终身会员
搜索
    上传资料 赚现金

    2025届河南省信阳市浉河区九年级数学第一学期开学检测模拟试题【含答案】

    立即下载
    加入资料篮
    2025届河南省信阳市浉河区九年级数学第一学期开学检测模拟试题【含答案】第1页
    2025届河南省信阳市浉河区九年级数学第一学期开学检测模拟试题【含答案】第2页
    2025届河南省信阳市浉河区九年级数学第一学期开学检测模拟试题【含答案】第3页
    还剩24页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2025届河南省信阳市浉河区九年级数学第一学期开学检测模拟试题【含答案】

    展开

    这是一份2025届河南省信阳市浉河区九年级数学第一学期开学检测模拟试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。


    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)若分式有意义,则的值是( )
    A.B.C.D.
    2、(4分)已知函数y=,则自变量x的取值范围是( )
    A.﹣1<x<1B.x≥﹣1且x≠1C.x≥﹣1D.x≠1
    3、(4分)如图所示,已知△ABC中,AB=6,AC=9,AD⊥BC于D,M为AD上任一点,则MC2-MB2等于( )
    A.9B.35C.45D.无法计算
    4、(4分)某小组7名同学积极捐出自己的零花钱支援地震灾区,他们捐款的数额分别是(单位:元):50,20,50,30,50,25,1.这组数据的众数和中位数分别是( ).
    A.50,20B.50,30C.50,50D.1,50
    5、(4分)某体育馆准备重新铺设地面,已有一部分正三角形的地砖,现要购买另一种不同形状的正多边形地砖与正三角形在同一顶点处作平面镶嵌(正多边形的边长相等),则该体育馆不应该购买的地砖形状是( )
    A.正方形B.正六边形C.正八边形D.正十二边形
    6、(4分)下列各式中,能用完全平方公式分解的个数为( )
    ①;②;③;④;⑤.
    A.1个B.2个C.3个D.4个
    7、(4分)如图,在四边形ABCD中,AD∥BC,∠BCD=90°,将四边形ABCD沿AB方向平移得到四边形A'B'C'D',BC与C'D'相交于点E,若BC=8,CE=3,C'E=2,则阴影部分的面积为( )
    A.12+2B.13C.2+6D.26
    8、(4分)如图,在菱形ABCD中,两对角线AC、BD交于点O,AC=8,BD=6,当△OPD是以PD为底的等腰三角形时,CP的长为( )
    A.2B.C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)八年级(1)班安排了甲、乙、丙、丁四名同学参加4×100米接力赛,打算抽签决定四人的比赛顺序,则甲跑第一棒的概率为______.
    10、(4分)如图,△ACB≌△DCE,∠ACD=50°,则∠BCE的度数为_____.
    11、(4分)已知二次函数y=-x-2x+3的图象上有两点A(-7,),B(-8,),则 ▲ .(用>、<、=填空).
    12、(4分)某市某活动中心组织了一次少年跳绳比赛,各年龄组的参赛人数如表所示:
    则全体参赛选手年龄的中位数是________.
    13、(4分)如图,矩形纸片ABCD中,AD=5,AB=1.若M为射线AD上的一个动点,将△ABM沿BM折叠得到△NBM.若△NBC是直角三角形.则所有符合条件的M点所对应的AM长度的和为_____.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,在▱ABCD中,对角线AC,BD交于点O,点E,点F在BD上,且 BE=DF 连接AE并延长,交BC于点G,连接CF并延长,交AD于点H.
    (1)求证:△AOE≌△COF;
    (2)若AC平分∠HAG,求证:四边形AGCH是菱形.
    15、(8分)某商店的一种服装,每件成本为50元.经市场调研,售价为60元时,可销售800件;售价每提高5元,销售量将减少100件.求每件商品售价是多少元时,商店销售这批服装获利能达到12000元?
    16、(8分)小明骑单车上学,当他骑了一段路时起要买某本书,于是又折回到刚经过的某书店,买到书后继续去学校以下是他本次上学所用的时间与路程的关系示意图.根据图中提供的信息回答下列问题:
    (1)小明家到学校的路程是 米,本次上学途中,小明一共行驶了 米;
    (2)小明在书店停留了 分钟,本次上学,小明一共用了 分钟;
    (3)在整个上学的途中那个时间段小明骑车速度最快,最快的速度是多少?
    17、(10分)如图①,已知正方形ABCD的边长为1,点P是AD边上的一个动点,点A关于直线BP的对称点是点Q,连接PQ、DQ、CQ、BQ,设AP=x.
    (1)BQ+DQ的最小值是_______,此时x的值是_______;
    (2)如图②,若PQ的延长线交CD边于点E,并且∠CQD=90°.
    ①求证:点E是CD的中点; ②求x的值.
    (3)若点P是射线AD上的一个动点,请直接写出当△CDQ为等腰三角形时x的值.
    18、(10分)阅读下列材料:
    数学课上,老师出示了这样一个问题:
    如图1,正方形为中,点、在对角线上,且,探究线段、、之间的数量关系,并证明.
    某学习小组的同学经过思考,交流了自己的想法:
    小明:“通过观察和度量,发现与存在某种数量关系”;
    小强:“通过观察和度量,发现图1中线段与相等”;
    小伟:“通过构造(如图2),证明三角形全等,进而可以得到线段、、之间的数量关系”.
    老师:“此题可以修改为‘正方形中,点在对角线上,延长交于点,在上取一点,连接(如图3).如果给出、的数量关系与、的数量关系,那么可以求出的值”.
    请回答:
    (1)求证:;
    (2)探究线段、、之间的数量关系,并证明;
    (3)若,,求的值(用含的代数式表示).
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)一组数据:1,2,1,0,2,a,若它们的众数为1,则这组数据的平均数为_______.
    20、(4分)若式子有意义,则x的取值范围是________.
    21、(4分)已知P1(1,y1),P2(2,y2)是正比例函数的图象上的两点,则y1 y2(填“>”或“<”或“=”).
    22、(4分)如图,将三个边长都为a的正方形一个顶点重合放置,则∠1+∠2+∠3=_______.
    23、(4分)把直线y=﹣x﹣3向上平移m个单位,与直线y=2x+4的交点在第二象限,则m的取值范围是_____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,在矩形ABCD中,∠BAD的平分线交BC于点E,O为对角线AC、BD的交点,且∠CAE=15° .
    (1)求证:△AOB为等边三角形;
    (2)求∠BOE度数.
    25、(10分)如图,在平面直角坐标系中,直线分别与轴、轴交于点,,且点的坐标为,点为的中点.
    (1)点的坐标是________,点的坐标是________;
    (2)直线上有一点,若,试求出点的坐标;
    (3)若点为直线上的一个动点,过点作轴的垂线,与直线交于点,设点的横坐标为,线段的长度为,求与的函数解析式.
    26、(12分) (1)分解因式:﹣m+2m2﹣m3
    (2)化简:( +)÷(﹣).
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    根据分式有意义的条件可得x+1≠0求解即可.
    【详解】
    解:当x+1≠0时分式有意义
    解得:
    故选D.
    此题主要考查了分式有意义的条件,关键是掌握分式有意义的条件是分母不等于零.
    2、B
    【解析】
    根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,就可以求解.
    【详解】
    解:根据题意得:,
    解得:x≥-1且x≠1.
    故选B.
    点睛:考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:
    (1)当函数表达式是整式时,自变量可取全体实数;
    (2)当函数表达式是分式时,考虑分式的分母不能为0;
    (3)当函数表达式是二次根式时,被开方数为非负数.
    3、C
    【解析】
    【分析】由勾股定理求出BM2=BD2+MD2=AB2-AD2+MD2,MC2=CD2+MD2=AC2-AD2+MD2,再代入可得MC2-MB2=(AC2-AD2+MD2)-(AB2-AD2+MD2),化简可求得结果.
    【详解】在Rt△ABD和Rt△ADC中,
    BD2=AB2-AD2,CD2=AC2-AD2,
    在Rt△BDM和Rt△CDM中,
    BM2=BD2+MD2=AB2-AD2+MD2,MC2=CD2+MD2=AC2-AD2+MD2,
    ∴MC2-MB2=(AC2-AD2+MD2)-(AB2-AD2+MD2)
    =AC2-AB2
    =1.
    故选C
    【点睛】本题考核知识点:勾股定理.解题关键点:灵活运用勾股定理.
    4、C
    【解析】
    根据众数和中位数的定义进行计算即可.
    【详解】
    众数是一组数据中出现次数最多的数,在这一组数据中2是出现次数最多的,故众数是2;
    将这组数据从小到大的顺序排列为:20,25,30,2,2,2,1,处于中间位置的那个数是2,由中位数的定义可知,这组数据的中位数是2.
    故选:C.
    本题考查众数和中位数,明确众数和中位数的概念是关键.
    5、C
    【解析】
    根据密铺的条件得,两多边形内角和必须凑出,进而判断即可.
    【详解】
    解:、正方形的每个内角是,,能密铺;
    、正六边形每个内角是,,能密铺;
    、正八边形每个内角是,与无论怎样也不能组成的角,不能密铺;
    、正十二边形每个内角是,,能密铺.
    故选:C.
    本题考查两种正多边形的镶嵌应符合多个内角度数和等于.
    6、B
    【解析】
    分别利用完全平方公式分解因式得出即可
    【详解】
    ①=,符合题意;
    ②;不能用完全平方公式分解,不符合题意
    ③;不能用完全平方公式分解,不符合题意
    ④=-,符合题意;
    ⑤,不可以用完全平方公式分解,不符合题意
    故选:B.
    本题考查因式分解,熟练掌握运算法则是解题关键.
    7、B
    【解析】
    利用平移的性质得到B′C′=BC=8,BC∥B′C′,CD∥C′D′,S梯形ABCD=S梯形A′B′C′D′,然后根据S阴影部分=S梯形BB′C′E进行计算.
    【详解】
    解:∵四边形ABCD沿AB方向平移得到四边形A'B'C'D',
    ∴B′C′=BC=8,BC∥B′C′,CD∥C′D′,S梯形ABCD=S梯形A′B′C′D′,
    ∴C′D′⊥BE,
    ∴S阴影部分=S梯形BB′C′E=(8﹣3+8)×2=1.
    故选:B.
    本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.
    8、C
    【解析】
    过O作OE⊥CD于E.根据菱形的对角线互相垂直平分得出OB,OC的长,AC⊥BD,再利用勾股定理列式求出CD,然后根据三角形的面积公式求出OE.在Rt△OED中,利用勾股定理求出ED.根据等腰三角形三线合一的性质得出PE ,利用CP=CD-PD即可得出结论.
    【详解】
    过O作OE⊥CD于E.
    ∵菱形ABCD的对角线AC、BD相交于点O,∴OBBD6=3,OA=OCAC3=2,AC⊥BD,由勾股定理得:CD1.
    ∵OC×OD=CD×OE,∴12=1OE,∴OE=2.2.在Rt△ODE中,DE===1.3.
    ∵OD=OP,∴PE=ED=1.3,∴CP=CD-PD=1-1.3-1.3=1.2=.
    故选C.
    本题考查了菱形的性质,等腰三角形的性质,勾股定理,求出OE的长是解题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、
    【解析】
    【分析】抽签有4种可能的结果,其中抽到甲的只有一种结果,根据概率公式进行计算即可得.
    【详解】甲、乙、丙、丁四人都有机会跑第一棒,而且机会是均等的,
    抽签抽到甲跑第一棒有一种可能,
    所以甲跑第一棒的概率为,
    故答案为:.
    【点睛】本题考查了简单的概率计算,用到的知识点为:概率=所求情况数与总情况数之比.
    10、50°
    【解析】
    根据全等三角形对应角相等可得∠ACB=∠DCE,然后根据∠ACB+∠BCD=∠DCE+∠BCD得出答案.
    【详解】
    解: ∵△ACB≌△DCE
    ∴∠ACB=∠DCE
    ∴∠ACB+∠BCD=∠DCE+∠BCD,
    ∴∠BCE=∠ACD=50°
    故答案为:50°.
    本题考查全等三角形的性质,题目比较简单.
    11、>。
    【解析】
    根据已知条件求出二次函数的对称轴和开口方向,再根据点A、B的横坐标的大小即可判断出y1与y2的大小关系:
    ∵二次函数y=﹣x2﹣2x+3的对称轴是x=﹣1,开口向下,
    ∴在对称轴的左侧y随x的增大而增大。
    ∵点A(﹣7,y1),B(﹣8,y2)是二次函数y=﹣x2﹣2x+3的图象上的两点,且﹣7>﹣8,
    ∴y1>y2。
    12、1
    【解析】
    根据中位数的定义来求解即可,中位数是指将数据按大小顺序排列起来,形成一个数列,居于数列中间位置的那个数据.
    【详解】
    解:本次比赛一共有:5+19+13+13=50人,
    ∴中位数是第25和第26人的年龄的平均数,
    ∵第25人和第26人的年龄均为1岁,
    ∴全体参赛选手的年龄的中位数为1岁.
    故答案为1.
    中位数的定义是本题的考点,熟练掌握其概念是解题的关键.
    13、5.
    【解析】
    根据四边形ABCD为矩形以及折叠的性质得到∠A=∠MNB=90°,由M为射线AD上的一个动点可知若△NBC是直角三角形,∠NBC=90°与∠NCB=90°都不符合题意,只有∠BNC=90°.然后分 N在矩形ABCD内部与 N在矩形ABCD外部两种情况进行讨论,利用勾股定理求得结论即可.
    【详解】
    ∵四边形ABCD为矩形,
    ∴∠BAD=90°,
    ∵将△ABM沿BM折叠得到△NBM,
    ∴∠MAB=∠MNB=90°.
    ∵M为射线AD上的一个动点,△NBC是直角三角形,
    ∴∠NBC=90°与∠NCB=90°都不符合题意,
    ∴只有∠BNC=90°.

    当∠BNC=90°,N在矩形ABCD内部,如图3.
    ∵∠BNC=∠MNB=90°,
    ∴M、N、C三点共线,
    ∵AB=BN=3,BC=5,∠BNC=90°,
    ∴NC=4.
    设AM=MN=x,
    ∵MD=5﹣x,MC=4+x,
    ∴在Rt△MDC中,CD5+MD5=MC5,
    35+(5﹣x)5=(4+x)5,
    解得x=3;
    当∠BNC=90°,N在矩形ABCD外部时,如图5.
    ∵∠BNC=∠MNB=90°,
    ∴M、C、N三点共线,
    ∵AB=BN=3,BC=5,∠BNC=90°,
    ∴NC=4,
    设AM=MN=y,
    ∵MD=y﹣5,MC=y﹣4,
    ∴在Rt△MDC中,CD5+MD5=MC5,
    35+(y﹣5)5=(y﹣4)5,
    解得y=9,
    则所有符合条件的M点所对应的AM和为3+9=5.
    故答案为5.
    本题考查了翻折变换(折叠问题),矩形的性质以及勾股定理,难度适中.利用数形结合与分类讨论的数学思想是解题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、 (1)见解析;(2) 见解析.
    【解析】
    (1)先由四边形ABCD是平行四边形,得出OA=OC,OB=OD,则OE=OF,又∵∠AOE=∠COF,利用SAS即可证明△AOE≌△COF;
    (2)先证明四边形AGCH是平行四边形,再证明CG=AG,即可证明四边形AGCH是菱形.
    【详解】
    证明:(1)∵四边形ABCD是平行四边形,
    ∴OA=OC,OB=OD.
    ∵BE=DF,∴OE=OF.
    在△AOE与△COF中,
    ∴△AOE≌△COF(SAS).
    (2)由(1)得△AOE≌△COF,
    ∴∠OAE=∠OCF,∴AE∥CF.
    又∵AH∥CG,∴四边形AGCH是平行四边形.
    ∵AC平分∠HAG,∴∠HAC=∠GAC.
    ∵AH∥CG,∴∠HAC=∠GCA,
    ∴∠GAC=∠GCA,∴CG=AG,
    ∴□AGCH是菱形.
    本题考查全等三角形的判定与性质,菱形的判定,难度适中,利用SAS证明△AOE≌△COF是解题关键.
    15、70或80
    【解析】
    要求服装的单价,可设服装的单价为x元,则每件服装的利润是(x-50)元,销售服装的件数是[800-20(x-60)]件,以此等量关系列出方程即可;
    【详解】
    解:设单价应定为x元,根据题意得:
    (x−50)[800−(x−60)÷5×100]=12000,
    (x−50)[800−20x+1200]=12000,
    整理得,x2−150x+5600=0,
    解得=70,=80;
    答:这种服装的单价应定为70元或80元.
    本题主要考查了一元二次方程的应用,掌握一元二次方程的应用是解题的关键.
    16、 (1)1500,2700;(2)4,1;(3)在整个上学的途中 从12分钟到1分钟小明骑车速度最快,最快的速度是 450 米/分.
    【解析】
    (1)因为轴表示路程,起点是家,终点是学校,故小明家到学校的路程是1500米;共行驶的路程小明家到学校的距离折回书店的路程.
    (2)与轴平行的线段表示路程没有变化,观察图象分析其对应时间即可.
    (3)观察图象分析每一时段所行路程,然后计算出各时段的速度进行比较即可.
    【详解】
    解:(1)轴表示路程,起点是家,终点是学校,
    小明家到学校的路程是1500米.
    (米
    即:本次上学途中,小明一共行驶了2700米.
    (2)由图象可知:小明在书店停留了4分钟.本次上学,小明一共用了1分钟;
    (3)折回之前的速度(米分),
    折回书店时的速度(米分),
    从书店到学校的速度(米分),
    经过比较可知:小明在从书店到学校的时候速度最快,
    即:在整个上学的途中从12分钟到1分钟小明骑车速度最快,最快的速度是450米分.
    故答案是:(1)1500,2700;(2)4,1.
    本题考查了函数的图象及其应用,解题的关键是理解函数图象中轴、轴表示的量及图象上点的坐标的意义.
    17、(1),;(3) ①理由详见解析;②;(3) 3﹣或或3+.
    【解析】
    试题分析:(1)根据两点之间,线段最短可知,点Q在线段BD上时BQ+DQ的值最小,是BD的长度,利用勾股定理即可求出;再根据△PDQ是等腰直角三角形求出x的值;
    (3) ①由对称可知AB=BQ=BC,因此∠BCQ=∠BQC.根据∠BQE=∠BCE=90°,可知∠EQC=∠ECQ,从而EQ=EC.再根据∠CQD=90°可得∠DQE+∠CQE=90°, ∠QCE+∠QDE=90°,而∠EQC=∠ECQ, 所以∠QDE=∠DQE,从而EQ=ED.易得点E是CD的中点;②在Rt△PDE中,PE= PQ+QE=x+,PD=1﹣x,PQ=x,根据勾股定理即可求出x的值.
    (3) △CDQ为等腰三角形分两种情况:①CD为腰,以点C 为圆心,以CD的长为半径画弧,两弧交点即为使得△CDQ为等腰三角形的Q点; ②CD为底边时,作CD的垂直平分线,与的交点即为△CDQ为等腰三角形的Q点,则共有 3个Q点,那么也共有3个P点,作辅助线,利用直角三角形的性质求之即得.
    试题解析:(1),.
    (3)①证明:在正方形ABCD中,
    AB=BC,∠A=∠BCD=90°.
    ∵Q点为A点关于BP的对称点,
    ∴AB=QB,∠A=∠PQB=90°,
    ∴QB=BC,∠BQE=∠BCE,
    ∴∠BQC=∠BCQ,
    ∴∠EQC=∠EQB﹣∠CQB=∠ECB﹣∠QCB=∠ECQ,
    ∴EQ=EC.
    在Rt△QDC中,
    ∵∠QDE=90°﹣∠QCE,
    ∠DQE=90°﹣∠EQC,
    ∴∠QDE=∠DQE,
    ∴EQ=ED,
    ∴CE=EQ=ED,即E为CD的中点.
    ②∵AP=x,AD=1,
    ∴PD=1﹣x,PQ=x,CD=1.
    在Rt△DQC中,
    ∵E为CD的中点,
    ∴DE=QE=CE=,
    ∴PE=PQ+QE=x+,
    ∴,
    解得 x=.
    (3)△CDQ为等腰三角形时x的值为3-,,3+.
    如图,以点B为圆心,以AB的长为半径画弧,以点C为圆心,以CD的长为半径画弧,两弧分别交于Q1,Q3.此时△CDQ1,△CDQ3都为以CD为腰的等腰三角形.作CD的垂直平分线交弧AC于点Q3,此时
    △CDQ3以CD为底的等腰三形.
    以下对此Q1,Q3,Q3.分别讨论各自的P点,并求AP的值.
    讨论Q₁:如图作辅助线,连接BQ1、CQ1,作PQ1⊥BQ1交AD于P,过点Q1,作EF⊥AD于E,交BC于F.
    ∵△BCQ1为等边三角形,正方形ABCD边长为1,
    ∴,.
    在四边形ABPQ1中,
    ∵∠ABQ1=30°,
    ∴∠APQ1=150°,
    ∴△PEQ1为含30°的直角三角形,
    ∴PE=.
    ∵AE=,
    ∴x=AP=AE-PE=3-.
    ②讨论Q3,如图作辅助线,连接BQ3,AQ3,过点Q3作PG⊥BQ3,交AD于P,连接BP,过点Q3作EF⊥CD于E,交AB于F.

    ∵EF垂直平分CD,
    ∴EF垂直平分AB,
    ∴AQ3=BQ3.
    ∵AB=BQ3,
    ∴△ABQ3为等边三角形.
    在四边形ABQP中,
    ∵∠BAD=∠BQP=90°, ∠ABQ₂=60°,
    ∴∠APE=130°
    ∴∠EQ3G=∠DPG=180°-130°=60°,
    ∴,
    ∴EG=,
    ∴DG=DE+GE=-1,
    ∴PD=1-,
    ∴x=AP=1-PD=.
    ③对Q3,如图作辅助线,连接BQ1,CQ1,BQ3,CQ3,过点Q3作BQ3⊥PQ3,交AD的延长线于P,连接BP,过点Q1,作EF⊥AD于E,此时Q3在EF上,不妨记Q3与F重合.

    ∵△BCQ1为等边三角形,△BCQ3为等边三角形,BC=1,
    ∴,,
    ∴.
    在四边形ABQ3P中
    ∵∠ABF=∠ABC+∠CBQ3=150°,
    ∴∠EPF=30°,
    ∴EP=,EF=.
    ∵AE=,
    ∴x=AP=AE+PE=+3.
    综上所述,△CDQ为等腰三角形时x的值为3﹣,,3+.
    考点:⒈四边形综合题; ⒉正方形的性质; ⒊等腰三角形的性质.
    18、(1)详见解析;(2),证明详见解析;(3)
    【解析】
    (1)依题意由SAS可证:.可推
    (2)过点作,且,连接、,由SAS可证
    可得,可得.利用勾股定理即可知:.即.
    (3)延长至使,连接.设,,
    则,,,,.由SAS可证,可得 ,,由角关系推出.
    所以.推出,所以.得出结论.
    【详解】
    (1)证明:∵四边形为正方形,
    ∴,.
    ∵,
    ∴.
    ∴.
    (2)结论:.
    证明:如图2,过点作,且,连接、,
    则,.
    ∵,,

    ∴,.
    ∴.
    ∴.
    即.
    (3)解:延长至使,连接.
    设,,
    则,,.
    ∵四边形为正方形,
    ∴,,
    ,.
    ∴,
    ∴,,
    .
    ∴.
    ∴.
    ∴.
    ∴.
    该题综合性较强,运用了全等三角形、等腰三角形,以及三角形内角和等知识点,灵活运用全等是解题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、.
    【解析】
    根据众数为1,求出a的值,然后根据平均数的概念求解:
    ∵众数为1,∴a=1.
    ∴平均数为:.
    考点:1.众数;2.平均数.
    20、
    【解析】
    分析:根据被开方数为非负数列不等式求解即可.
    详解:由题意得,
    x-2≥0,
    ∴x≥2.
    故答案为x≥2.
    点睛:本题考查了代数式有意义时字母的取值范围,代数式有意义时字母的取值范围一般从几个方面考虑:①当代数式是整式时,字母可取全体实数;②当代数式是分式时,考虑分式的分母不能为0;③当代数式是二次根式时,被开方数为非负数.
    21、<.
    【解析】
    试题分析:∵正比例函数的,∴y随x的增大而增大.
    ∵,∴y1<y1.
    考点:正比例函数的性质.
    22、
    【解析】
    利用重合部分的角相等和等角的余角相等,逐步判定∠2=∠COB
    ,即可完成解答。
    【详解】
    解:如图
    ∵都是正方形
    ∴∠FOC=∠EOB=∠DOA=
    又∵∠2+∠EOC= ∠BOC+∠EOC=
    ∴∠2= ∠BOC
    ∴∠1+∠2+∠3=∠DOA=
    故答案为。
    本题主要考查了正方形的性质以及重合部分的角相等和等角的余角相等的知识,其中确定∠2= ∠BOC是解题的关键。
    23、1<m<1.
    【解析】
    直线y=﹣x﹣3向上平移m个单位后可得:y=﹣x﹣3+m,求出直线y=﹣x﹣3+m与直线y=2x+4的交点,再由此点在第二象限可得出m的取值范围.
    【详解】
    解:直线y=﹣x﹣3向上平移m个单位后可得:y=﹣x﹣3+m,
    联立两直线解析式得:,
    解得:,
    即交点坐标为(,),
    ∵交点在第二象限,
    ∴,
    解得:1<m<1.
    故答案为1<m<1.
    本题考查一次函数图象与几何变换、两直线的交点坐标,注意第二象限的点的横坐标小于2、纵坐标大于2.
    二、解答题(本大题共3个小题,共30分)
    24、(1)见解析;(2)75°
    【解析】
    试题分析:(1)因为四边形ABCD是矩形,所以OA=OB,则只需求得∠BAC=60°,即可证明三角形是等边三角形;
    (2)因为∠B=90°,∠BAE=45°,所以AB=BE,又因为△ABO是等边三角形,则∠OBE=30°,故∠BOE度数可求.
    (1)证明:∵四边形ABCD是矩形
    ∴∠BAD=∠ABC=90°,AO=BO=AC=BD
    ∵AE是∠BAD的角平分线;
    ∴∠BAE=45°
    ∵∠CAE=15°
    ∴∠BAC=60°
    ∴△AOB是等边三角形;
    (2)解:∵在Rt△ABE中,∠BAE=45°
    ∴AB=BE
    ∵△ABO是等边三角形
    ∴AB=BO
    ∴OB=BE
    ∵∠OBE=30°,OB=BE,
    ∴∠BOE=(180°﹣30°)=75°.
    25、(1),;(2)或;(3).
    【解析】
    (1)将点A(8,0)代入可求得一次函数解析式,再令x=0即可得到B点坐标;因为C是A、B中点,利用中点坐标公式可求出C点坐标;
    (2)先求出△AOC的面积,则△NOA的面积为△AOC的面积的一半,设N点的坐标,可根据列出方程求解;
    (3)可先求出直线OC的函数解析式,把点P、Q坐标表示出来,分情况讨论即可得出答案.
    【详解】
    解:(1)将A(8,0)代入得:,解得:b=6;

    令x=0,得:y=6,∴点的坐标为
    ∵C为AB中点,
    ∴的坐标为
    故答案为:点的坐标为,的坐标为;
    (2)或
    由题可得S△AOC=

    ∴S△NOA=

    S△NOA=
    解得:n=6或n=10
    将n=6代入得;
    将n=10代入得;
    ∴或
    (3)依照题意画出图形,如图所示.
    解图1 解图2
    ∵.
    设直线的解析式为,
    则有,解得:,
    ∴直线的解析式为.
    ∵点在直线上,点在直线上,点的横坐标为,轴,
    ∴,
    当时,;
    当时,.
    故与的函数解析式为.
    本题考查待定系数法求函数解析式,坐标系中三角形面积的算法以及线段长度的算法,在计算的时注意分类讨论.
    26、解:(1)﹣m(1﹣m)2;(2).
    【解析】
    (1)先提取公因式−m,再利用完全平方公式分解可得;
    (2)先计算括号内分式的加减运算,再将除法转化为乘法,继而约分可得.
    【详解】
    解:(1)原式=﹣m(1﹣2m+m2)=﹣m(1﹣m)2;
    (2)原式=.
    本题主要考查分式的混合运算,解题的关键是熟练掌握分式的混合运算顺序和运算法则及因式分解的基本步骤.
    题号





    总分
    得分
    年龄组
    12岁
    13岁
    14岁
    15岁
    参赛人数
    5
    19
    13
    13

    相关试卷

    2024年河南省信阳市浉河区第九中学数学九上开学检测试题【含答案】:

    这是一份2024年河南省信阳市浉河区第九中学数学九上开学检测试题【含答案】,共18页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。

    2024年河南省信阳市浉河区中考三模数学试题:

    这是一份2024年河南省信阳市浉河区中考三模数学试题,共16页。

    2023-2024学年河南省信阳市浉河区第九中学九年级数学第一学期期末达标检测模拟试题含答案:

    这是一份2023-2024学年河南省信阳市浉河区第九中学九年级数学第一学期期末达标检测模拟试题含答案,共7页。试卷主要包含了考生要认真填写考场号和座位序号,一人乘雪橇沿如图所示的斜坡,如果两个相似三角形的相似比是1等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map