终身会员
搜索
    上传资料 赚现金

    2025届湖北恩施崔坝中学数学九年级第一学期开学统考模拟试题【含答案】

    立即下载
    加入资料篮
    2025届湖北恩施崔坝中学数学九年级第一学期开学统考模拟试题【含答案】第1页
    2025届湖北恩施崔坝中学数学九年级第一学期开学统考模拟试题【含答案】第2页
    2025届湖北恩施崔坝中学数学九年级第一学期开学统考模拟试题【含答案】第3页
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2025届湖北恩施崔坝中学数学九年级第一学期开学统考模拟试题【含答案】

    展开

    这是一份2025届湖北恩施崔坝中学数学九年级第一学期开学统考模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,在▱ABCD中,连接AC,∠ABC=∠CAD=45°,AB=2,则BC的长是( )
    A.B.2C.2D.4
    2、(4分)若x>y,则下列式子中错误的是( )
    A.﹣3x>﹣3yB.3x>3yC.x﹣3>y﹣3D.x+3>y+3
    3、(4分)在平面直角坐标系中,点B的坐标是(4,﹣1),点A与点B关于x轴对称,则点A的坐标是( )
    A.(4,1)B.(﹣1,4)C.(﹣4,﹣1)D.(﹣1,﹣4)
    4、(4分)函数y=中,自变量x的取值范围是( )
    A.x≥1B.x>1C.x≥1且x≠2D.x≠2
    5、(4分)在下列式子中,x可以取1和2的是( )
    A.B.C.D.
    6、(4分)若一个多边形的内角和是900°,则这个多边形的边数是( )
    A.5 B.6 C.7 D.8
    7、(4分)如图,在▱ABCD中,已知,,AE平分交BC于点E,则CE长是
    A.8cmB.5cmC.9cmD.4cm
    8、(4分)如图,在正方形 ABCD 中,BD=2,∠DCE 是正方形 ABCD 的外角,P 是∠DCE 的角平分线 CF 上任意一点,则△PBD 的面积等于 ( )
    A.1B.1.5C.2D.2.5
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,在ABCD中,对角线AC,BD相交于点O,若再增加一个条件,就可得出ABCD是菱形,则你添加的条件是___________.
    10、(4分)数据2,4,3,x,7,8,10的众数为3,则中位数是_____.
    11、(4分)若关于x的方程产生增根,那么 m的值是______.
    12、(4分)在平面直角坐标系xOy中,已知A(0,1),B(1,0), C(3,1),若以A、B、C、D为顶点的四边形是平行四边形,则点D的坐标是_____________.
    13、(4分)如图,已知△ABC∽△ADB,若AD=2,CD=2,则AB的长为_____.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,在菱形ABCD中,AB=4cm,∠BAD=60°.动点E、F分别从点B、D同时出发,以1cm/s的速度向点A、C运动,连接AF、CE,取AF、CE的中点G、H,连接GE、FH.设运动的时间为ts(0<t<4).
    (1)求证:AF∥CE;
    (2)当t为何值时,四边形EHFG为菱形;
    (3)试探究:是否存在某个时刻t,使四边形EHFG为矩形,若存在,求出t的值,若不存在,请说明理由.
    15、(8分)王先生准备采购一批(大于100条)某种品牌的跳绳,采购跳绳有在实体店和网店购买两种方式,通过洽谈,获得了以下信息:
    (1)请分别写出王先生在实体店、网店购买跳绳所需的资金y1、y2元与购买的跳绳数x(x>100)条之间的函数关系式;
    (2)王先生选取哪种方式购买跳绳省钱?
    16、(8分)某工厂新开发生产一种机器,每台机器成本y(万元)与生产数量x(台)之间满足一次函数关系(其中10≤x≤70,且为整数),函数y与自变量x的部分对应值如表
    (1)求y与x之间的函数关系式;
    (2)市场调查发现,这种机器每月销售量z(台)与售价a(万元/台)之间满足如图所示的函数关系.
    ①该厂第一个月生产的这种机器40台都按同一售价全部售出,请求出该厂第一个月销售这种机器的总利润.(注:利润=售价﹣成本)
    ②若该厂每月生产的这种机器当月全部售出,则每个月生产多少台这种机器才能使每台机器的利润最大?
    17、(10分)如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F. 求证:△ABF是等腰三角形.
    18、(10分)化简求值:(﹣1)÷,其中a=2﹣ .
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)在菱形ABCD中,AE垂直平分BC,垂足为E,AB=6,则菱形ABCD的对角线BD的长是_____.
    20、(4分)如图在平面直角坐标系中,,,以为边作正方形,则点的坐标为___________.
    21、(4分)如图,过x轴上任意一点P作y轴的平行线,分别与反比例函数y=(x>0),y=﹣(x>0)的图象交于A点和B点,若C为y轴任意一点.连接AB、BC,则△ABC的面积为_____.
    22、(4分)小邢到单位附近的加油站加油,下图所示是他所用的加油机上的数据显示牌,则数据中的变量是______
    23、(4分)如图,已知点A(1,a)与点B(b,1)在反比例函数y=(x>0)图象上,点P(m,0)是x轴上的任意一点,若△PAB的面积为2,此时m的值是______.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,在四边形ABCD中,AB∥DC,边AD与BC不平行
    (1)若∠A=∠B,求证:AD=BC.
    (2)已知AD=BC,∠A=70°,求∠B的度数.
    25、(10分)如图,四边形OABC为矩形,点B坐标为(4,2),A,C分别在x轴,y轴上,点F在第一象限内,OF的长度不变,且反比例函数经过点F.
    (1)如图1,当F在直线y = x上时,函数图象过点B,求线段OF的长.
    (2)如图2,若OF从(1)中位置绕点O逆时针旋转,反比例函数图象与BC,AB相交,交点分别为D,E,连结OD,DE,OE.
    ①求证:CD=2AE.
    ②若AE+CD=DE,求k.
    ③设点F的坐标为(a,b),当△ODE为等腰三角形时,求(a+b)2的值.
    26、(12分)某批发商以每件50元的价格购进800件T恤,第一个月以单价80元销售,售出了200件;第二个月如果单价不变,预计仍可售出200件,批发商为增加销售量,决定降价销售,根据市场调查,单价每降低1元,可多售出10件,但最低单价应高于购进的价格;第二个月结束后,批发商将对剩余的T恤一次性清仓销售,清仓是单价为40元,设第二个月单价降低元.
    (1)填表:(不需化简)
    (2)如果批发商希望通过销售这批T恤获利9000元,那么第二个月的单价应是多少元?
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、C
    【解析】
    根据平行四边形的性质可得出CD=AB=、∠D=∠CAD=45°,由等角对等边可得出AC=CD=,再利用勾股定理即可求出BC的长度.
    【详解】
    解:∵四边形ABCD是平行四边形,
    ∴CD=AB=,BC=AD,∠D=∠ABC=∠CAD=45°,
    ∴AC=CD=,∠ACD=90°,即△ACD是等腰直角三角形,
    ∴BC=AD==1.
    故选B.
    本题考查了平行四边形的性质、等腰三角形的性质以及勾股定理,根据平行四边形的性质结合∠ABC=∠CAD=45°,找出△ACD是等腰直角三角形是解题的关键.
    2、A
    【解析】
    根据不等式的基本性质逐一判断即可.
    【详解】
    解:∵x>y,
    ∴A、﹣3x3y,正确,
    C、x﹣3>y﹣3,正确,
    D、x+3>y+3,正确,
    故答案为:A.
    本题考查了不等式的基本性质,解题的关键是熟知当不等式两边同时乘以一个负数,不等号的方向要改变.
    3、A
    【解析】
    【分析】直接利用关于x轴对称点的性质,横坐标不变纵坐标改变符号即可得出答案.
    【详解】∵点B的坐标是(4,﹣1),点A与点B关于x轴对称,
    ∴点A的坐标是:(4,1),
    故选A.
    【点睛】本题考查了关于x轴对称的点的坐标特征,正确把握横纵坐标的关系是解题关键.
    4、C
    【解析】
    试题分析:依题意得:x﹣1≥0且x﹣1≠0,
    解得x≥1且x≠1.
    故选C.
    考点:函数自变量的取值范围.
    5、B
    【解析】
    根据分式和二次根式有意义的条件即可求出答.
    【详解】
    解:A.x﹣1≠0,所以x≠1,故A不可以取1
    B.x﹣1≥0,所以x≥1,故B可以取1和2
    C.x﹣2≥0,所以x≥2,故C不可以取1
    D.x﹣2≠0,所以x≠2,故D不可以取2
    故选:B.
    本题考查的是分式和二次根式有意义的条件,熟练掌握二者是解题的关键.
    6、C
    【解析】
    根据多边形的内角和公式(n﹣2)•180°,列式求解即可.
    【详解】
    设这个多边形是n边形,根据题意得,
    (n﹣2)•180°=900°,
    解得n=1.
    故选:C.
    本题主要考查了多边形的内角和公式,熟记公式是解题的关键.
    7、B
    【解析】
    直接利用平行四边形的性质得出,,进而结合角平分线的定义得出,进而得出,求出EC的长即可.
    【详解】
    解:四边形ABCD是平行四边形,
    ,,
    平分交BC于点E,






    故选B.
    此题主要考查了平行四边形的性质以及角平分线的定义,正确得出是解题关键.
    8、A
    【解析】
    由于BD∥CF,以BD为底边,以BD边对应的高为边长计算三角形的面积即可.
    解:△PBD的面积等于 ×2×1=1.故选A.
    “点睛”考查了三角形面积公式以及代入数值求解的能力,注意平行线间三角形同底等高的情况.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、AB=BC或BC=CD或CD=AD或AD=AB或AC⊥BD或AB=BC=CD=DA
    【解析】
    根据一组邻边相等的平行四边形是菱形可得,添加的条件可以是:AB=BC或BC=CD或CD=AD或AD=AB;
    根据对角线互相垂直的平行四边形是菱形可得,添加的条件可以是:AC⊥BD;
    根据四边相等的平行四边形是菱形可得,添加的条件可以是:AB=BC=CD=DA.
    故答案是:AB=BC或BC=CD或CD=AD或AD=AB或AC⊥BD或AB=BC=CD=DA.
    10、1
    【解析】
    先根据众数是一组数据中出现次数最多的数据,求得x,再由中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.
    【详解】
    解:∵这组数据2,1,3,x,7,8,10的众数为3,
    ∴x=3,
    从小到大排列此数据为:2,3,3,1,7,7,10,
    处于中间位置的数是1,
    ∴这组数据的中位数是1;
    故答案为:1.
    本题主要考查数据统计中的众数和中位数的计算,关键在于根据题意求出未知数.
    11、1
    【解析】
    分式方程去分母转化为整式方程,根据分式方程有增根得到x-2=0,将x=2代入整式方程计算即可求出m的值.
    【详解】
    分式方程去分母得:x−1=m+2x−4,
    由题意得:x−2=0,即x=2,
    代入整式方程得:2−1=m+4−4,
    解得:m=1.
    故答案为:1.
    此题考查分式方程的增根,解题关键在于掌握分式方程中增根的意义.
    12、(-2,0)或(4,0)或(2,2)
    【解析】
    分三种情况:①BC为对角线时,②AB为对角线时,③AC为对角线时;由平行四边形的性质容易得出点D的坐标.
    【详解】
    解:分三种情况:①AB为对角线时,点D的坐标为(-2,0);
    ②BC为对角线时,点D的坐标为(4,0);
    ③AC为对角线时,点D的坐标为(2,2).
    综上所述,点D的坐标可能是(-2,0)或(4,0)或(2,2).
    故答案为(-2,0)或(4,0)或(2,2).
    本题考查平行四边形的性质、坐标与图形的性质;熟练掌握平行四边形的性质是解题的关键.
    13、2.
    【解析】
    利用相似三角形的性质即可解决问题.
    【详解】
    ∵△ABC∽△ADB,
    ∴,
    ∴AB2=AD•AC=2×4=8,
    ∵AB>0,
    ∴AB=2,
    故答案为:2.
    此题考查相似三角形的性质定理,相似三角形的对应边成比例.
    三、解答题(本大题共5个小题,共48分)
    14、(1)证明见解析;(2)t=1,(3)不存在某个时刻t,使四边形EHFG为矩形.
    【解析】
    (1)根据菱形的性质得到∠B=∠D,AD=BC,AB∥DC,推出△ADF≌△CBE,根据全等三角形的性质得到∠DFA=∠BEC,根据平行线的判定定理即可得到结论;
    (2)过D作DM⊥AB于M,连接GH,EF,推出四边形AECF是平行四边形,根据菱形的判定定理即可得到四边形EGFH是菱形,证得四边形DMEF是矩形,于是得到ME=DF=t列方程即可得到结论;
    (3)不存在,假设存在某个时刻t,使四边形EHFG为矩形,根据矩形的性质列方程即可得到结果.
    【详解】
    (1)证明:∵动点E、F同时运动且速度相等,
    ∴DF=BE,
    ∵四边形ABCD是菱形,
    ∴∠B=∠D,AD=BC,AB∥DC,
    在△ADF与△CBE中,

    ∴△ADF≌△CBE,
    ∴∠DFA=∠BEC,
    ∵AB∥DC,
    ∴∠DFA=∠FAB,
    ∴∠FAB=∠BEC,
    ∴AF∥CE;
    (2)过D作DM⊥AB于M,连接GH,EF,
    ∴DF=BE=t,
    ∵AF∥CE,AB∥CD,
    ∴四边形AECF是平行四边形,
    ∵G、H是AF、CE的中点,
    ∴GH∥AB,
    ∵四边形EGFH是菱形,
    ∴GH⊥EF,
    ∴EF⊥AB,∠FEM=90°,
    ∵DM⊥AB,
    ∴DM∥EF,
    ∴四边形DMEF是矩形,
    ∴ME=DF=t,
    ∵AD=4,∠DAB=60°,DM⊥AB,

    ∴BE=4﹣2﹣t=t,
    ∴t=1,
    (3)不存在,假设存在某个时刻t,使四边形EHFG为矩形,
    ∵四边形EHFG为矩形,
    ∴EF=GH,
    ∴EF2=GH2,
    即解得t=0,0<t<4,
    ∴与原题设矛盾,
    ∴不存在某个时刻t,使四边形EHFG为矩形.
    属于四边形的综合题,考查全等三角形的判定与性质,菱形的性质,矩形的判定等,掌握菱形的性质,矩形的判定是解题的关键.
    15、(1)y1=32x;y2=28x+1200;(2)当100<x<300时,在实体店购买省钱,当x=300时,在实体店和网店购买一样,当x>300时,在网店购买省钱.
    【解析】
    (1)根据题意和表格求得用这两种方式购买跳绳所需的资金y(元)与购买的跳绳数x(条)之间的函数关系式即可.(2)比较(1)中求出的两个函数的大小并求出x的范围即可.(3)令y=10000,可以求得两种方式分别可以购买的跳绳数,从而可以得到王先生用不超过10000元购买跳绳,他最多能购买多少条跳绳.
    【详解】
    (1)由题意可得:
    王先生在实体店购买跳绳所需的资金y1(元)与购买的跳绳数x(条)之间的函数关系式为:y1=40x×0.8=32x;
    王先生在网店购买跳绳所需的资金y2(元)与购买的跳绳数x(条)之间的函数关系式为:y2=40×100+(x-100)×40×0.7=28x+1200;
    (2)当y1>y2时,32x>28x+1200,
    解得x>300;
    当y1=y2时,32x=28x+1200,
    解得x=300;
    当y1<y2时,32x>28x+1200,
    解得x<300;
    ∴当100<x<300时,在实体店购买省钱,当x=300时,在实体店和网店购买一样,当x>300时,在网店购买省钱.
    本题考查一次函数的应用,明确题意,找出所求问题需要的条件,列出相应的函数关系式,会根据函数的值,求出相应的x的值是解题关键.
    16、 (1)y=-0.5x+65(10≤x≤70,且为整数);(2)①200万元;②10.
    【解析】
    (1)根据函数图象和图象中的数据可以求得y与x的函数关系式;
    (2)①根据函数图象可以求得z与a的函数关系式,然后根据题意可知x=40,z=40,从而可以求得该厂第一个月销售这种机器的总利润;
    ②根据题意可以得到每台的利润和台数之间的关系式,从而可以解答本题.
    【详解】
    解:(1)设y与x的函数关系式为y=kx+b,
    ,得,
    即y与x的函数关系式为y=-0.5x+65(10≤x≤70,且为整数);
    (2)①设z与a之间的函数关系式为z=ma+n,
    ,得,
    ∴z与a之间的函数关系式为z=-a+90,
    当z=40时,40=-a+90,得a=50,
    当x=40时,y=-0.5×40+65=45,
    40×50-40×45
    =2000-1800
    =200(万元),
    答:该厂第一个月销售这种机器的总利润为200万元;
    ②设每台机器的利润为w万元,
    W=(-x+90)-(-0.5x+65)=-x+25,
    ∵10≤x≤70,且为整数,
    ∴当x=10时,w取得最大值,
    答:每个月生产10台这种机器才能使每台机器的利润最大.
    故答案为(1)y=-0.5x+65(10≤x≤70,且为整数);(2)①200万元;②10.
    本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质解答.
    17、详见解析.
    【解析】
    根据已知条件易证△ADE≌△FCE,由全等三角形的性质可得AE=EF,已知BE⊥AE,根据等腰三角形三线合一的性质即可证明△ABF是等腰三角形
    【详解】
    ∵AD∥BC,
    ∴∠ADC=∠ECF,
    ∵E是CD的中点,
    ∴DE=EC.
    在△ADE与△FCE中, ,
    ∴△ADE≌△FCE(ASA),
    ∴AE=EF,
    ∵BE⊥AE,
    ∴△ABF是等腰三角形.
    本题考查了全等三角形的判定与性质、等腰三角形的判定与性质,利用全等三角形的性质证得AE=EF是解决问题的关键.
    18、,
    【解析】
    根据分式的减法和除法可以化简题目中的式子,然后将的值代入化简后的式子即可解答本题.
    【详解】
    解:

    当时,原式.
    本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、6
    【解析】
    先证明△ABC是等边三角形,得出AC=AB,再得出OA,根据勾股定理求出OB,即可得出BD.
    【详解】
    如图,
    ∵菱形ABCD中,AE垂直平分BC,
    ∴AB=BC,AB=AC,OA=AC,OB=BD,AC⊥BD,
    ∴AB=BC=AC=6,
    ∴OA=3,
    ∴OB=,
    ∴BD=2OB=6,
    故答案为:6.
    本题考查了菱形的性质、勾股定理的运用;熟练掌握菱形的性质,证明等边三角形和运用勾股定理求出OB是解决问题的关键.
    20、或
    【解析】
    当点C在AB上方时,过点C作CE⊥y轴于点E,易证△AOB≌△BEC(AAS),根据全等三角形的性质可得BE=AO=4,EC=OB=2,从而得到点C的坐标为(2,6),同理可得当点C在AB下方时,点C的坐标为:(-2,-2).
    【详解】
    解:如图所示,当点C在AB上方时,过点C作CE⊥y轴于点E,
    ∵,,四边形为正方形,
    ∴∠BEC=∠AOB=90°,BC=AB,
    ∵∠BCE+∠EBC=90°,∠OBA+∠EBC=90°,
    ∴∠BCE=∠OBA,
    ∴△AOB≌△BEC(AAS),
    ∴BE=AO=4,EC=OB=2,
    ∴OE=OB+BE=6,
    ∴此时点C的坐标为:(2,6),
    同理可得当点C在AB下方时,点C的坐标为:(-2,-2),
    综上所述,点C的坐标为:或
    故答案为:或.
    本题主要考查坐标与图形以及三角形全等的判定和性质,注意分情况讨论,不要漏解.
    21、
    【解析】
    【分析】设出点P坐标,分别表示点AB坐标,由题意△ABC面积与△ABO的面积相等,因此只要求出△ABO的面积即可得答案..
    【详解】设点P坐标为(a,0)
    则点A坐标为(a,),B点坐标为(a,﹣)
    ∴S△ABC=S△ABO =S△APO+S△OPB==,
    故答案为.
    【点睛】本题考查了反比例函数中比例系数k的几何意义,熟练掌握相关知识是解题的关键.
    22、金额与数量
    【解析】
    根据常量与变量的意义结合油的单价是不变的,而金额随着加油数量的变化在变化,据此即可得答案.
    【详解】
    常量是固定不变的量,变量是变化的量,
    单价是不变的量,而金额是随着数量的变化而变化,
    故答案为:金额与数量.
    本题考查了常量与变量,熟练掌握常量与变量的概念是解题的关键.
    23、﹣1或3
    【解析】
    把点A(1,a)与点B(b,1)代入反比例函数y=(x>0),求出A,B坐标,延长AB交x轴于点C,如图2,设直线AB的解析式为y=mx+n,求出点C的坐标,用割补法求出PC的值,结合点C的坐标即可.
    【详解】
    解:∵点A(1,a)与点B(b,1)在反比例函数y=(x>0)图象上,
    ∴a=2,b=2,
    ∴点A(1,2)与点B(2,1),
    延长AB交x轴于点C,如图2,
    设直线AB的解析式为y=mx+n,
    则有,
    解得,
    ∴直线AB的解析式为y=﹣x+1.
    ∵点C是直线y=﹣x+1与x轴的交点,
    ∴点C的坐标为(1,0),OC=1,
    ∵S△PAB=2,
    ∴S△PAB=S△PAC﹣S△PBC=×PC×2﹣×PC×1=PC=2,
    ∴PC=2.
    ∵C(1,0),P(m,0),
    ∴|m﹣1|=2,
    ∴m=﹣1或3,
    故答案为:﹣1或3.
    本题考查的是反比例函数,熟练掌握反比例函数图像上点的特征是解题的关键.
    二、解答题(本大题共3个小题,共30分)
    24、 (1)证明见解析;(2)∠B=70°.
    【解析】
    (1)过C作CE∥AD于点E,可证明四边形ADCE是平行四边形,根据平行四边形的性质可得AD=CE,根据AD∥CE,可得∠A=∠CEB,根据等量代换可得∠CEB=∠B,进而得到CE=BC,从而可得AD=BC;
    (2)过C作CE∥AD,可证明四边形ADCE是平行四边形,根据平行四边形的性质可得AD=CE,再由条件AD=BC可得CE=BC,根据等边对等角可得∠B=∠CEB,再根据平行线的性质可得∠A=∠CEB,利用等量代换可得∠B=∠A.
    【详解】
    (1) 证明:过C作CE∥AD于点E,
    ∵AB∥DC,CE∥AD
    ∴四边形ADCE是平行四边形,
    ∴AD=CE,
    ∵AD∥CE,
    ∴∠A=∠CEB,
    ∵∠A=∠B,
    ∴∠CEB=∠B,
    ∴CE=CB,
    ∴AD=CB;
    (2)过C作CE∥AD于点E,
    ∵AB∥DC,CE∥AD
    ∴四边形ADCE是平行四边形,
    ∴AD=CE,
    ∵AD=BC,
    ∴CE=CB,
    ∴∠B=∠CEB,
    ∵AD∥CE,
    ∴∠A=∠CEB,
    ∴∠B=∠A=70°.
    本题主要考查平行四边形的判定及性质,等腰三角形的性质,掌握平行四边形的性质是解题的关键.
    25、(1)OF =4;(2)①证明见解析;② k=;③96-16或36-4.
    【解析】
    分析(1)由y=经过点B (2,4).,求出k的值,再利用F在直线y = x,求出m的值,最后利用勾股定理求解即可;(2) ①利用反比例函数k的几何意义可求解; ②Rt△EBD中,分别用n表示出BD、BE、DE,再利用勾股定理解答即可; ③分三种情况讨论即可:OE=OD;
    OE=DE;OD=DE.
    详解:(1)∵F在直线y=x上
    ∴设F(m,m)
    作FM⊥x轴
    ∴FM=OM=m
    ∵y=经过点B (2,4).
    ∴k=8



    ∴OF =4;
    (2)①∵函数 的图象经过点D,E
    ∴,∵ OC=2,OA=4
    ∴CO=2AE
    ②由①得:CD=2AE
    ∴可设:CD=2n,AE=n
    ∴DE=CD+AE=3n
    BD=4-2n, BE=2-n
    在Rt△EBD,由勾股定理得:

    解得

    ③CD=2c,AE=c
    情况一:若OD=DE




    情况二:若OE=DE




    情况三:OE=OD 不存在.
    点睛:本题考查了反比例函数的性质,利用反比例函数的解析式求点的坐标,利用勾股定理得到方程,进而求出线段的长,注意解题时分类讨论的思想应用.
    26、解:(1),,
    (2)70元.
    【解析】
    (1)80-x,200+10x,800-200-(200+10x);
    (2)根据题意,得
    80×200+(80-x)(200+10x)+40[800-200-(200+10x)] -2×800=1.
    整理,得x2-20x+100=0,解这个方程得x1= x2=10,
    当x=10时,80-x=70>2.
    答:第二个月的单价应是70元.
    【详解】
    请在此输入详解!
    题号





    总分
    得分
    购买方式
    标价(元条)
    优惠条件
    实体店
    40
    全部按标价的8折出售
    网店
    40
    购买100或100条以下,按标价出售;购买100条以上,从101条开始按标价的7折出售(免邮寄费)
    x单位:台)
    10
    20
    30
    y(单位:万元/台)
    60
    55
    50

    相关试卷

    2024年湖北恩施崔坝中学数学九上开学质量检测试题【含答案】:

    这是一份2024年湖北恩施崔坝中学数学九上开学质量检测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年湖北恩施白杨九年级数学第一学期开学统考模拟试题【含答案】:

    这是一份2024年湖北恩施白杨九年级数学第一学期开学统考模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    湖北恩施崔坝中学2023-2024学年数学九上期末质量跟踪监视试题含答案:

    这是一份湖北恩施崔坝中学2023-2024学年数学九上期末质量跟踪监视试题含答案,共8页。试卷主要包含了要使有意义,则x的取值范围为等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map