方程______(填“是”或“不是”)“倍根方程”;
【拓展运用】
(2)若关于x的方程是“倍根方程”,求代数式的值;
【能力提升】
(3)已知关于x的一元二次方程(n是常数)是“倍根方程”,请直接写出n的值.
答案:
1.B 2.C 3.A 4.C 5.C 6.D 7.B 8.C 9.A 10.C 11.B 12.B
13.2或 14. 15.98 16.5或
17.(1)解:移项,得.
配方,得,.
由此可得,,.
(2)解:,,..
方程有两个不等的实数根,,
即,.
18.(1)一
(2)解:移项,得.
因式分解,得.
于是得,或,,.
19.解:设这两年该火龙果产量的年均增长率为x.
根据题意,得.
解得,(不合题意,舍去).
答:这两年该火龙果产量的年均增长率为10%.
20.(1)证明:因为,
所以无论m取何值,方程总有两个不等的实数根.
(2)解:因为,所以.
由题意得,,
所以,解得,.即m的值为或.
21.解:设小路的宽度为.根据题意,得.
整理,得.解得,(不合题意,舍去),
答:小路的宽度为.
22.(1)1008
(2)解:设每件衬衫应降价x元,则平均每天可售出件.
根据题意,得.
整理,得,解得,.
因为要扩大销售,减少库存,且让顾客尽可能多得实惠,所以.
答:每件衬衫应降价20元.
23.解:设.则原方程化为,
即,解得,.因为,所以.
24.解:(1)当时,四边形ABCD为正方形.
理由如下:当时,矩形ABCD为正方形,此时,即,
解得.所以当时,四边形ABCD为正方形.
(2)设,根据根与系数的关系得,,所以,即,
所以矩形ABCD的对角线长为.
25.解:(2),或,解得,.
因为是“倍根方程”,所以或.
当时,.当时,.
综上所述,代数式的值为26或5.
(3)根据题意,设方程的根的两根分别为,,
根据根与系数的关系得,,
所以,或,.所以n的值为13或.
相关试卷
这是一份贵州省贵阳市南明区小碧中学2024-2025学年九年级上学期9月月考数学试题,文件包含贵阳市南明区小碧中学2024-2025学年度九年级上学期9月质量监测数学试卷pdf、答案pdf等2份试卷配套教学资源,其中试卷共11页, 欢迎下载使用。
这是一份贵州省贵阳市花溪区贵阳市南明区小碧中学2024-2025学年七年级上学期9月月考数学试题,共6页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份贵州省贵阳市花溪区贵阳市南明区小碧中学2024-2025学年七年级上学期9月月考数学试题,文件包含贵阳市南明区小碧中学2024-2025学年度七年级上学期9月质量监测数学试卷pdf、答案pdf等2份试卷配套教学资源,其中试卷共10页, 欢迎下载使用。