2025届江苏省东海晶都双语学校数学九上开学教学质量检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)运用分式的性质,下列计算正确的是( )
A.B.C.D.
2、(4分)如图,已知△ABC和△PBD都是正方形网格上的格点三角形(顶点为网格线的交点),要使ΔABC∽ΔPBD,则点P的位置应落在
A.点上B.点上C.点上D.点上
3、(4分)一次函数y=﹣2x﹣3的图象不经过( )
A.第一象限B.第二象限C.第三象限D.第四象限
4、(4分)某公司承担了制作600个广州亚运会道路交通指引标志的任务,原计划x天完成,实际平均每天多制作了10个,因此提前5天完成任务,根据题意,下列方程正确的是( )
A.B.
C.D.
5、(4分)某通讯公司就上宽带网推出A,B,C三种月收费方式.这三种收费方式每月所需的费用y(元与上网时间x(h)的函数关系如图所示,则下列判断错误的是
A.每月上网时间不足25h时,选择A方式最省钱B.每月上网费用为60元时,B方式可上网的时间比A方式多
C.每月上网时间为35h时,选择B方式最省钱D.每月上网时间超过70h时,选择C方式最省钱
6、(4分)下列各组长度的线段中,可以组成直角三角形的是( )
A.1,2,3B.1,,3C.5,6,7D.5,12,13
7、(4分)如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是( )
A.乙前4秒行驶的路程为48米
B.在0到8秒内甲的速度每秒增加4米/秒
C.两车到第3秒时行驶的路程相等
D.在4至8秒内甲的速度都大于乙的速度
8、(4分)反比例函数y=-的图象位于( )
A.第一、二象限B.第三、四象限
C.第一、三象限D.第二、四象限
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知:a、b、c是△ABC的三边长,且满足|a﹣3|++(c﹣5)2=0,则该三角形的面积是_____.
10、(4分)若式子有意义,则实数的取值范围是________.
11、(4分)在△ABC中,边AB、BC、AC的垂直平分线相交于P,则PA、PB、PC的大小关系是________.
12、(4分)如图,▱ABCD中,∠ABC=60°,E、F分别在CD和BC的延长线上,AE∥BD,EF⊥BC,EF=,则AB的长是 .
13、(4分)如图,AD∥BC,∠ABC的角平分线BP与∠BAD的角平分线AP相交于点P,作PE⊥AB于点E.若PE=2,则两平行线AD与BC间的距离为_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,将平行四边形ABCD的AD边延长至点E,使DE=AD,连接CE,F是BC边的中点,连接FD.求证:四边形CEDF是平行四边形.
15、(8分)如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).
(1) 请画出△ABC向左平移5个单位长度后得到的△ABC;
(2) 请画出△ABC关于原点对称的△ABC;
(3) 在轴上求作一点P,使△PAB的周长最小,请画出△PAB,并直接写出P的坐标.
16、(8分)如图,已知菱形ABCD边长为4,,点E从点A出发沿着AD、DC方向运动,同时点F从点D出发以相同的速度沿着DC、CB的方向运动.
如图1,当点E在AD上时,连接BE、BF,试探究BE与BF的数量关系,并证明你的结论;
在的前提下,求EF的最小值和此时的面积;
当点E运动到DC边上时,如图2,连接BE、DF,交点为点M,连接AM,则大小是否变化?请说明理由.
17、(10分)如图,△ABC的三个顶点在正方形网格的格点上,网格中的每个小正方形的边长均为单位1.
(1)求证:△ABC为直角三角形;
(2)求点B到AC的距离.
18、(10分)课堂上老师讲解了比较和的方法,观察发现11-10=15-14=1,于是比较这两个数的倒数:
,
,
因为>,所以>,则有<.
请你设计一种方法比较与的大小.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)若等式成立,则的取值范围是__________.
20、(4分)分解因式:x3-3x=______.
21、(4分)一次函数y=mx﹣4中,若y随x的增大而减小,则m的取值范围是_____﹣
22、(4分)如图,于,于,且,,,则_______.
23、(4分)如图,在Rt△ABC中,∠C=90°,AC=6,AB=10,点D、E、F是三边的中点,则△DEF的周长是______.
二、解答题(本大题共3个小题,共30分)
24、(8分)在实施漓江补水工程中,某水库需要将一段护坡土坝进行改造.在施工质量相同的情况下,甲、乙两施工队给出的报价分别是:甲施工队先收启动资金1000元,以后每填土1立方米收费20元,乙施工队不收启动资金,但每填土1立方米收费25元.
(1)设整个工程需要填土为X立方米,选择甲施工队所收的费用为Y甲元,选择乙施工队所收的费用为Y乙元.请分别写出Y甲、Y乙、关于X的函数关系式;
(2)如图,土坝的横截面为梯形,现将背水坡坝底加宽2米,即BE=2米,已知原背水坡长AB=4,土坝与地面的倾角∠ABC=60度,要改造100米长的护坡土坝,选择哪家施工队所需费用较少?
(3)如果整个工程所需土方的总量X立方米的取值范围是100≤X≤800,应选择哪家施工队所需费用较少?
25、(10分)如图,已知菱形的对角线相交于点,延长至点,使,连结.
求证:.
当时,四边形为菱形吗?请说明理由.
26、(12分)如图,在中,,过点的直线,为边上一点,过点作交直线于点,垂足为点,连结、.
(1)求证:;
(2)当点是中点时,四边形是什么特殊四边形?说明你的理由;
(3)若点是中点,当四边形是正方形时,则大小满足什么条件?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
根据分式的分子分母都乘以(或者除以)同一个整式,分式的值不变,可解答
【详解】
A、分子分母都除以x2,故A错误;
B、分子分母都除以(x+y),故B错误;
C、分子分母都减x,分式的值发生变化,故C错误;
D、分子分母都除以(x﹣y),故D正确;
故选:D.
此题考查分式的基本性质,难度不大
2、B
【解析】
由图可知∠BPD一定是钝角,若要△ABC∽△PBD,则PB、PD与AB、AC的比值必须相等,可据此进行判断.
【详解】
解:由图知:∠BAC是钝角,又△ABC∽△PBD,
则∠BPD一定是钝角,∠BPD=∠BAC,
又BA=1,AC=1,
∴BA:AC=1:,
∴BP:PD=1:或BP:PD=:1,
只有P1符合这样的要求,故P点应该在P1.
故选B.
此题考查了相似三角形的性质,以及勾股定理的运用,相似三角形的对应角相等,对应边成比例,书写相似三角形时,对应顶点要对应.熟练掌握相似三角形的性质是解本题的关键
3、A
【解析】
考查一次函数的图像特征.
点拨:由得系数符号和常数b决定.
解答:对于一次函数,当时直线经过第一、二、四象限或第二、三、四象限;,故直线经过第二、三、四象限,不经过第一象限.
4、A
【解析】
关键描述语是:实际平均每天比原计划多制作了10个,根据等量关系列式.
【详解】
解:设原计划x天完成,根据题意可得:,
故选:A.
此题考查分式方程的应用,涉及的公式:工作效率=工作量÷工作时间,解题时找到等量关系是列式的关键
5、D
【解析】
A、观察函数图象,可得出:每月上网时间不足25 h时,选择A方式最省钱,结论A正确;
B、观察函数图象,可得出:当每月上网费用≥50元时,B方式可上网的时间比A方式多,结论B正确;
C、利用待定系数法求出:当x≥25时,yA与x之间的函数关系式,再利用一次函数图象上点的坐标特征可求出当x=35时yA的值,将其与50比较后即可得出结论C正确;
D、利用待定系数法求出:当x≥50时,yB与x之间的函数关系式,再利用一次函数图象上点的坐标特征可求出当x=70时yB的值,将其与120比较后即可得出结论D错误.
综上即可得出结论.
【详解】
A、观察函数图象,可知:每月上网时间不足25 h时,选择A方式最省钱,结论A正确;
B、观察函数图象,可知:当每月上网费用≥50元时,B方式可上网的时间比A方式多,结论B正确;
C、设当x≥25时,yA=kx+b,
将(25,30)、(55,120)代入yA=kx+b,得:
,解得:,
∴yA=3x-45(x≥25),
当x=35时,yA=3x-45=60>50,
∴每月上网时间为35h时,选择B方式最省钱,结论C正确;
D、设当x≥50时,yB=mx+n,
将(50,50)、(55,65)代入yB=mx+n,得:
,
解得:,
∴yB=3x-100(x≥50),
当x=70时,yB=3x-100=110<120,
∴结论D错误.
故选D.
本题考查了函数的图象、待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,观察函数图象,利用一次函数的有关知识逐一分析四个选项的正误是解题的关键.
6、D
【解析】
根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形.如果没有这种关系,这个三角形就不是直角三角形.
【详解】
A、12+22≠32,根据勾股定理的逆定理不是直角三角形,故此选项错误;
B、12+()2≠32,根据勾股定理的逆定理不是直角三角形,故此选项错误;
C、52+62≠72,根据勾股定理的逆定理不是直角三角形,故此选项错误;
D、52+122=132,根据勾股定理的逆定理是直角三角形,故此选项正确.
故选:D.
此题考查勾股定理的逆定理,解题关键在于在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.
7、C
【解析】
A.根据图象可得,乙前4秒行驶的路程为12×4=48米,正确;
B.根据图象得:在0到8秒内甲的速度每秒增加4米秒/,正确;
C.根据图象可得两车到第3秒时行驶的路程不相等,故本选项错误;
D.在4至8秒内甲的速度都大于乙的速度,正确;
故选C.
8、D
【解析】
根据反比例函数的比例系数来判断图象所在的象限,k>0,位于一、三象限;k<0,位于二、四象限.
【详解】
∵y=-,k=-6<0,
∴函数图象过二、四象限.
故选D.
本题考查反比例函数的图象和性质:当k>0,位于一、三象限;k<0,位于二、四象限,比较简单,容易掌握.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
根据绝对值,二次根式,平方的非负性求出a,b,c的值,再根据勾股定理逆定理得到三角形为直角三角形,故可求解.
【详解】
解:由题意知a﹣3=0,b﹣4=0,c﹣5=0,
∴a=3,b=4,c=5,
∴a2+b2=c2,
∴三角形的形状是直角三角形,
则该三角形的面积是3×4÷2=1.
故答案为:1.
此题主要考查勾股定理的应用,解题的关键是熟知实数的性质.
10、x⩾1
【解析】
根据二次根式有意义的条件可得:x-1≥0,即可解答
【详解】
由题意得:x−1⩾0,
解得:x⩾1,
故答案为:x⩾1
此题考查二次根式有意义的条件,难度不大
11、PA=PB=PC
【解析】
解:∵边AB的垂直平分线相交于P,
∴PA=PB,
∵边BC的垂直平分线相交于P,
∴PB=PC,
∴PA=PB=PC.
故答案为:PA=PB=PC.
12、1
【解析】
根据平行四边形性质推出AB=CD,AB∥CD,得出平行四边形ABDE,推出DE=DC=AB,根据直角三角形性质求出CE长,即可求出AB的长.
【详解】
∵四边形ABCD是平行四边形,
∴AB∥DC,AB=CD.
∵AE∥BD,
∴四边形ABDE是平行四边形.
∴AB=DE=CD,即D为CE中点.
∵EF⊥BC,
∴∠EFC=90°.
∵AB∥CD,
∴∠DCF=∠ABC=60°.
∴∠CEF=30°.
∵EF=,
∴CE=2
∴AB=1
13、1
【解析】
根据角平分线的性质以及平行线的性质即可得出PM=PE=2,PE=PN=2,即可得出答案.
解答:解:过点P作MN⊥AD,
∵AD∥BC,∠ABC的角平分线BP与∠BAD的角平分线AP相交于点P,PE⊥AB于点E,
∴AP⊥BP,PN⊥BC,
∴PM=PE=2,PE=PN=2,
∴MN=2+2=1.
故答案为1.
三、解答题(本大题共5个小题,共48分)
14、见解析.
【解析】
利用平行四边形的性质得出AD=BC,AD∥BC,进而利用已知得出DE=FC,DE∥FC,即可证得四边形CEDF是平行四边形.
【详解】
证明:∵四边形ABCD是平行四边形,
∴AD=BC,AD∥BC,
∵DE=AD,F是BC边的中点,
∴FC=BC=AD=DE,
又∵DE∥FC,
∴四边形CEDF是平行四边形.
本题主要考查了平行四边形的判定与性质,熟练应用平行四边形的判定方法是解题关键.
15、(1)图形见解析;
(2)图形见解析;
(3)图形见解析,点P的坐标为:(2,0)
【解析】
(1)按题目的要求平移就可以了
关于原点对称的点的坐标变化是:横、纵坐标都变为相反数,找到对应点后按顺序连接即可
(3)AB的长是不变的,要使△PAB的周长最小,即要求PA+PB最小,转为了已知直线与直线一侧的两点,在直线上找一个点,使这点到已知两点的线段之和最小,方法是作A、B两点中的某点关于该直线的对称点,然后连接对称点与另一点.
【详解】
(1)△A1B1C1如图所示;
(2)△A2B2C2如图所示;
(3)△PAB如图所示,点P的坐标为:(2,0)
1、图形的平移;2、中心对称;3、轴对称的应用
16、,证明见解析;的最小值是,;如图3,当点E运动到DC边上时,大小不发生变化,理由见解析.
【解析】
先证明和是等边三角形,再证明≌,可得结论;
由≌,易证得是正三角形,继而可得当动点E运动到当,即E为AD的中点时,BE的最小,根据等边三角形三线合一的性质可得BE和EF的长,并求此时的面积;
同理得:≌,则可得,所以,则A、B、M、D四点共圆,可得.
【详解】
,
证明:、F的速度相同,且同时运动,
,
又四边形ABCD是菱形,
,
,
,
是等边三角形,
同理也是等边三角形,
,
在和中,
,
≌,
;
由得:≌,
,
,
,
是等边三角形,
,
如图2,当动点E运动到,即E为AD的中点时,BE的最小,此时EF最小,
,,
,
的最小值是,
中,,,
,
,
;
如图3,当点E运动到DC边上时,大小不发生变化,
在和中,
,
≌,
,
,
,
,
,
,
、B、M、D四点共圆,
.
此题是四边形的综合题,考查了菱形的性质、等边三角形的判定与性质、四点共圆的判定和性质、垂线段最短以及全等三角形的判定与性质注意证得≌是解此题的关键.
17、 (1)见解析;(2).
【解析】
(1)根据勾股定理以及逆定理解答即可;
(2)根据三角形的面积公式解答即可.
【详解】
解:(1)由勾股定理得,
AB2+BC2=65=AC2
△ABC为直角三角形;
(2)作高BD,
由得,
解得,BD=
点B到AC的距离为.
考查勾股定理问题,关键是根据勾股定理以及逆定理解答.
18、方法见解析.
【解析】
【分析】观察可知8+3=6+5,因此可以利用两数平方进行比较进而得出答案.
【详解】 ,
,
∵,
∴,
∵, ,
∴ .
【点睛】本题考查了实数大小比较,二次根式的运算,理解题意,并且根据式子的特点确定出合适的方法是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
根据二次根式有意义的条件,列出不等式组,即可得解.
【详解】
根据题意,得
解得.
此题主要考查二次根式有意义的条件,熟练掌握,即可解题.
20、
【解析】
先提取公因式x后,再把剩下的式子写成x2-()2,符合平方差公式的特点,可以继续分解.
【详解】
x3-3x=x(x2-3),
=.
本题考查实数范围内的因式分解,因式分解的步骤为:一提公因式;二看公式.在实数范围内进行因式分解的式子的结果一般要分到出现无理数为止.
21、m<1
【解析】
利用一次函数图象与系数的关系列出关于m的不等式m<1即可.
【详解】
∵一次函数y=mx﹣4中,y随x的增大而减小,
∴m<1,
故答案是:m<1.
本题主要考查一次函数图象与系数的关系.解答本题的关键是注意理解:k>1时,直线必经过一、三象限,y随x的增大而增大;k<1时,直线必经过二、四象限,y随x的增大而减小.
22、140°
【解析】
由“”可证Rt△ABD≌Rt△ACD,可得,由三角形外角的性质可求的度数.
【详解】
解:,,
在Rt△ABD和Rt△ACD中,
,
∴Rt△ABD≌Rt△ACD(HL),
.
故答案为:.
本题考查了全等三角形的判定和性质,外角的性质,熟练运用全等三角形的判定是本题的关键.
23、1
【解析】
先根据勾股定理求出BC,再根据三角形中位线定理求出△DEF的三边长,然后根据三角形的周长公式计算即可.
【详解】
解:在Rt△ABC中,∵∠C=90°,AC=6,AB=10,∴BC==8,
∵点D、E、F是三边的中点,∴DE=AC=3,DF=AB=5,EF=BC=4,
∴△DEF的周长=3+4+5=1.
故答案为:1.
本题考查的是勾股定理和三角形中位线定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)由题意,y甲=1000+20x,y乙=25x;(2)选择甲施工队所需费用较少 (3)见解析
【解析】
分析:(1)、根据题意总费用=每立方米费用乘以立方米数加上额外费用从而得出函数解析式;(2)、过A作AF⊥BC于F,根据直角三角形的面积计算法则得出土方的数量,然后分别求出两个施工队的费用,从而得出答案;(3)、根据不等式的性质求出答案.
详解:(1)由题意,y甲=1000+20x,y乙=25x;
(2)如图,过A作AF⊥BC于F,∵∠ABC=60°,AB=4,∴AF=6,
∴S△ABE=BE•AF=6,∴100米长的护坡土坝的土方的总量为6×100=600,
当x=600时,y甲=13000;y乙=15000,∴选择甲施工队所需费用较少;
(3)①当y甲=y乙,则1000+20x=25x,∴x=200,
②当x>200时,y甲<y乙;③当0<x<200时,y甲>y乙.
∴当100<x<200时,选择乙工程队;当x>200时,选择甲工程队;当x=200时,甲乙一样.
点睛:本题主要考查的是一次函数的实际应用以及不等式的应用,属于中等难度的题型.根据题意得出等量关系是解决这个问题的关键.
25、(1)详见解析;(2)详见解析.
【解析】
(1)根据菱形的四条边的对边平行且相等可得AB=CD,AB∥CD,再求出四边形BECD是平行四边形,然后根据平行四边形的对边相等证明即可;
(2)只要证明DC=DB,即证明△DCB是等边三角形即可解决问题;
【详解】
证明:四边形是菱形,
∴,,
又∵,
∴,,
∴四边形 是平行四边形,
∴;
解:结论:四边形是菱形.
理由:∵四边形是菱形,
∴,∵,
∴,是等边三角形,
∴,
∵四边形是平行四边形,
∴四边形是菱形.
考查了菱形的性质和判定,平行四边形的性质和判定,平行线的性质,熟记各图形的性质并准确识图是解题的关键.
26、(1)见解析 (2)见解析 (3)
【解析】
(1)连接,利用同角的余角相等,得到,利用平行四边形的判定和性质得结论;
(2)先证明四边形是平行四边形,再利用直角三角形斜边的中线等于斜边的一半说明邻边相等,证明该四边形是菱形;
(3)由平行线的性质得出,由正方形的性质得出,,即可得出结论.
【详解】
解:(1)证明:,
,
,,
,,
,
,
四边形是平行四边形,
;
(2)解:四边形是菱形.理由如下:
由(1)知:四边形是平行四边形,
,,
在中,点是的中点,
,
又,
,
四边形是平行四边形,
,
四边形是菱形.
(3)解:,理由如下:
,
,
四边形是正方形,
,,
.
本题是四边形综合题目,考查了平行四边形的判定与性质、菱形的判定、正方形的性质、直角三角形斜边上的中线性质、平行线的性质等知识;本题综合性强,熟练掌握平行四边形的判定与性质是解题的关键.
题号
一
二
三
四
五
总分
得分
2024年江苏省东海晶都双语学校九年级数学第一学期开学达标测试试题【含答案】: 这是一份2024年江苏省东海晶都双语学校九年级数学第一学期开学达标测试试题【含答案】,共25页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。
江苏省东海晶都双语学校2023-2024学年九上数学期末学业水平测试试题含答案: 这是一份江苏省东海晶都双语学校2023-2024学年九上数学期末学业水平测试试题含答案,共7页。试卷主要包含了把二次函数配方后得等内容,欢迎下载使用。
江苏省东海晶都双语学校2023-2024学年九上数学期末质量跟踪监视模拟试题含答案: 这是一份江苏省东海晶都双语学校2023-2024学年九上数学期末质量跟踪监视模拟试题含答案,共7页。试卷主要包含了如图,下列命题是真命题的个数是等内容,欢迎下载使用。