搜索
    上传资料 赚现金
    英语朗读宝

    2025届河南周口地区洪山乡联合中学九年级数学第一学期开学统考试题【含答案】

    2025届河南周口地区洪山乡联合中学九年级数学第一学期开学统考试题【含答案】第1页
    2025届河南周口地区洪山乡联合中学九年级数学第一学期开学统考试题【含答案】第2页
    2025届河南周口地区洪山乡联合中学九年级数学第一学期开学统考试题【含答案】第3页
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2025届河南周口地区洪山乡联合中学九年级数学第一学期开学统考试题【含答案】

    展开

    这是一份2025届河南周口地区洪山乡联合中学九年级数学第一学期开学统考试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)若,,则代数式的值为
    A.1B.C.D.6
    2、(4分)在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:
    则这些运动员成绩的中位数、众数分别为
    A.、B.、C.、D.、
    3、(4分)一元二次方程的解是( )
    A.0B.4C.0或4D.0或-4
    4、(4分)在方差公式中,下列说法不正确的是( )
    A.n是样本的容量B.是样本个体C.是样本平均数D.S是样本方差
    5、(4分)小东一家自驾车去某地旅行,手机导航系统推荐了两条线路,线路一全程75km,线路二全程90km,汽车在线路二上行驶的平均时速是线路一上车速的1.8倍,线路二的用时预计比线路一用时少半小时,如果设汽车在线路一上行驶的平均速度为xkm/h,则下面所列方程正确的是( )
    A.B.C.D.
    6、(4分)下列运算中正确的是( )
    A.+=B.
    C.D.
    7、(4分)若2019个数、、、…、满足下列条件:,,,…,,则( )
    A.-5047B.-5045C.-5040D.-5051
    8、(4分)一组数据:2,3,4,x中若中位数与平均数相等,则数x不可能是( )
    A.1B.2C.3D.5
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,过点N(0,-1)的直线y=kx+b与图中的四边形ABCD有不少于两个交点,其中A(2,3)、B(1,1)、C(4,1)、D(4,3),则k的取值范围____________
    10、(4分)如图,在四边形中, 是边的中点,连接并延长,交的延长线与点, ,请你添加一个条件(不需要添加任何线段或字母),使之能推出四边形为平行四边形,你添加的条件是_________,并给予证明.
    11、(4分)12位参加歌唱比赛的同学的成绩各不相同,按成绩取前6名进入决赛,如果小亮知道了自己的成绩后,要判断能否进入决赛,在平均数、众数、中位数和方差四个统计量中,小亮应该最关注的一个统计量是_____.
    12、(4分)直角三角形的两边为3和4,则该三角形的第三边为__________.
    13、(4分)已知正方形的对角线为4,则它的边长为_____.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,以四边形ABCD的边AB、AD为边分别向外侧作等边三角形ABF和ADE,连接BE、DF.
    (1)当四边形ABCD为正方形时(如图1),则线段BE与DF的数量关系是 .
    (2)当四边形ABCD为平行四边形时(如图2),问(1)中的结论是否还成立?若成立,请证明;若不成立,请说明理由.
    15、(8分)如图,已知:AB∥CD,BE⊥AD,垂足为点E,CF⊥AD,垂足为点F,并且AE=DF.
    求证:四边形BECF是平行四边形.
    16、(8分)已知四边形为菱形,,,的两边分别与射线、相交于点、,且.
    (1)如图1,当点是线段的中点时,请直接写出线段与之间的数量关系;
    (2)如图2,当点是线段上的任意一点(点不与点、重合)时,求证:;
    (3)如图3,当点在线段的延长线上,且时,求线段的长.
    17、(10分)如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.
    (1)求证:AE=DF;
    (2)四边形AEFD能够成为菱形吗?如果能,求出t的值,如果不能,说明理由;
    (3)在运动过程中,四边形BEDF能否为正方形?若能,求出t的值;若不能,请说明理由.
    18、(10分)(1)因式分解:4m2-9n2 ;(2)先化简,再求值:,其中x=2
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)已知a=b﹣2,则代数式的值为_____.
    20、(4分)下列命题:
    ①矩形的对角线互相平分且相等;
    ②对角线相等的四边形是矩形;
    ③菱形的每一条对角线平分一组对角;
    ④一条对角线平分一组对角的平行四边形是菱形.
    其中正确的命题为________(注:把你认为正确的命题序号都填上)
    21、(4分)如图,△ABC中,E为BC的中点,AD平分∠BAC,BD⊥AD,若AB=10,AC=16,则DE= ___________.
    22、(4分)如图,一次函数y=kx+b的图象经过A、B两点,与x轴交于点C,则此一次函数的解析式为__________,△AOC的面积为_________.
    23、(4分)甲、乙两人进行射击测试,每人射击10次.射击成绩的平均数相同,射击成绩的方差分别为S甲2=5,S乙2=3.5,则射击成绩比较稳定的是_____(填“甲”或“乙“).
    二、解答题(本大题共3个小题,共30分)
    24、(8分)某商场计划从厂家购进甲、乙两种不同型号的电视机,已知进价分别为:甲种每台1500元,乙种每台2100元.
    (1)若商场同时购进这两种不同型号的电视机50台,金额不超过76000元,商场有几种进货方案,并写出具体的进货方案.
    (2)在(1)的条件下,若商场销售一台甲、乙型号的电视机的销售价分别为1650元、2300元,以上进货方案中,哪种进货方案获利最多?最多为多少元?
    25、(10分)在△ABC中,AB=BC=2,∠ABC=120°,将△ABC绕点B顺时针旋转角α(0°<α<90°)得△A1BC1,A1B交AC于点E,A1C1分别交AC、BC于D、F两点.
    (1)如图1,观察并猜想,在旋转过程中,线段BE与BF有怎样的数量关系?并证明你的结论;
    (2)如图2,当α=30°时,试判断四边形BC1DA的形状,并说明理由.

    26、(12分)如图,一架5米长的梯子AB斜靠在一面墙上,梯子底端B到墙底的垂直距离BC为3米.
    (1)求这个梯子的顶端A到地面的距离AC的值;
    (2)如果梯子的顶端A沿墙AC竖直下滑1米到点D处,求梯子的底端B在水平方向滑动了多少米?
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、C
    【解析】
    直接提取公因式将原式分解因式,进而将已知数值代入求出答案.
    【详解】
    ,,

    故选:.
    此题主要考查了提取公因式法分解因式,正确分解因式是解题关键.
    2、C
    【解析】
    根据中位数和众数的概念进行求解.
    【详解】
    解:将数据从小到大排列为:1.50,150,1.60,1.60,160,1.65,1.65, 1.1,1.1,1.1,1.75,1.75,1.75,1.75,1.80
    众数为:1.75;
    中位数为:1.1.
    故选C.
    本题考查1.中位数;2.众数,理解概念是解题关键.
    3、C
    【解析】
    对左边进行因式分解,得x(x-1)=0,进而用因式分解法解答.
    【详解】
    解:因式分解得,x(x-1)=0,
    ∴x=0或x-1=0,
    ∴x=0或x=1.
    故选C.
    本题考查了用因式分解法解一元二次方程,因式分解法是解一元二次方程的一种简单方法.但在解决类似本题的题目时,往往容易直接约去一个x,而造成漏解.
    4、D
    【解析】
    根据方差公式中各个量的含义直接得到答案.
    【详解】
    A,B,C都正确;是样本方差,故D选项错误.
    故选D.
    5、A
    【解析】
    设汽车在线路一上行驶的平均速度为xkm/h,则在线路二上行驶的平均速度为1.8xkm/h,根据线路二的用时预计比线路一用时少半小时,列方程即可.
    【详解】
    设汽车在线路一上行驶的平均速度为xkm/h,则在线路二上行驶的平均速度为1.8xkm/h,
    由题意得:,
    故选A.
    本题考查了由实际问题抽象出分式方程,解答本题的关键是,读懂题意,设出未知数,找出合适的等量关系,列出方程.
    6、D
    【解析】
    根据二次根式的加法、混合运算以及二次根式的化简等知识逐一进行分析即可得.
    【详解】
    A. +=2+3=5,故A选项错误;
    B. =2,故B选项错误;
    C. ,故C选项错误;
    D. ,正确,
    故选D.
    本题考查了二次根式的混合运算以及二次根式的化简等知识,熟练掌握各运算的运算法则是解题的关键.
    7、A
    【解析】
    通过前面几个数的计算,根据数的变化可得出从第3个数开始,按-2,-3依次循环,按此规律即可得出的值,
    【详解】
    解:依题意,得:,





    ……
    由上可知,这2019个数从第三个数开始按−2,−3依次循环,
    故这2019个数中有1个2,1个−7,1009个−2,1008个−3,
    ∴=2−7−2×1009−3×1008=−5047,
    故选:A.
    本题主要考查了规律型:数字的变化类,找到规律是解题的关键.
    8、B
    【解析】
    因为中位数的值与大小排列顺序有关,而此题中x的大小位置未定,故应该分类讨论x所处的所有位置情况:从小到大(或从大到小)排列在中间(在第二位或第三位结果不影响);结尾;开始的位置.
    【详解】
    (1)将这组数据从小到大的顺序排列为2,3,x,4,
    处于中间位置的数是3,x,
    那么由中位数的定义可知,这组数据的中位数是(3+x)÷2,
    平均数为(2+3+4+x)÷4,
    ∴(3+x)÷2=(2+3+4+x)÷4,
    解得x=3,大小位置与3对调,不影响结果,符合题意;
    (2)将这组数据从小到大的顺序排列后2,3,4,x,
    中位数是(3+4)÷2=3.1,
    此时平均数是(2+3+4+x)÷4=3.1,
    解得x=1,符合排列顺序;
    (3)将这组数据从小到大的顺序排列后x,2,3,4,
    中位数是(2+3)÷2=2.1,
    平均数(2+3+4+x)÷4=2.1,
    解得x=1,符合排列顺序.
    ∴x的值为1、3或1.
    故选B.
    本题考查的知识点是结合平均数确定一组数据的中位数,解题关键是要明确中位数的值与大小排列顺序有关.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、<k≤2.
    【解析】
    直线y=kx+b过点N(0,-2),则b=-2,y=kx-2.当直线y=kx-2的图象过A点时,求得k的值;当直线y=kx-2的图象过B点时,求得k的值;当直线y=kx-2的图象过C点时,求得k的值,最后判断k的取值范围.
    【详解】
    ∵直线y=kx+b过点N(0,-2),
    ∴b=-2,
    ∴y=kx-2.
    当直线y=kx-2的图象过A点(2,3)时,
    2k-2=3,k=2;
    当直线y=kx-2的图象过B点(2,2)时,
    k-2=2,k=2;
    当直线y=kx-2的图象过C点(4,2)时,
    4k-2=2,k=,
    ∴k的取值范围是<k≤2.
    故答案为<k≤2.
    本题主要考查了运用待定系数法求一次函数解析式,解题时注意:求正比例函数y=kx,只要一对x,y的值;而求一次函数y=kx+b,则需要两组x,y的值.
    10、添加的条件是:∠F=∠CDE
    【解析】
    由题目的已知条件可知添加∠F=∠CDE,即可证明△DEC≌△FEB,从而进一步证明DC=BF=AB,且DC∥AB,进而证明四边形ABCD为平行四边形.
    【详解】
    条件是:∠F=∠CDE,
    理由如下:
    ∵∠F=∠CDE
    ∴CD∥AF
    在△DEC与△FEB中,

    ∴△DEC≌△FEB
    ∴DC=BF,∠C=∠EBF
    ∴AB∥DC
    ∵AB=BF
    ∴DC=AB
    ∴四边形ABCD为平行四边形
    故答案为:∠F=∠CDE.
    本题是一道探索性的试题,考查了平行四边形的判定,熟练掌握平行四边形的判定方法是解题的关键.
    11、中位数
    【解析】
    参赛选手要想知道自己是否能进入前6名,只需要了解自己的成绩与全部成绩的中位数的大小即可.
    【详解】
    解:由于总共有12个人,且他们的分数互不相同,要判断是否进入前6名,只要把自己的成绩与中位数进行大小比较.故应知道中位数的多少即可,故答案为:中位数.
    本题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.
    12、5或
    【解析】
    本题已知直角三角形的两边长,但未明确这两条边是直角边还是斜边,因此两条边中的较长边4既可以是直角边,也可以是斜边,所以求第三边的长必须分类讨论,即4是斜边或直角边的两种情况,然后利用勾股定理求解.
    【详解】
    解:设第三边为,
    (1)若4是直角边,则第三边是斜边,由勾股定理得:
    ,所以;
    (2)若4是斜边,则第三边为直角边,由勾股定理得:
    ,所以;
    所以第三边的长为5或.
    故答案为:5或.
    本题考查勾股定理,解题的关键是熟练掌握勾股定理,并且分情况讨论.
    13、.
    【解析】
    根据正方形的性质和勾股定理求边长即可.
    【详解】
    ∵四边形ABCD是正方形,∴AO=DOAC4=2,AO⊥DO,∴△AOD是直角三角形,∴AD.
    故答案为:2.
    本题考查了勾股定理及正方形性质,属于基础题,比较简单.
    三、解答题(本大题共5个小题,共48分)
    14、(1)BE=DF(或相等);(2)成立.证明见解析.
    【解析】
    (1)根据正方形的性质和等边三角形性质得:AB=AD,∠BAD=90°,AF=AB,AE=AD,∠BAF=∠DAE=60°,再根据全等三角形判定和性质即可.
    (2)先利用平行四边形性质和等边三角形性质,再运用全等三角形判定和性质即可.
    【详解】
    解:(1)BE=DF(或相等)如图1,
    ∵四边形ABCD为正方形
    ∴AB=AD,∠BAD=90°
    ∵△ABF、△ADE都是等边三角形
    ∴AF=AB,AE=AD,∠BAF=∠DAE=60°
    ∴∠BAE=∠BAD+∠DAE=150°,∠DAF=∠BAD+∠BAF=150°
    ∴∠BAE=∠DAF
    ∵AB=AF=AE=AD
    ∴△ABE≌△AFD(SAS)
    ∴BE=DF
    故答案为BE=DF或相等;
    (2)成立.
    证明:如图2,
    ∵△AFB为等边三角形
    ∴AF=AB,∠FAB=60°
    ∵△ADE为等边三角形,
    ∴AD=AE,∠EAD=60°
    ∴∠FAB+∠BAD=∠EAD+∠BAD,
    即∠FAD=∠BAE.
    在△AFD和△ABE中,

    ∴△AFD≌△ABE(SAS),
    ∴BE=DF.
    本题考查了正方形、平行四边形、等边三角形、全等三角形的判定与性质;解题时要熟练掌握和运用所学性质定理和判定定理.
    15、证明见详解.
    【解析】
    通过全等三角形(△AEB≌△DFC)的对应边相等证得BE=CF,由“在同一平面内,同垂直于同一条直线的两条直线相互平行”证得BE∥CF.则四边形BECF是平行四边形.
    【详解】
    证明:∵BE⊥AD,CF⊥AD,
    ∴∠AEB=∠DFC=90°,
    ∵AB∥CD,
    ∴∠A=∠D,
    在△AEB与△DFC中,
    ∴△AEB≌△DFC(ASA),
    ∴BE=CF.
    ∵BE⊥AD,CF⊥AD,
    ∴BE∥CF.
    ∴四边形BECF是平行四边形.
    本题考查了平行四边形的判定、全等三角形的判定与性质.一组对边平行且相等的四边形是平行四边形.
    16、(1);(2)见解析;(3).
    【解析】
    (1)连接AC,先证△ABC是等边三角形,再由题意得出AE⊥BC,∠B=60°求解可得;
    (2)证△BAE≌△CAF即可得;
    (3)作AG⊥BC,由∠EAB=15°,∠ABC=60°知∠AEB=45°,根据AG=2得EG=AG=2,EB=EG-BG=2-2,再证△AEB≌△AFC知EB=FC,由FD=FC+CD=EB+CD可得答案.
    【详解】
    解:(1)如图1,连接AC,
    ∵四边形ABCD是菱形,
    ∴AB=BC,
    又∵∠ABC=60°,
    ∴△ABC是等边三角形,
    ∵E是BC中点,
    ∴AE⊥BC,BE=BC=AB
    在Rt△ABE中,AE=BEtanB=BE;
    (2)证明:连接,如图2中,
    ∵四边形是菱形,,
    ∴与都是等边三角形,
    ∴,.
    ∵,
    ∴,
    在和中,

    ∴.
    ∴.
    (3)解:连接,过点作于点,如图3所示,
    ∵,,
    ∴.
    在中,
    ∵,,
    ∴,
    ∴.
    在中,
    ∵,,
    ∴,
    ∴.
    由(2)得,,
    则,
    ∵,
    ∴,
    可得,
    ∴,
    ∴.
    考查四边形的综合问题,解题的关键是掌握菱形的性质、等边三角形与全等三角形的判定与性质等知识点.
    17、(1)证明见解析;(2)当t=10时,四边形AEFD是菱形;(3)四边形BEDF不能为正方形,理由见解析.
    【解析】
    (1)由已知条件可得RT△CDF中∠C=30°,即可知DF= CD=AE=2t;
    (2)由(1)知DF∥AE且DF=AE,即四边形ADFE是平行四边形,若构成菱形,则邻边相等即AD=AE,可得关于t的方程,求解即可知;
    (3)四边形BEDF不为正方形,若该四边形是正方形即∠EDF=90°,即DE∥AB,此时AD=2AE=4t,根据AD+CD=AC求得t的值,继而可得DF≠BF,可得答案.
    【详解】
    (1)∵Rt△ABC中,∠B=90°,∠A=60°,
    ∴∠C=90°−∠A=30°.
    又∵在Rt△CDF中,∠C=30°,CD=4t
    ∴DF=CD=2t,
    ∴DF=AE;
    (2)∵DF∥AB,DF=AE,
    ∴四边形AEFD是平行四边形,
    当AD=AE时,四边形AEFD是菱形,
    即60−4t=2t,解得:t=10,
    即当t=10时,四边形AEFD是菱形;
    (3)四边形BEDF不能为正方形,理由如下:
    当∠EDF=90°时,DE∥BC.
    ∴∠ADE=∠C=30°
    ∴AD=2AE
    ∵CD=4t,
    ∴DF=2t=AE,
    ∴AD=4t,
    ∴4t+4t=60,
    ∴t= 时,∠EDF=90°
    但BF≠DF,
    ∴四边形BEDF不可能为正方形。
    此题考查四边形综合题,解题关键在于得到DF= CD=AE=2t
    18、(1) (2)2
    【解析】
    (1)根据平方差公式因式分解即可.
    (2)首先将其化简,在代入计算即可.
    【详解】
    (1)
    (2)
    代入x=2,原式=
    本题主要考查因式分解,这是基本知识,应当熟练掌握.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、1
    【解析】
    由已知等式得出,代入到原式计算可得答案.
    【详解】
    解:,
    故答案为:1.
    本题主要考查了完全平方的运算,其中熟练掌握完全平方公式是解题的关键.
    20、①③④
    【解析】
    根据正方形、平行四边形、菱形和矩形的判定,对选项一一分析,选择正确答案.
    【详解】
    ①矩形的对角线互相平分且相等,故正确;
    ②对角线相等的平行四边形是矩形,故错误;
    ③菱形的每一条对角线平分一组对角,这是菱形的一条重要性质,故正确;
    ④一条对角线平分一组对角的平行四边形是菱形,故正确.
    故答案为①③④.
    考查了正方形、平行四边形、菱形和矩形的判定方法.解答此题的关键是熟练掌握运用这些判定.
    21、1
    【解析】
    延长BD交AC于H,证明△ADB≌△ADH,根据全等三角形的性质得到AH=AB=10,BD=DH,根据三角形中位线定理计算即可.
    【详解】
    延长BD交AC于H,
    在△ADB和△ADH中,

    ∴△ADB≌△ADH(ASA)
    ∴AH=AB=10,BD=DH,
    ∴HC=AC-AH=6,
    ∵BD=DH,BE=EC,
    ∴DE=HC=1,
    故答案为:1.
    本题考查的是三角形中位线定理、全等三角形的判定和性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.
    22、y=x+2 1
    【解析】
    一次函数y=kx+b的图象经过A、B两点,即A(2,1),B(0,2),代入可求出函数关系式.再根据三角形的面积公式,得出△AOC的面积.
    【详解】
    解:一次函数y=kx+b的图象经过A、B两点,即A(2,1),B(0,2),
    与x轴交于点C(-2,0),
    根据一次函数解析式的特点,可得出方程组,解得
    则此一次函数的解析式为y=x+2,
    △AOC的面积=|-2|×1÷2=1.
    则此一次函数的解析式为y=x+2,△AOC的面积为1.
    故答案为:y=x+2;1.
    本题考查的是待定系数法求一次函数的解析式,解答本题的关键是掌握点在函数解析式上,点的横纵坐标就适合这个函数解析式.
    23、乙.
    【解析】
    根据方差反应了数据的波动情况,即可完成作答。
    【详解】
    解:因为S甲2=5>S乙2=3.5,即乙比较稳定,故答案为:乙。
    本题考查了方差在数据统计中的作用,即方差是反映数据波动大小的量。
    二、解答题(本大题共3个小题,共30分)
    24、(1)有2种进货方案:方案一:是购进甲种型号的电视机49台,乙种型号的电视机1台;方案二:是甲种型号的电视机1台,乙种型号的电视机0台;(2)方案一的利润大,最多为751元.
    【解析】
    (1)设购进甲种型号的电视机x台,则乙种型号的电视机y台.数量关系为:两种不同型号的电视机1台,金额不超过76000元;
    (2)根据利润=数量×(售价-进价),列出式子进行计算,即可得到答案.
    【详解】
    解:(1)设购进甲种型号的电视机x台,则乙种型号的电视机(1-x)台.则
    110x+2100(1-x)≤76000,
    解得:x≥48.
    则1≥x≥48.
    ∵x是整数,
    ∴x=49或x=1.
    故有2种进货方案:
    方案一:是购进甲种型号的电视机49台,乙种型号的电视机1台;
    方案二:是甲种型号的电视机1台,乙种型号的电视机0台;
    (2)方案一的利润为:49×(161-110)+(2300-2100)=751(元)
    方案二的利润为:1×(161-110)=710(元).
    ∵751>710
    ∴方案一的利润大,最多为751元.
    本题考查了一元一次不等式的应用.解决问题的关键是读懂题意,依题意列出不等式进行求解.
    25、(1)BE=DF;(2)四边形BC1DA是菱形.
    【解析】
    (1)由AB=BC得到∠A=∠C,再根据旋转的性质得AB=BC=BC1,∠A=∠C=∠C1,∠ABE=∠C1BF,则可证明△ABE≌△C1BF,于是得到BE=BF
    (2)根据等腰三角形的性质得∠A=∠C=30°,利用旋转的性质得∠A1=∠C1=30°,∠ABA1=∠CBC1=30°,则利用平行线的判定方法得到A1C1∥AB,AC∥BC1,于是可判断四边形BC1DA是平行四边形,然后加上AB=BC1可判断四边形BC1DA是菱形.
    【详解】
    (1)解:BE=DF.理由如下:
    ∵AB=BC,
    ∴∠A=∠C,
    ∵△ABC绕点B顺时针旋转角α(0°<α<90°)得△A1BC1,
    ∴AB=BC=BC1,∠A=∠C=∠C1,∠ABE=∠C1BF,
    在△ABE和△C1BF中

    ∴△ABE≌△C1BF,
    ∴BE=BF
    (2)解:四边形BC1DA是菱形.理由如下:
    ∵AB=BC=2,∠ABC=120°,
    ∴∠A=∠C=30°,
    ∴∠A1=∠C1=30°,
    ∵∠ABA1=∠CBC1=30°,
    ∴∠ABA1=∠A1,∠CBC1=∠C,
    ∴A1C1∥AB,AC∥BC1,
    ∴四边形BC1DA是平行四边形.
    又∵AB=BC1,
    ∴四边形BC1DA是菱形
    本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了菱形的判定方法.
    26、(1)4(2)1
    【解析】
    (1)在直角三角形ABC中,利用勾股定理即可求出AC的长;
    (2)首先求出CD的长,利用勾股定理可求出CE的长,进而得到BE=CE-CB的值.
    【详解】
    (1)在Rt△ABC中,由勾股定理得AC2+CB2=AB2,
    即AC2+32=52,
    所以AC=4(m),
    即这个梯子的顶端A到地面的距离AC为4m;
    (2)DC=4-1=3(m),DE=5=m,
    在Rt△DCE中,由勾股定理得DC2+CE2=DE2,
    即32+CE2=52,
    所以CE=5(m),
    BE=CE-CB=4-3=1(m),
    即梯子的底端B在水平方向滑动了1m.
    本题考查了勾股定理在实际生活中的应用,本题中根据梯子长不会变这一关系进行求解是解题的关键.
    题号





    总分
    得分
    成绩
    人数
    2
    3
    2
    3
    4
    1

    相关试卷

    2024-2025学年河南周口地区洪山乡联合中学数学九上开学监测模拟试题【含答案】:

    这是一份2024-2025学年河南周口地区洪山乡联合中学数学九上开学监测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    河南周口地区洪山乡联合中学2023-2024学年九年级数学第一学期期末质量跟踪监视模拟试题含答案:

    这是一份河南周口地区洪山乡联合中学2023-2024学年九年级数学第一学期期末质量跟踪监视模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,cs60°的值等于等内容,欢迎下载使用。

    河南周口地区洪山乡联合中学2023-2024学年数学九年级第一学期期末联考试题含答案:

    这是一份河南周口地区洪山乡联合中学2023-2024学年数学九年级第一学期期末联考试题含答案,共8页。试卷主要包含了已知,则下列结论一定正确的是,对于二次函数y=﹣等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map