2025届湖南省长沙浏阳市数学九年级第一学期开学学业质量监测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,在▱ABCD中,,的平分线与DC交于点E,,BF与AD的延长线交于点F,则BC等于
A.2B.C.3D.
2、(4分)如图,四边形中,,,于,于,若,的面积为,则四边形的边长的长为( )
A.B.C.D.
3、(4分)某种长途电话的收费方式为,接通电话的第一分钟收费a元,之后每一分钟收费b元,若某人打此种长途电话收费8元钱,则他的通话时间为
A.分钟B.分钟C.分钟D.分钟
4、(4分)张浩调查统计了他们家5月份每次打电话的通话时长,并将统计结果进行分组(每组含量最小值,不含最大值),将分组后的结果绘制成如图所示的频数分布直方图,则下列说法中不正确的是( )
A.张浩家5月份打电话的总频数为80次
B.张浩家5月份每次打电话的通话时长在5﹣10分钟的频数为15次
C.张浩家5月份每次打电话的通话时长在10﹣15分钟的频数最多
D.张浩家5月份每次打电话的通话时长在20﹣25分钟的频率为6%
5、(4分)如图,在▱ABCD中,AB=3,BC=5,AC的垂直平分线交AD于E,则△CDE的周长是( )
A.8B.6C.9D.10
6、(4分)如图,点A坐标为(3,0),B是y轴正半轴上一点,AB=5,则点B的坐标为( )
A.(4,0)B.(0,4)C.(0,5)D.(0,)
7、(4分)矩形、菱形和正方形的对角线都具有的性质是( )
A.互相平分B.互相垂直C.相等D.任何一条对角线平分一组对角
8、(4分)学校准备从甲、乙、丙、丁四名同学中选择一名同学参加市里举办的“汉字听写大赛”,下表是四位同学几次测试成绩的平均分和方差的统计结果,如果要选出一个成绩好且状态稳定的同学参赛,那么应该选择的同学是( )
A.甲B.乙C.丙D.丁
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如果n边形的每一个内角都相等,并且是它外角的3倍,那么n=______
10、(4分)菱形的周长为12,它的一个内角为60°,则菱形的较长的对角线长为______.
11、(4分)如图,在正方形ABCD中,点E,H,F,G分别在边AB,BC,CD,DA上,EF,GH交于点O,∠FOH=90°,EF=1.则GH的长为__________.
12、(4分)如图,点A,B在反比例函数(k>0)的图象上,AC⊥x轴,BD⊥x轴,垂足C,D分别在x轴的正、负半轴上,CD=k,已知AB=2AC,E是AB的中点,且△BCE的面积是△ADE的面积的2倍,则k的值是______.
13、(4分)已知点(m-1,y1),(m-3,y2)是反比例函数y=(m<0)图象上的两点,则y1____y2 (填“>”“=”或“<”).
三、解答题(本大题共5个小题,共48分)
14、(12分)化简或解方程:
(1)化简:
(2)先化简再求值:,其中.
(3)解分式方程:.
15、(8分)武汉某中学为了了解全校学生的课外阅读的情况,随机抽取了部分学生进行阅读时间调查,现将学生每学期的阅读时间分成、、、四个等级(等:,等:,等:,等:;单位:小时),并绘制出了如图的两幅不完整的统计图,根据以上信息,回答下列问题:
(1)组的人数是____人,并补全条形统计图.
(2)本次调查的众数是_____等,中位数落在_____等.
(3)国家规定:“中小学每学期的课外阅读时间不低于60小时”,如果该校今年有3500名学生,达到国家规定的阅读时间的人数约有_____人.
16、(8分)如图:、是锐角的两条高,、分别是、的中点,若EF=6,.
(1)证明:;
(2)判断与的位置关系,并证明你的结论;
(3)求的长.
17、(10分)计算:
(1); (2).
18、(10分)解方程:
(1);
(2).
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)矩形、菱形和正方形的对角线都具有的性质是_____.
20、(4分)计算:
21、(4分)若一个多边形的各边都相等,它的周长是63,且它的内角和为900°,则它的边长是________.
22、(4分)若关于x的分式方程有增根,则k的值为__________.
23、(4分)当x=______时,分式的值是1.
二、解答题(本大题共3个小题,共30分)
24、(8分)用适当的方法解方程
(1)x2﹣4x+3=1;
(2)(x+1)2﹣3(x+1)=1.
25、(10分)在△ABC中,AH⊥BC于H,D、E、F分别是BC、CA、AB的中点.求证:DE=HF.
26、(12分)化简或解方程:
(1)化简:
(2)先化简再求值:,其中.
(3)解分式方程:.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
根据平行四边形性质证,△AEF≌△AEB,EF=EB,AB=AF=1,再证△DEF≌△CEB,得BC=DF,
可得AF=AD+DF=AD+BC=2BC=1.
【详解】
解:因为,四边形ABCD是平行四边形,
所以,AD∥BC,AD=BC∠C=∠FDE,∠EBC=∠F
因为,的平分线与DC交于点E,
所以,∠FAE=∠BAE,∠AEB=∠AEF
所以,△AEF≌△AEB
所以,EF=EB,AB=AF=1
所以,△DEF≌△CEB
所以,BC=DF
所以,AF=AD+DF=AD+BC=2BC=1
所以,BC=2.1.
故选B.
本题考核知识点:平行四边形、全等三角形. 解题关键点:熟记平行四边形性质、全等三角形判定和性质.
2、A
【解析】
先证明△ACD≌△BEA,在根据△ABC的面积为8,求出BE,然后根据勾股定理即可求出AB.
【详解】
解:∵BE⊥AC,CD⊥AC,
∴∠ACD=∠BEA=90°,
∴∠CDB+∠DCA=90°,
又∵∠DAB=∠DAC+∠BAC=90°
在△ACD和△AEB中,
∴△ACD≌△BEA(AAS)
∴AC=BE
∵△ABC的面积为8,
∴,
解得BE=4,
在Rt△ABE中,
.
故选择:A.
本题主要考查了三角形全等和勾股定理的知识点,熟练三角形全等的判定和勾股定理是解答此题的关键.
3、C
【解析】
解决此题要清楚一分钟收费a元,则一分钟后共打了分.再根据题意求出结果.
【详解】
首先表示一分钟后共打了分,
则此人打长途电话的时间共是+1= 分。
故选C.
本题考查列代数式,根据题意列出正确的分式是解题关键.
4、D
【解析】
根据频数、总数以及频率的定义即可判断;频数指某个数据出现的次数;频率是频数与总数之比
【详解】
解:A、正确.因为20+15+25+15+5=80故正确.
B、正确.由图象可知张浩家5月份每次打电话的通话时长在5﹣10分钟的频数为15次.故正确.
C、正确.由图象可知张浩家5月份每次打电话的通话时长在10﹣15分钟的频数最多.故正确.
D、错误.张浩家5月份每次打电话的通话时长在20﹣25分钟的频率为=.故错误.
故选:D.
此题主要考查频数分布直方图,熟练掌握频数、总数以及频率之间的关系是解题关键
5、A
【解析】
由AC的垂直平分线交AD于E,易证得AE=CE,又由四边形ABCD是平行四边形,即可求得AD与DC的长,继而求得答案
【详解】
∵AC的垂直平分线交AD于E,
∴AE=CE,
∵四边形ABCD是平行四边形,
∴CD=AB=3,AD=BC=5,
∴△CDE的周长是:DC+DE+CE=DC+DE+AE=DC+AD=3+5=8,
故选A.
此题考查线段垂直平分线的性质,平行四边形的性质,解题关键在于得到AE=CE
6、B
【解析】
分析:根据勾股定理解答本题即可.
详解:因为点A坐标为(3,0),B是y轴正半轴上一点,AB=5,
所以OB==4 ,
所以点B的坐标为(0,4),
故选B.
点睛:本题考查了两点之间的距离,解本题的关键是根据勾股定理解答.
7、A
【解析】
因为平行四边形的对角线互相平分、正方形的对角线垂直平分且相等、矩形的对角线互相平分且相等、菱形的对角线互相垂直平分,可知正方形、矩形、菱形都具有的特征是对角线互相平分.
【详解】
解:根据平行四边形、矩形、菱形、正方形的对角线相互平分的性质,可知选A.
故选:A.
此题综合考查了平行四边形、矩形、菱形、正方形的对角线的性质,熟练掌握平行四边形、矩形、菱形、正方形的性质是解题的关键.
8、C
【解析】
先比较平均数得到乙同学和丙同学成绩较好,然后比较方差得到丙同学的状态稳定,于是可决定选丙同学去参赛.
【详解】
乙、丙同学的平均数比甲、丁同学的平均数大,
应从乙和丙同学中选,
丙同学的方差比乙同学的小,
丙同学的成绩较好且状态稳定,应选的是丙同学;
故选:.
主要考查平均数和方差,方差可以反映数据的波动性.方差越小,越稳定.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、8
【解析】
根据多边形内角和公式可知n边形的内角和为(n-2)·180º,n边形的外角和为360,再根据n边形的每个内角都等于其外角的3倍列出关于n的方程,求出n的值即可.
【详解】
解:∵n边形的内角和为(n-2)·180º,外角和为360,n边形的每个内角都等于其外角的3倍,
∴(n-2)·180º =360×3,
解得:n=8.
故答案为:8.
本题考查的是多边形的内角与外角的关系的应用,明确多边形一个内角与外角互补和外角和的特征是解题的关键.
10、3
【解析】
根据菱形的对角线互相垂直平分可得AC⊥BD,BD=2OB,菱形的对角线平分一组对角线可得∠ABO=30°,根据直角三角形30°角所对的直角边等于斜边的一半可得AO=AB,再利用勾股定理列式求出OB,即可得解.
【详解】
解:如图所示:
∵菱形ABCD的周长为12,
∴AB=3,AC⊥BD,BD=2OB,
∵∠ABC=60°,
∴∠ABO=∠ABC=30°,
∴AO=AB=×3=,
由勾股定理得,OB===,
∴BD=2OB=3.
故答案为:3.
本题考查了菱形的性质,直角三角形30°角所对的直角边等于斜边的一半的性质,勾股定理,熟记性质是解题的关键,作出图形更形象直观.
11、1
【解析】
如图,过点F作于M,过点G作于N,设 GN、EF交点为P,根据正方形的性质可得,再根据同角的余角相等可得,然后利用“角边角”证明,根据全等三角形对应边相等可得,然后代入数据即可得解.
【详解】
如图,过点F作于M,过点G作于N,设 GN、EF交点为P
∵四边形ABCD是正方形
∴
∴
∵
∴
∴
在△EFM和△HGN中
∴
∴
∵
∴
即GH的长为1
故答案为:1.
本题考查了矩形的线段长问题,掌握正方形的性质、全等三角形的性质以及判定定理是解题的关键.
12、
【解析】
试题解析:过点B作直线AC的垂线交直线AC于点F,如图所示.
∵△BCE的面积是△ADE的面积的2倍,E是AB的中点,
∴S△ABC=2S△BCE,S△ABD=2S△ADE,
∴S△ABC=2S△ABD,且△ABC和△ABD的高均为BF,
∴AC=2BD,
∴OD=2OC.
∵CD=k,
∴点A的坐标为(,3),点B的坐标为(-,-),
∴AC=3,BD=,
∴AB=2AC=6,AF=AC+BD=,
∴CD=k=.
【点睛】本题考查了反比例函数图象上点的坐标特征、三角形的面积公式以及勾股定理.构造直角三角形利用勾股定理巧妙得出k值是解题的关键.
13、>
【解析】
分析:m<0,在每一个象限内,y随x的增大而增大.
详解:因为m<0,所以m-3<m-1<0,这两个点都在第二象限内,
所以y2<y1,即y1>y2.
故答案为>.
点睛:对于反比例函数图象上的几个点,如果知道横坐标去比较纵坐标的大小或知道纵坐标去比较横坐标的大小,通常的做法是:(1)先判断这几个点是否在同一个象限内,如果不在,则判断其正负,然后做出判断;(2)如果在同一个象限内,则可以根据反比例函数的性质来进行解答.
三、解答题(本大题共5个小题,共48分)
14、(1)(2)(3)
【解析】
(1)先通分,然后利用同分母分式加减法的法则进行计算即可;
(2)括号内先通分进行分式加减法运算,然后再进行分式乘除法运算,最后把数值代入化简后的结果进行计算即可;
(3)方程两边同时乘以(x+2)(x-2),化为整式方程后解整式方程,然后进行检验即可.
【详解】
(1)原式
=
;
(2)原式
=
=,
当,时,原式;
(3)两边同时乘以(x+2)(x-2),得:
,
解得:,
检验:当时,(x+2)(x-2)≠0,
所以x=10是原分式方程的解.
本题考查了分式的化简求值,解分式方程,熟练掌握分式混合运算的法则是解(1)(2)的关键,掌握解分式方程的一般步骤以及注意事项是解(3)的关键.
15、(1)50;(2)众数是B等,中位数落在C等;(3)3325人.
【解析】
(1)根据A的人数除以A所占的百分,可得调查的总人数,根据有理数的减法,可得C的人数;
(2)根据众数的定义,中位数的定义,可得答案;
(3)根据样本估计总体,可得答案.
【详解】
(1)调查的总人数40÷20%=200人,C组的人数=200﹣40﹣100﹣10=50,补充如图:
(2)本次调查的众数是 100,即B等,中位数是=75,落在C等;
(3)3500×=3325人.
答:该校今年有3500名学生,达到国家规定的阅读时间的人数约有3325人.
本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.
16、(1)证明见解析;(2)MN垂直平分EF,证明见解析;(3)MN=.
【解析】
(1)依据BE、CF是锐角△ABC的两条高,可得∠ABE+∠A=90°,∠ACF+∠A=90°,进而得出∠ABE=∠ACF;
(2)连接EM、FM,根据直角三角形斜边上的中线等于斜边的一半可得EM=FM=BC,再根据等腰三角形三线合一的性质解答;
(3)求出EM、EN,然后利用勾股定理列式计算即可得解.
【详解】
解:(1)∵BE、CF是锐角△ABC的两条高,
∴∠ABE+∠A=90°,∠ACF+∠A=90°,
∴∠ABE=∠ACF;
(2)MN垂直平分EF.
证明:如图,连接EM、FM,
∵BE、CF是锐角△ABC的两条高,M是BC的中点,
∴EM=FM=BC,
∵N是EF的中点,
∴MN垂直平分EF;
(3)∵EF=6,BC=24,
∴EM=BC=×24=12,EN=EF=×6=3,
由勾股定理得,MN=.
本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等腰三角形三线合一的性质,勾股定理,熟记性质并作辅助线构造出等腰三角形是解题的关键.
17、(1)6(2)9
【解析】
(1)先计算算术平方根,零指数幂,然后依次计算即可
(2)先利用完全平方公式进行计算,再把二次根式化为最简,进行计算即可
【详解】
(1)3+2+1=6
(3)3+4+4 -4+2=9
此题考查二次根式的混合运算,掌握运算法则是解题关键
18、或;
【解析】
移项后,提取公因式,进一步求解可得;
方程整理成一般式后利用求根公式计算可得.
【详解】
解:,
,
则,
或,
解得:或;
原方程整理成一般式为,
、、,
,
则.
此题考查了解一元二次方程因式分解法,配方法,以及公式法,熟练掌握各种解法是解本题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、对角线互相平分
【解析】
先逐一分析出矩形、菱形、正方形的对角的性质,再综合考虑矩形、菱形、正方形对角线的共同性质.
【详解】
解:因为矩形的对角线互相平分且相等,菱形的对角线互相平分且垂直且平分每一组对角,正方形的对角线具有矩形和菱形所有的性质,所有矩形、菱形和正方形的对角线都具有的性质是对角线互相平分.
故答案为对角线互相平分.
本题主要考查了矩形、菱形、正方形的性质,解题的关键是熟知三者对角线的性质.
20、2.
【解析】
根据运算法则进行运算即可.
【详解】
原式==2
此是主要考查二次根式的混合运算,在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.
21、9
【解析】
设多边形的边数为n,先根据多边形的内角和求出多边形的边数,再根据周长即可求出边长.
【详解】
设多边形的边数为n,由题意得
(n-2)·180°=900°
解得n=7,
则它的边长是63÷7=9.
本题考查的是多边形的内角和,解答的关键是熟练掌握多边形的内角和公式:(n-2)·180°.
22、或
【解析】
分式方程去分母转化为整式方程,由分式方程有增根,得到最简公分母为0求出的值,代入整式方程求出的值即可.
【详解】
解:
去分母得:,
整理得:
由分式方程有增根,得到,
解得:或,
把代入整式方程得:;
把代入整式方程得:,
则的值为或.
故答案为:或
此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.
23、1
【解析】
直接利用分式的值为零则分子为零进而得出答案.
【详解】
∵分式的值是1,
∴x=1.
故答案为:1.
此题主要考查了分式的值为零的条件,正确把握分式的性质是解题关键.
二、解答题(本大题共3个小题,共30分)
24、(1)x1=1,x2=3;(2)x1=﹣1,x2=2.
【解析】
(1)直接利用十字相乘法解方程进而得出答案;
(2)直接提取公因式进而分解因式解方程即可.
【详解】
解:(1)
,
解得:,;
(2)
,
解得:,.
此题主要考查了因式分解法解方程,正确分解因式是解题关键.
25、证明见解析.
【解析】
分析:根据题意知EH是直角△ABH斜边上的中线,DE是△ABC的中位线,所以由相关的定理进行证明.
详解:∵D、E分别是BC、CA的中点,∴DE=AB.
又∵点F是AB的中点,AH⊥BC,∴FH=AB,∴DE=HF.
点睛:本题考查了三角形中位线定理、直角三角形斜边上的中线.三角形中位线的性质:三角形的中位线平行于第三边且等于第三边的一半.
26、(1)(2)(3)
【解析】
(1)先通分,然后利用同分母分式加减法的法则进行计算即可;
(2)括号内先通分进行分式加减法运算,然后再进行分式乘除法运算,最后把数值代入化简后的结果进行计算即可;
(3)方程两边同时乘以(x+2)(x-2),化为整式方程后解整式方程,然后进行检验即可.
【详解】
(1)原式
=
;
(2)原式
=
=,
当,时,原式;
(3)两边同时乘以(x+2)(x-2),得:
,
解得:,
检验:当时,(x+2)(x-2)≠0,
所以x=10是原分式方程的解.
本题考查了分式的化简求值,解分式方程,熟练掌握分式混合运算的法则是解(1)(2)的关键,掌握解分式方程的一般步骤以及注意事项是解(3)的关键.
题号
一
二
三
四
五
总分
得分
甲
乙
丙
丁
平均分
94
98
98
96
方差
1
1.2
1
1.8
2025届湖南省长沙外国语学校数学九年级第一学期开学监测模拟试题【含答案】: 这是一份2025届湖南省长沙外国语学校数学九年级第一学期开学监测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届湖南省永州市江华县九年级数学第一学期开学学业质量监测试题【含答案】: 这是一份2025届湖南省永州市江华县九年级数学第一学期开学学业质量监测试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年湖南省长沙市教科所九年级数学第一学期开学学业质量监测模拟试题【含答案】: 这是一份2024年湖南省长沙市教科所九年级数学第一学期开学学业质量监测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。