2025届湖北省黄冈市五校数学九上开学监测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,将三个同样的正方形的一个顶点重合放置,如果°,°时,那么的度数是( )
A.15°B.25°C.30°D.45°
2、(4分)某班组织了一次读书活动,统计了10名同学在一周内的读书时间,他们一周内的读书时间累计如表,则这10名同学一周内累计读书时间的中位数是( )
A.8B.7C.9D.10
3、(4分)如图,动点P从出发,沿箭头所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角当点P第2018次碰到矩形的边时,点P的坐标为
A.B.C.D.
4、(4分)数据60,70,40,30这四个数的平均数是( )
A.40B.50C.60D.70
5、(4分)一条直线y=kx+b,其中k+b=﹣5、kb=6,那么该直线经过
A.第二、四象限B.第一、二、三象限C.第一、三象限D.第二、三、四象限
6、(4分)2022年将在北京﹣张家口举办冬季奥运会,北京将成为世界上第一个既举办夏季奥运会,又举办冬季奥运会的城市.某队要从两名选手中选取一名参加比赛,为此对这两名队员进行了五次测试,测试成绩如图所示:则下列说法中正确的是( )
A.SA2>SB2,应该选取B选手参加比赛
B.SA2<SB2,应该选取A选手参加比赛
C.SA2≥SB2,应该选取B选手参加比赛
D.SA2≤SB2,应该选取A选手参加比赛
7、(4分)如图,矩形中,分别是线段的中点,,动点沿的路线由点运动到点,则的面积是动点运动的路径总长的函数,这个函数的大致图象可能是( )
A.B.C.D.
8、(4分)分式有意义,x的取值范围是( )
A.x≠2B.x≠﹣2C.x=2D.x=﹣2
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知一元二次方程x2-6x+a =0有一个根为2,则另一根为_______.
10、(4分)若分式的值为0,则__.
11、(4分) 已知:如图,在正方形ABCD外取一点E,连接AE、BE、DE.过点A作AE的垂线交DE于点P.若AE=AP=1,BP=.下列结论:
①△APD≌△AEB;②点B到直线AE的距离为;
③S△APD+S△APB=+;④S正方形ABCD=4+.
其中正确结论的序号是_____.
12、(4分)如图所示,一次函数y=ax+b的图象与x轴相交于点(2,0),与y轴相交于点(0,4),结合图象可知,关于x的方程ax+b=0的解是_____.
13、(4分)若,则的取值范围为_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)计算:
(1)
(2).
15、(8分)某演唱会购买门票的方式有两种.
方式一:若单位赞助广告费10万元,则该单位所购门票的价格为每张0.02万元;
方式二:如图所示.
设购买门票x张,总费用为y万元,方式一中:总费用=广告赞助费+门票费.
(1)求方式一中y与x的函数关系式.
(2)若甲、乙两个单位分别采用方式一、方式二购买本场演唱会门票共400张,且乙单位购买超过100张,两单位共花费27.2万元,求甲、乙两单位各购买门票多少张?
16、(8分)如图,在中,AD是高,E、F分别是AB、AC的中点.
(1)求证:EF垂直平分AD;
(2)若四边形AEDF的周长为24,,求AB的长.
17、(10分)求不等式组的正整数解.
18、(10分)已知,如图,O为正方形对角线的交点,BE平分∠DBC,交DC于点E,延长BC到点F,使CF=CE,连结DF,交BE的延长线于点G,连结OG.
(1)求证:△BCE≌△DCF.
(2)判断OG与BF有什么关系,证明你的结论.
(3)若DF2=8-4,求正方形ABCD的面积?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)在中, 若的面积为1,则四边形的面积为______.
20、(4分)一个菱形的边长为5,一条对角线长为6,则这个菱形另一条对角线长为_____.
21、(4分)式子有意义的条件是__________.
22、(4分)如图,在平面直角坐标系中,边长不等的正方形依次排列,每个正方形都有一个顶点落在函数的图象上,从左向右第3个正方形中的一个顶点A的坐标为,阴影三角形部分的面积从左向右依次记为、、、、,则的值为______用含n的代数式表示,n为正整数
23、(4分)有一组数据:2,5,5,6,7,这组数据的平均数为_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)2017年5月31日,昌平区举办了首届初二年级学生“数学古文化阅读展示”活动,为表彰在本次活动中表现优秀的学生,老师决定在6月1日购买笔袋或彩色铅笔作为奖品.已知1个笔袋、2筒彩色铅笔原价共需44元;2个笔袋、3筒彩色铅笔原价共需73元.
(1)每个笔袋、每筒彩色铅笔原价各多少元?
(2)时逢“儿童节”,商店举行“优惠促销”活动,具体办法如下:笔袋“九折”优惠;彩色铅笔不超过10筒不优惠,超出10筒的部分“八折”优惠.若买x个笔袋需要y1元,买x筒彩色铅笔需要y2元.请用含x的代数式表示y1、y2;
(3)若在(2)的条件下购买同一种奖品95件,请你分析买哪种奖品省钱.
25、(10分)如图,正方形ABCD,点P为射线DC上的一个动点,点Q为AB的中点,连接PQ,DQ,过点P作PE⊥DQ于点E.
(1)请找出图中一对相似三角形,并证明;
(2)若AB=4,以点P,E,Q为顶点的三角形与△ADQ相似,试求出DP的长.
26、(12分)某公司对应聘者A,B进行面试,并按三个方面给应聘者打分,每方面满分20分,打分结果如下表:
根据实际需要,公司将专业知识、工作经验和仪表形象三项成绩得分按6:1:3的比例确定两人的成绩,通过计算说明谁将被录用.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
根据∠2=∠BOD+EOC-∠BOE,利用正方形的角都是直角,即可求得∠BOD和∠EOC的度数从而求解.
【详解】
∵∠BOD=90°-∠3=90°-30°=60°,
∠EOC=90°-∠1=90°-45°=45°,
又∵∠2=∠BOD+∠EOC-∠BOE,
∴∠2=60°+45°-90°=15°.
故选:A.
此题考查余角和补角,正确理解∠2=∠BOD+EOC-∠BOE这一关系是解题的关键.
2、C
【解析】
试题分析:根据中位数的概念求解.∵共有10名同学,∴第5名和第6名同学的读书时间的平均数为中位数,则中位数为:=1.
故选C.
考点:中位数.
3、C
【解析】
理解题意,由反射角与入射角的定义作出图形,观察出反弹6次为一个循环的规律,解答即可.
【详解】
如图,
经过6次反弹后动点回到出发点(0,3),
∵2018÷6=336…2,
∴当点P第2018次碰到矩形的边时为第336个循环组的第2次反弹,
点P的坐标为(7,4).
故选C.
本题考查了平面直角坐标系中点的坐标规律,首先作图,然后观察出每6次反弹为一个循环,据此解答即可.
4、B
【解析】
用四个数的和除以4即可.
【详解】
(60+70+40+30)÷4=200÷4=50.
故选B.
本题重点考查了算术平均数的计算,希望同学们要牢记公式,并能够灵活运用.
数据x1、x2、……、xn的算术平均数:=(x1+x2+……+xn).
5、D
【解析】
∵k+b=-5,kb=6,∴kb是一元二次方程的两个根.
解得,或.∴k<1,b<1.
一次函数的图象有四种情况:
①当,时,函数的图象经过第一、二、三象限;
②当,时,函数的图象经过第一、三、四象限;
③当,时,函数的图象经过第一、二、四象限;
④当,时,函数的图象经过第二、三、四象限.
∴直线y=kx+b经过二、三、四象限.故选D.
6、B
【解析】
根据方差的定义,方差越小数据越稳定.
【详解】
根据统计图可得出:SA2<SB2,
则应该选取A选手参加比赛;
故选:B.
本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
7、C
【解析】
根据题意分析△PAB的面积的变化趋势即可.
【详解】
根据题意当点P由E向C运动时,△PAB的面积匀速增加,当P由C向D时,△PAB的面积保持不变,当P由D向F运动时,△PAB的面积匀速减小但不为1.
故选C.
本题为动点问题的函数图象探究题,考查了一次函数图象的性质,分析动点到达临界点前后函数值变化是解题关键.
8、B
【解析】
分式中,分母不为零,所以x+2≠0,所以x≠-2
【详解】
解:因为有意义,所以x+2≠0,所以x≠-2,所以选B
本题主要考查分式有意义的条件
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
设方程另一根为t,根据根与系数的关系得到2+t=6,然后解一次方程即可.
【详解】
设方程另一根为t,
根据题意得2+t=6,
解得t=1.
故答案为1.
此题考查一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系,解题关键在于掌握方程的两根为x1,x2,则x1+x2=-.
10、2
【解析】
根据分式的值为零的条件即可求出答案.
【详解】
解:由题意可知:,
解得:,
故答案为:2;
本题考查分式的值为零,解题的关键是正确理解分式的值为零的条件,本题属于基础题型.
11、①③④
【解析】
由题意可得△ABE≌△APD,故①正确,可得∠APD=∠AEB=135°,则∠PEB=90°,由勾股定理可得BE,作BM⊥AE于M,可得△BEM是等腰直角三角形,
可得BM=EM=,故②错误,根据面积公式即可求S△APD+S△APB,S正方形ABCD,根据计算结果可判断.
【详解】
解:∵正方形ABCD
∴AB=AD,∠BAD=90°
又∵∠EAP=90°
∴∠BAE=∠PAD,AE=AP,AB=AD
∴△AEB≌△APD故①正确
作BM⊥AE于M,
∵AE=AP=1,∠EAP=90°
∴EP=,∠APE=45°=∠AEP
∴∠APD=135°
∵△AEP≌△APD,
∴∠AEB=135°
∴∠BEP=90°
∴BE
∵∠M=90°,∠BEM=45°
∴∠BEM=∠EBM=45°
∴BE=MB 且BE=,
∴BM=ME=,故②错误
∵S△APD+S△APB=S四边形AMBP﹣S△BEM
故③正确
∵S正方形ABCD=AB2=AE2+BE2
∴S正方形ABCD 故④正确
∴正确的有①③④
本题考查了正方形的性质,全等三角形的判定和性质,勾股定理,关键是构造直角三角形求出点B到直线AE的距离.
12、x=1
【解析】
【分析】一次函数y=ax+b的图象与x轴交点横坐标的值即为方程ax+b=0的解.
【详解】∵一次函数y=ax+b的图象与x轴相交于点(1,0),
∴关于x的方程ax+b=0的解是x=1,
故答案为:x=1.
【点睛】本题主要考查了一次函数与一元一次方程的关系.任何一元一次方程都可以转化为ax+b=0 (a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y=ax+b确定它与x轴的交点的横坐标的值.
13、
【解析】
根据二次根式的性质可知,开方结果大于等于0,于是1-a≥0,解不等式即可.
【详解】
∵,
∴1−a≥0,
∴a≤1,
故答案是a≤1.
本题考查二次根式的性质与化简,能根据任意一个非负数的算术平方根都大于等于0得出1−a≥0是解决本题的关键.
三、解答题(本大题共5个小题,共48分)
14、 (1)28﹣10;(2)3a﹣(+3)b.
【解析】
(1)利用完全平方公式计算;
(2)先把各二次根式化简为最简二次根式,然后合并即可.
【详解】
(1)原式=3﹣10+25=28﹣10;
(2)原式=3a+b﹣2b﹣3b
=3a﹣(+3)b.
此题考查二次根式的混合运算,解题关键在于掌握运算法则
15、(1);(2)甲、乙两单位购买门票分别为270张和130张.
【解析】
(1)根据题意即可直接写出方式一中y与x的函数关系式;
(2)先求出方式二x≥100时,直线解析式为,再设甲单位购买门票张,乙单位购买门票张,根据题意列出方程求出m即可.
【详解】
(1)解:根据题意得y1=0.02x+10
(2)解:当x≥100时,设直线解析式为y2=kx+b(k≠0),代入点(100,10)、(200,16)得解得;∴,
设甲单位购买门票张,乙单位购买门票张
根据题意可得:
解得m=270,得400-m=130;
答:甲、乙两单位购买门票分别为270张和130张.
此题主要考查一次函数的应用,解题的关键是根据函数图像求出解析式.
16、(1)证明过程见解析;(2)AB的长为15.
【解析】
(1)根据线段两端点距离相等的点在线段的垂直平分线即可证明该结论;
(2)根据,可得AF+DF=AC,DE+AE=AB,即可得出答案.
【详解】
(1)证明:∵△ADB和△ADC是直角三角形
且E、F分别是AB、AC的中点
∴,
∴E在线段AD的垂直平分线上,F在线段AD的垂直平分线上
∴EF垂直平分AD
(2)∵,
∴AF+DF=AC,DE+AE=AB
又∵四边形AEDF的周长为24,
∴AB=24-9=15
故AB的长为15.
本题考查了直角三角形斜边上的中线等于斜边的一半的性质以及到线段两端点距离相等的点在线段的垂直平分线的性质,熟记性质是解决本题的关键.
17、正整数解是1,2,3,1.
【解析】
先分别求出每一个不等式的解集,然后根据不等式组解集的确定方法得到解集,即可得到正整数解.
【详解】
解:,
解不等式①,得x>﹣2,
解不等式②,得x≤,
不等式组的解集是﹣2<x≤,
不等式组的正整数解是1,2,3,1.
本题考查了解一元一次不等式组,熟知一元一次不等式组的解集的确定方法“大大取大,小小取小,大小小大中间找,大大小小无处找”是解题的关键.
18、(2)证明见解析.(2)OG∥BF且OG=BF;证明见解析.(3)2.
【解析】
(2)利用正方形的性质,由全等三角形的判定定理SAS即可证得△BCE≌△DCF;
(2)首先证明△BDG≌△BGF,从而得到OG是△DBF的中位线,即可得出答案;
(3)设BC=x,则DC=x,BD=x,由△BGD≌△BGF,得出BF=BD,CF=(-2)x,利用勾股定理DF2=DC2+CF2,解得x2=2,即正方形ABCD的面积是2.
【详解】
(2)证明:在△BCE和△DCF中,
,
∴△BCE≌△DCF(SAS);
(2)OG∥BF且OG=BF,
理由:如图,
∵BE平分∠DBC,
∴∠2=∠3,
在△BGD和△BGF中,
,
∴△BGD≌△BGF(ASA),
∴DG=GF,
∵O为正方形ABCD的中心,
∴DO=OB,
∴OG是△DBF的中位线,
∴OG∥BF且OG=BF;
(3)设BC=x,则DC=x,BD=x,由(2)知△BGD≌△BGF,
∴BF=BD,
∴CF=(-2)x,
∵DF2=DC2+CF2,
∴x2+[(-2)x]2=8-4,解得x2=2,
∴正方形ABCD的面积是2.
考点:2.正方形的性质;2.全等三角形的判定与性质;3.勾股定理.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
S△AEF=1,按照同高时,面积与底成正比,逐次求解即可.
【详解】
S△AEF=1,DF=2AF,
∴S△DEF=2,
∵CE=2AE,
∴S△DEC=6,
∴S△ADC=9,
∵BD=2DC,
∴S△ABD=18,
∵DF=2AF,
∴S△BFD=12,
∴S四边形BDEF=12+2=1.
本题考查的是图象面积的计算,主要依据同高时,面积与底成正比,逐次求解即可.
20、1
【解析】
根据菱形对角线互相垂直平分可得AO=OC,BO=OD,△ABO为Rt△;在Rt△ABO中,已知AB,AO的长,即可求BO的长,根据BO的长即可求BD的长.
【详解】
如图,由题意知,AB=5,AC=6,
∴AO=OC=3,
∵菱形对角线互相垂直平分,
∴△ABO为直角三角形,
在Rt△ABO中,AB=5,AO=3,
∴BO==4,
故BD=2BO=1,
故答案为: 1.
本题考查了菱形对角线互相垂直平分的性质,考查了勾股定理在直角三角形中的运用,本题中根据勾股定理求BO的值是解题的关键.
21、且
【解析】
式子有意义,则x-2≥0,x-3≠0,解出x的范围即可.
【详解】
式子有意义,则x-2≥0,x-3≠0,解得:,,故答案为且.
此题考查二次根式及分式有意义,熟练掌握二次根式的被开方数大于等于0,分式的分母不为0,及解不等式是解决本题的关键.
22、
【解析】
由题意可知Sn是第2n个正方形和第(2n-1)个正方形之间的阴影部分,先由已知条件分别求出图中第1个、第2个、第3个和第4个正方形的边长,并由此计算出S1、S2,并分析得到Sn与n间的关系,这样即可把Sn给表达出来了.
【详解】
∵函数y=x与x轴的夹角为45°,
∴直线y=x与正方形的边围成的三角形是等腰直角三角形,
∵A(8,4),
∴第四个正方形的边长为8,
第三个正方形的边长为4,
第二个正方形的边长为2,
第一个正方形的边长为1,
…,
第n个正方形的边长为,第(n-1)个正方形的边长为,
由图可知,S1=,
S2=,
…,
由此可知Sn=第(2n-1)个正方形面积的一半,
∵第(2n-1)个正方形的边长为,
∴Sn=.
故答案为:.
通过观察、计算、分析得到:“(1)第n个正方形的边长为;(2)Sn=第(2n-1)个正方形面积的一半.”是正确解答本题的关键.
23、1.
【解析】
把给出的这1个数据加起来,再除以数据个数1,就是此组数据的平均数.
【详解】
解:(2+1+1+6+7)÷1
=21÷1
=1.
答:这组数据的平均数是1.
故答案为:1.
此题主要考查了平均数的意义与求解方法,关键是把给出的这1个数据加起来,再除以数据个数1.
二、解答题(本大题共3个小题,共30分)
24、(1)每个笔袋原价14元,每筒彩色铅笔原价15元. (2)y1=12.6x.当不超过10筒时:y2=15x;当超过10筒时:y2=12x+30(3)买彩色铅笔省钱
【解析】
试题分析:(1)设每个笔袋原价x元,每筒彩色铅笔原价y元,根据“1个笔袋、2筒彩色铅笔原价共需44元;2个笔袋、3筒彩色铅笔原价共需73元”列出方程组求解即可;(2)根据题意直接用含x的代数式表示y1、y2;(3)把95分别代入(2)中的关系式,比较大小即可.
试题解析:
(1)设每个笔袋原价x元,每筒彩色铅笔原价y元,根据题意,得:
解得:
所以每个笔袋原价14元,每筒彩色铅笔原价15元.
(2)y1=14×0.9x=12.6x.
当不超过10筒时:y2=15x;
当超过10筒时:y2=12x+30.
(3)方法1:
∵95>10,
∴将95分别代入y1=12.6x和y2=12x+30中,得y1> y2.
∴买彩色铅笔省钱.
方法2:
当y1<y2时,有12.6x<12x+30,解得x<50,因此当购买同一种奖品的数量少于50件时,买笔袋省钱.
当y1=y2时,有12.6x=12x+30,解得x=50,因此当购买同一种奖品的数量为50件时,两者费用一样.
当y1>y2时,有12.6x>12x+30,解得x>50,因此当购买同一种奖品的数量大于50件时,买彩色铅笔省钱.
∵奖品的数量为95件,95>50,
∴买彩色铅笔省钱.
25、(1)△DPE∽△QDA,证明见解析;(2)DP=2或5
【解析】
(1)由∠ADC=∠DEP=∠A=90可证明△ADQ∽△EPD;
(2)若以点P,E,Q为顶点的三角形与△ADQ相似,有两种情况,当△ADQ∽△EPQ时,设EQ=x,则EP=2x,则DE=2−x,由△ADQ∽△EPD可得,可求出x的值,则DP可求出;同理当△ADQ∽△EQP时,设EQ=2a,则EP=a,可得,可求出a的值,则DP可求.
【详解】
(1)△ADQ∽△EPD,证明如下:
∵PE⊥DQ,
∴∠DEP=∠A=90,
∵∠ADC=90,
∴∠ADQ+∠EDP=90,∠EDP+∠DPE=90,
∴∠ADQ=∠DPE,
∴△ADQ∽△EPD;
(2)∵AB=4,点Q为AB的中点,
∴AQ=BQ=2,
∴DQ=,
∵∠PEQ=∠A=90,
∴若以点P,E,Q为顶点的三角形与△ADQ相似,有两种情况,
①当△ADQ∽△EPQ时,,
设EQ=x,则EP=2x,则DE=2−x,
由(1)知△ADQ∽△EPD,
∴,
∴,
∴x=
∴DP==5;
②当△ADQ∽△EQP时,设EQ=2a,则EP=a,
同理可得,
∴a=,
DP=.
综合以上可得DP长为2或5,使得以点P,E,Q为顶点的三角形与△ADQ相似.
本题考查了相似三角形的判定与性质,勾股定理,正方形的性质,熟练掌握相似三角形的判定与性质是解题的关键.
26、应聘者将被录用
【解析】
根据加权平均数的定义分别计算A、B两人的成绩,比较即得答案.
【详解】
解:的成绩:,
的成绩:,
∵,
∴应聘者将被录用.
本题考查了加权平均数的计算,属于基础题型,正确理解题意、熟练掌握计算方法是解答的关键.
题号
一
二
三
四
五
总分
得分
批阅人
一周内累计的读书时间(小时)
5
8
10
14
人数(个)
1
4
3
2
2025届湖北省黄冈市麻城市九上数学开学质量跟踪监视模拟试题【含答案】: 这是一份2025届湖北省黄冈市麻城市九上数学开学质量跟踪监视模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届湖北省黄冈市黄冈中学九上数学开学复习检测模拟试题【含答案】: 这是一份2025届湖北省黄冈市黄冈中学九上数学开学复习检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年四川省成都金牛区五校联考九上数学开学监测模拟试题【含答案】: 这是一份2024年四川省成都金牛区五校联考九上数学开学监测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。