


还剩20页未读,
继续阅读
2025届江苏省南京市二十九中学、汇文学校数学九上开学监测试题【含答案】
展开
这是一份2025届江苏省南京市二十九中学、汇文学校数学九上开学监测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,矩形ABCD中,对角线AC,BD交于点O,E,F分别是边BC,AD的中点,AB=2,BC=4,一动点P从点B出发,沿着B﹣A﹣D﹣C在矩形的边上运动,运动到点C停止,点M为图1中某一定点,设点P运动的路程为x,△BPM的面积为y,表示y与x的函数关系的图象大致如图2所示.则点M的位置可能是图1中的( )
A.点CB.点OC.点ED.点F
2、(4分)在直线l上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是S1、S2、S3、S4,则S1+S2+S3+S4的值为( )
A.6B.5C.4D.3
3、(4分)下列函数中是一次函数的是
A.B.
C.D.
4、(4分)如图,▱ABCD的对角线AC、BD相交于点O,△AOB是等边三角形,OE⊥BD交BC于点E,CD=1,则CE的长为( )
A.B.C.D.
5、(4分)下列汽车标识中,是中心对称图形的是( )
A.B.C.D.
6、(4分)式子的值( )
A.在2到3之间B.在3到4之间C.在4到5之间D.等于34
7、(4分)下列方程中,判断中错误的是( )
A.方程是分式方程B.方程是二元二次方程
C.方程是无理方程D.方程是一元二次方程
8、(4分)下列函数中,表示y是x的正比例函数的是( ).
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,矩形ABCD的对角线AC和BD相交于点O,过点O的直线分别交AD和BC于点E、F,AB=2,BC=3,则图中阴影部分的面积为______.
10、(4分)已知不等式的解集为﹣1<x<2,则( a +1)(b﹣1)的值为____.
11、(4分)﹣﹣×+=.
12、(4分)在▱ABCD中,若∠A+∠C=270˚,则∠B=_____.
13、(4分)如图,点G为正方形ABCD内一点,AB=AG,∠AGB=70°,联结DG,那么∠BGD=_____度.
三、解答题(本大题共5个小题,共48分)
14、(12分)某县响应“建设环保节约型社会”的号召,决定资助部分村镇修建一批沼气池,使农民用到经济、环保的沼气能源.幸福村共有264户村民,政府补助村里34万元,不足部分由村民集资.修建A型、B型沼气池共20个.两种型号沼气池每个修建费用、可供使用户数、修建用地情况如下表:
政府相关部门批给该村沼气池修建用地708平方米.设修建A型沼气池x个,修建两种型号沼气池共需费用y万元.
(1)用含有x的代数式表示y;
(2)不超过政府批给修建沼气池用地面积,又要使该村每户村民用上沼气的修建方案有几种;
(3)若平均每户村民集资700元,能否满足所需费用最少的修建方案.
15、(8分)如图,在▱ABCD中,对角线AC,BD相交于点O,AB⊥AC,AB=3cm,BC=5cm.点P从A点出发沿AD方向匀速运动,速度为1cm/s.连接PO并延长交BC于点Q,设运动时间为t (0<t<5).
(1)当t为何值时,四边形ABQP是平行四边形?
(2)设四边形OQCD的面积为y(cm2),求y与t之间的函数关系式;
(3)是否存在某一时刻t,使点O在线段AP的垂直平分线上?若存在,求出t的值;若不存在,请说明理由.
16、(8分)已知A、B两地相距4800米,甲从A地出发步行到B地,20分钟后乙从B地出发骑自行车到A地,设甲步行的时间为x分钟,甲、乙两人离A地的距离分别为米、米,、与x的函数关系图象如图所示,根据图象解答下列问题:
(1)直接写出y、y与x的函数关系式,并写出自变量x的取值范围;
(2)求甲出发后多少分钟两人相遇,相遇时乙离A地多少米?
17、(10分)如图,在正方形ABCD中,P是对角线BD上的一点,点E在CD的延长线上,且,PE交AD于点F.
求证:;
求的度数;
如图,把正方形ABCD改为菱形ABCD,其它条件不变,当,连接AE,试探究线段AE与线段PC的数量关系,并给予证明.
18、(10分)化简:
(1)2ab﹣a2+(a﹣b)2
(2)
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,△ABC中,AB=AC,点B在y轴上,点A、C在反比例函数y=(k>0,x>0)的图象上,且BC∥x轴.若点C横坐标为3,△ABC的面积为,则k的值为______.
20、(4分)如图所示,四边形ABCD为矩形,点O为对角线的交点,∠BOC=120°,AE⊥BO交BO于点E,AB=4,则BE等于_____.
21、(4分)一组数据2,3,4,5,3的众数为__________.
22、(4分)在函数y=中,自变量x的取值范围是_____.
23、(4分)已知正比例函数图象经过点(4,﹣2),则该函数的解析式为_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)2019年是我们伟大祖国建国70周年,各种欢庆用品在网上热销.某网店销售甲、乙两种纪念商品,甲种商品每件进价150元,可获利润40元;乙种商品每件进价100元,可获利润30元.由于这两种商品特别畅销,网店老板计划再购进两种商品共100件,其中乙种商品不超过36件.
(1)若购进这100件商品的费用不得超过13700元,求共有几种进货方案?
(2)在(1)的条件下,该网店在7•1建党节当天对甲种商品以每件优惠m(0<m<20)元的价格进行优惠促销活动,乙种商品价格不变,那么该网店应如何调整进货方案才能获得最大利润?
25、(10分)如图,点C为AD的中点,过点C的线段BE⊥AD,且AB=DE.求证:AB∥ED.
26、(12分)中国新版高铁“复兴号”率先在北京南站和上海虹桥站双向首发“复兴号”高铁从某车站出发,在行驶过程中速度(千米/分钟)与时间(分钟)的函数关系如图所示.
(1)当时,求关于工的函数表达式,
(2)求点的坐标.
(3)求高铁在时间段行驶的路程.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
从图2中可看出当x=6时,此时△BPM的面积为0,说明点M一定在BD上,选项中只有点O在BD上,所以点M的位置可能是图1中的点O.
【详解】
解:∵AB=2,BC=4,四边形ABCD是矩形,
∴当x=6时,点P到达D点,此时△BPM的面积为0,说明点M一定在BD上,
∴从选项中可得只有O点符合,所以点M的位置可能是图1中的点O.
故选:B.
本题主要考查了动点问题的函数图象,解题的关键是找出当x=6时,此时△BPM的面积为0,说明点M一定在BD上这一信息.
2、C
【解析】
由勾股定理的几何意义可知:S1+S2=1,S2+S3=2,S3+S4=3,S1+S2+S3+S4=4,故选A.
3、D
【解析】
根据形如k、b是常数的函数是一次函数即可解答.
【详解】
选项A是反比例函数;选项B是二次函数;选项C是二次函数;选项D是一次函数.
故选D.
本题主要考查了一次函数定义,关键是掌握一次函数解析式y=kx+b的结构特征:k≠0;自变量的次数为1;常数项b可以为任意实数.
4、D
【解析】
首先证明四边形ABCD是矩形,在RT△BOE中,易知BE=2EO,只要证明EO=EC即可.
【详解】
∵四边形ABCD是平行四边形,
∴AO=OC,BO=OD,
∵△ABO是等边三角形,
∴AO=BO=AB,
∴AO=OC=BO=OD,
∴AC=BD,
∴四边形ABCD是矩形.
∴OB=OC,∠ABC=90°,
∵△ABO是等边三角形,
∴∠ABO=60°,
∴∠OBC=∠OCB=30°,∠BOC=120°,
∵BO⊥OE,
∴∠BOE=90°,∠EOC=30°,
∴∠EOC=∠ECO,
∴EO=EC,
∴BE=2EO=2CE,
∵CD=1,
∴BC=CD=,
∴EC=BC=,
故选:D.
本题考查平行四边形的性质、矩形的判定、等边三角形的性质、等腰三角形的判定等知识,解题的关键是直角三角形30度角的性质的应用,属于中考常考题型.
5、D
【解析】
根据中心对称图形的概念判断即可.(中心对称:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形与另一个图形重合.)
【详解】
根据中心对称图形的概念把图形绕着某一点旋转180°后,只有D选项才能与原图形重合,故选D.
本题主要考查中心对称图形的概念,是基本知识点,应当熟练的掌握.
6、C
【解析】
分析:根据数的平方估出介于哪两个整数之间,从而找到其对应的点.
详解:∵,∴4<<5,故选C.
点睛:本题考查了无理数的估算以及数轴上的点和数之间的对应关系,解题的关键是求出介于哪两个整数之间.
7、C
【解析】
逐一进行判断即可.
【详解】
A. 方程是分式方程,正确,故该选项不符合题意;
B. 方程是二元二次方程,正确,故该选项不符合题意;
C. 方程是一元二次方程,错误,故该选项符合题意;
D. 方程是一元二次方程,正确,故该选项不符合题意;
故选:C.
本题主要考查方程的概念,掌握一元二次方程,分式方程,二元二次方程,无理方程的概念是解题的关键.
8、B
【解析】
根据正比例函数的定义来判断:一般地,两个变量x,y之间的关系式可以表示成形如y=kx(k为常数,且k≠0)的函数,那么y就叫做x的正比例函数.
【详解】
A、该函数不符合正比例函数的形式,故本选项错误.
B、该函数是y关于x的正比例函数,故本选项正确.
C、该函数是y关于x的一次函数,故本选项错误.
D、该函数是y2关于x的函数,故本选项错误.
故选B.
主要考查正比例函数的定义:一般地,两个变量x,y之间的关系式可以表示成形如y=kx(k为常数,且k≠0)的函数,那么y就叫做x的正比例函数.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、3;
【解析】
根据矩形是中心对称图形寻找思路:△OBF≌△ODE,图中阴影部分的面积就是△ADC的面积.
【详解】
根据矩形的性质得△OBF≌△ODE,
属于图中阴影部分的面积就是△ADC的面积.
S△ADC=CD×AD=×2×3=3.
故图中阴影部分的面积是3.
本题考查全等三角形的判定与性质、矩形的性质,解题的关键是掌握全等三角形的判定与性质、矩形的性质.
10、-12
【解析】
先求出每个不等式的解集,求出不等式组的解集,根据已知不等式组的解集得出方程,求出a、b的值,代入即可求出答案.
【详解】
解:∵解不等式2x-a<1得:x<,
解不等式x-2b>3得:x>2b+3,
∴不等式组的解集是2b+3<x<a,
∵不等式组的解集为-1<x<2,
∴2b+3=-1,,
∴b=-2,a=3,
∴(a+1)(b-1)=(3+1)×(-2-1)=-12,
故答案为:-12.
本题考查了一元一次方程,一元一次不等式组的应用,解此题的关键事实能得出关于a、b的方程,题目比较好,难度适中.
11、3+.
【解析】
试题分析:先进行二次根式的乘法运算,然后把各二次根式化为最简二次根式即可.
解:原式=4﹣﹣+2
=3﹣+2
=3+.
故答案为3+.
12、45°
【解析】
∵四边形ABCD是平行四边形,
∴∠A=∠C, ∠A+∠B=180º.
∵∠A+∠C=270°,
∴∠A=∠C=135º,
∴∠B=180º-135º=45º.
故答案为45º.
13、1.
【解析】
根据正方形的性质可得出AB=AD、∠BAD=90°,由AB=AG、∠AGB=70°利用等腰三角形的性质及三角形内角和定理可求出∠BAG的度数,由∠DAG=90°-∠BAG可求出∠DAG的度数,由等腰三角形的性质结合三角形内角和定理可求出∠AGD的度数,再由∠BGD=∠AGB+∠AGD可求出∠BGD的度数.
【详解】
∵四边形ABCD为正方形,
∴AB=AD,∠BAD=90°.
∵AB=AG,∠AGB=70°,
∴∠BAG=180°﹣70°﹣70°=40°,
∴∠DAG=90°﹣∠BAG=50°,
∴∠AGD=(180°﹣∠DAG)=65°,
∴∠BGD=∠AGB+∠AGD=1°.
故答案为:1.
本题考查了正方形的性质、等腰三角形的性质以及三角形内角和定理,根据等腰三角形的性质结合三角形内角和定理求出∠AGD的度数是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)y;(2)3种修建方案:①A型12个,B型8个;②A型13个,B型7个;③A型14个,B型6个;(3)能
【解析】
试题分析:(1)根据总价=单价×数量,即可得到结果;
(2)根据幸福村共有264户村民,沼气池修建用地708平方米,即可列不等式组求解;
(3)先根据一次函数的性质求得最少费用,与村民每户集资700元与政府补助共计的费用比较即可判断.
(1) ;
(2)由题意得
解①得x≥12
解②得x≤14
∴不等式的解为12≤x≤14
是正整数
∴x的取值为12,13,14
即有3种修建方案:①A型12个,B型8个;②A型13个,B型7个;③A型14个,B型6个 ;
(3)∵y=x+40中,随的增加而增加,要使费用最少,则x=12
∴最少费用为y=x+40=52(万元)
村民每户集资700元与政府补助共计:700×264+340000=524800>520000
∴每户集资700元能满足所需要费用最少的修建方案.
考点:本题考查的是一元一次不等式组的应用
点评:解答本题的关键是读懂题意,找准不等关系列出不等式组,并注意未知数的取值是正整数.
15、(1)当t=时,四边形ABQP是平行四边形(2)y=t+3(3)存在,当t=时,点O在线段AP的垂直平分线上
【解析】
(1)根据ASA证明△APO≌△CQO,再根据全等三角形的性质得出AP=CQ=t,则BQ=5-t,再根据平行四边形的判定定理可知当AP∥BQ,AP=BQ时,四边形ABQP是平行四边形,即t=5-t,求出t的值即可求解;
(2)过A作AH⊥BC于点H,过O作OG⊥BC于点G,根据勾股定理求出AC=4,由Rt△ABC的面积计算可求得AH=,利用三角形中位线定理可得OG=,再根据四边形OQCD的面积y= S△OCD+S△OCQ=OC·CD+CQ·OG,代入数值计算即可得y与t之间的函数关系式;
(3)如图2,若OE是AP的垂直平分线,可得AE=AP=,∠AEO=90°,根据勾股定理可得AE2+OE2=AO2,由(2)知:AO=2,OE=,列出关于t的方程,解方程即可求出t的值.
【详解】
(1)∵四边形ABCD是平行四边形,
∴OA=OC,AD∥BC,
∴∠PAO=∠QCO.
又∵∠AOP=∠COQ,
∴△APO≌△CQO,
∴AP=CQ=t.
∵BC=5,
∴BQ=5-t.
∵AP∥BQ,
当AP=BQ时,四边形ABQP是平行四边形,
即t=5-t,∴t=,
∴当t=时,四边形ABQP是平行四边形;
(2) 图1
如图1,过A作AH⊥BC于点H,过O作OG⊥BC于点G.
在Rt△ABC中,∵AB=3,BC=5,∴AC=4,
∴CO=AC=2,
S△ABC=AB·AC=BC·AH,
∴3×4=5AH,
∴AH=.
∵AH∥OG,OA=OC,
∴GH=CG,
∴OG=AH=,
∴y=S△OCD+S△OCQ=OC·CD+CQ·OG,
∴y=×2×3+×t×=t+3;
图2
(3)存在.
如图2,∵OE是AP的垂直平分线,
∴AE=AP=,∠AEO=90°,
由(2)知:AO=2,OE=,
由勾股定理得:AE2+OE2=AO2,
∴(t)2+()2=22,
∴t=或- (舍去),
∴当t=时,点O在线段AP的垂直平分线上.
故答案为(1)当t=时,四边形ABQP是平行四边形(2)y=t+3(3)存在,当t=时,点O在线段AP的垂直平分线上.
本题考查平行四边的判定与性质.
16、(1)y1=80x(0≤x≤60),y2=-120x+7200(20≤x≤60);(2)甲出发36分钟后两人相遇,相遇时乙离A地2880米.
【解析】
(1)根据题意利用函数图像信息进行分析计算即可;
(2)由题意可知两人相遇时,甲、乙两人离A地的距离相等,以此建立方程求解,进而得出答案.
【详解】
解:(1)由题意设甲步行的时间为x分钟,甲、乙两人离A地的距离分别为米、米,
甲离A地的距离为y1=80x(0≤x≤60)
乙离A地的距离为y2=-120x+7200(20≤x≤60).
(2)由题意可知:
两人相遇时,甲、乙两人离A地的距离相等,即y1=y2,
∴80x=-120x+7200,解得x=36(分钟).
当x=36时,y=80×36=2880(米).
答:甲出发36分钟后两人相遇,相遇时乙离A地2880米.
本题考查一次函数图象和一元一次方程的实际应用,读懂题意和一次函数图象信息是解题的关键.
17、证明见解析证明见解析,
【解析】
由正方形性质知、,结合可证≌,据此得出答案;
由知,由知,从而得出,根据可得;
先证≌得、,由知、,进一步得出,同理得出,据此知是等边三角形,从而得出答案.
【详解】
解:四边形ABCD是正方形,
、,
在和中
,
≌,
;
≌,
,
,
,
,
,
,
,
;
,
四边形ABCD是菱形,
、,
又,
≌,
,,
又,
,,
,
,
,
是等边三角形,
,即.
本题考查了正方形的性质,全等三角形的判定与性质,菱形的性质,等腰三角形的判定和性质,正确寻找全等三角形的条件是解题的关键.
18、(1)b2;(2).
【解析】
(1)利用完全平方公式展开,然后再合并同类项即可;
(2)利用分式的基本性质通分,约分,然后再根据同分母的分式的加法法则计算即可.
【详解】
(1)原式= ;
(2)原式=
.
本题主要考查整式的加减及分式的加减运算,掌握去括号,合并同类项的法则和分式的基本性质是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、.
【解析】
先利用面积求出△ABC的高h,然后设出C点的坐标,进而可写出点A的坐标,再根据点A,C都在反比例函数图象上,建立方程求解即可.
【详解】
设△ABC的高为h,
∵S△ABC=BC•h=3h=,
∴h=.
∵ ,
∴点A的横坐标为 .
设点C(3,m),则点A(,m+),
∵点A、C在反比例函数y=(k>0,x>0)的图象上,
则k=3m=(m+),
解得 ,
则k=3m=,
故答案为:.
本题主要考查反比例函数与几何综合,找到A,C坐标之间的关系并能够利用方程的思想是解题的关键.
20、1
【解析】
根据四边形ABCD是矩形,可知因为所以△AOB是等边三角形,由三线合一性质可知的长度
【详解】
∵四边形ABCD是矩形,
∴△AOB是等边三角形,
故答案为1.
本题主要考查了矩形的性质,等边三角形的性质,熟知矩形的对角线相等且相互平分和等边三角形三线合一的性质是解题关键.
21、1.
【解析】
众数又是指一组数据中出现次数最多的数据,本题根据众数的定义就可以求解.
【详解】
本题中数据1出现了2次,出现的次数最多,所以本题的众数是1.
故答案为1.
众数是指一组数据中出现次数最多的数据.
22、x≥﹣2且x≠1.
【解析】
根据二次根式的非负性及分式有意义的条件来求解不等式即可.
【详解】
解:根据题意,得:x+2≥1且x≠1,
解得:x≥﹣2且x≠1,
故答案为x≥﹣2且x≠1.
二次根式及分式有意义的条件是本题的考点,正确求解不等式是解题的关键.
23、y=﹣x
【解析】
设正比例函数的解析式为y=kx(k≠0),然后将点(4,-2)代入该解析式列出关于系数k的方程,通过解方程即可求得k的值.
【详解】
解:设正比例函数的解析式为y=kx(k≠0).
∵正比例函数图象经过点(4,-2),
∴-2=4k,
解得,k=,
∴此函数解析式为:y=x;
故答案是:y=x.
本题考查了待定系数法确定函数解析式.此类题目需灵活运用待定系数法建立函数解析式,然后将点的坐标代入解析式,利用方程解决问题.
二、解答题(本大题共3个小题,共30分)
24、(1)11(2)当时,甲服装74件,乙服装26件;当m=10时,哪一种都可以;当时,甲服装64件,乙服装36件.
【解析】
(1)设甲种纪念商品购进x件,则乙种纪念商品购进(100-x)件,然后根据购进这100件服装的费用不得超过13700元,列出不等式解答即可;
(2)首先求出总利润W的表达式,然后针对m的不同取值范围进行讨论,分别确定其进货方案.
【详解】
(1)设购进甲商品x件,则乙商品购进(100-x),则
,解得:64≤x≤74,
所以,有11种进货方案.
(2)设总利润为W元,则有,
即.
当,,W随x增大而增大,
∴当x=74时,W有最大值,即此时购进甲种服装74件,乙种服装26件;
当m=10时,按哪一种方案进货都可以;
当时,,W随x增大而减小,
∴x=64时,W有最大值,即此时购进甲种服装64件,乙种服装36件.
本题考查了一元一次方程的应用,不等式组的应用,以及一次函数的性质,正确利用x表示出利润是关键.
25、详见解析
【解析】
由AC=CD,∠ACB=∠DCE=90°,根据HL证出Rt△ACB≌Rt△DCE,推出∠A=∠D即可.
【详解】
∵点C为AD的中点,
∴AC=CD,
∵BE⊥AD,
∴∠ACB=∠DCE=90°,
在Rt△ACB和Rt△DCE中,,
∴Rt△ACB≌Rt△DCE(HL),
∴∠A=∠D,
∴AB∥ED.
考点:全等三角形的判定与性质
26、(1);(2)点的坐标为;(3)高铁在时段共行驶了千米.
【解析】
(1)根据函数图象中的数据可以求得OA段对应的函数解析式;
(2)根据函数图象中的数据可以求得AC段对应的函数解析式,然后将x=15代入,求得相应的y值,即可得到点C的坐标;
(3)根据(2)点C的坐标和图象中的数据可以求得高铁在CD时段共行驶了多少千米.
【详解】
(1)当时,
设关于的函数表达式是,
,得,
即当,关于的函数表达式是.
(2)设段对应的函数解析式为,
得
即段对应的函数表达式为.
当时,,
即点的坐标为.
(3)(千米),
答:高铁在时段共行驶了千米.
考查了一次函数的应用,正确读取图象的信息并用待定系数求解析式是解题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
沼气池
修建费用(万元/个)
可供使用户数(户/个)
占地面积(m2/个)
A型
3
20
48
B型
2
3
6
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,矩形ABCD中,对角线AC,BD交于点O,E,F分别是边BC,AD的中点,AB=2,BC=4,一动点P从点B出发,沿着B﹣A﹣D﹣C在矩形的边上运动,运动到点C停止,点M为图1中某一定点,设点P运动的路程为x,△BPM的面积为y,表示y与x的函数关系的图象大致如图2所示.则点M的位置可能是图1中的( )
A.点CB.点OC.点ED.点F
2、(4分)在直线l上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是S1、S2、S3、S4,则S1+S2+S3+S4的值为( )
A.6B.5C.4D.3
3、(4分)下列函数中是一次函数的是
A.B.
C.D.
4、(4分)如图,▱ABCD的对角线AC、BD相交于点O,△AOB是等边三角形,OE⊥BD交BC于点E,CD=1,则CE的长为( )
A.B.C.D.
5、(4分)下列汽车标识中,是中心对称图形的是( )
A.B.C.D.
6、(4分)式子的值( )
A.在2到3之间B.在3到4之间C.在4到5之间D.等于34
7、(4分)下列方程中,判断中错误的是( )
A.方程是分式方程B.方程是二元二次方程
C.方程是无理方程D.方程是一元二次方程
8、(4分)下列函数中,表示y是x的正比例函数的是( ).
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,矩形ABCD的对角线AC和BD相交于点O,过点O的直线分别交AD和BC于点E、F,AB=2,BC=3,则图中阴影部分的面积为______.
10、(4分)已知不等式的解集为﹣1<x<2,则( a +1)(b﹣1)的值为____.
11、(4分)﹣﹣×+=.
12、(4分)在▱ABCD中,若∠A+∠C=270˚,则∠B=_____.
13、(4分)如图,点G为正方形ABCD内一点,AB=AG,∠AGB=70°,联结DG,那么∠BGD=_____度.
三、解答题(本大题共5个小题,共48分)
14、(12分)某县响应“建设环保节约型社会”的号召,决定资助部分村镇修建一批沼气池,使农民用到经济、环保的沼气能源.幸福村共有264户村民,政府补助村里34万元,不足部分由村民集资.修建A型、B型沼气池共20个.两种型号沼气池每个修建费用、可供使用户数、修建用地情况如下表:
政府相关部门批给该村沼气池修建用地708平方米.设修建A型沼气池x个,修建两种型号沼气池共需费用y万元.
(1)用含有x的代数式表示y;
(2)不超过政府批给修建沼气池用地面积,又要使该村每户村民用上沼气的修建方案有几种;
(3)若平均每户村民集资700元,能否满足所需费用最少的修建方案.
15、(8分)如图,在▱ABCD中,对角线AC,BD相交于点O,AB⊥AC,AB=3cm,BC=5cm.点P从A点出发沿AD方向匀速运动,速度为1cm/s.连接PO并延长交BC于点Q,设运动时间为t (0<t<5).
(1)当t为何值时,四边形ABQP是平行四边形?
(2)设四边形OQCD的面积为y(cm2),求y与t之间的函数关系式;
(3)是否存在某一时刻t,使点O在线段AP的垂直平分线上?若存在,求出t的值;若不存在,请说明理由.
16、(8分)已知A、B两地相距4800米,甲从A地出发步行到B地,20分钟后乙从B地出发骑自行车到A地,设甲步行的时间为x分钟,甲、乙两人离A地的距离分别为米、米,、与x的函数关系图象如图所示,根据图象解答下列问题:
(1)直接写出y、y与x的函数关系式,并写出自变量x的取值范围;
(2)求甲出发后多少分钟两人相遇,相遇时乙离A地多少米?
17、(10分)如图,在正方形ABCD中,P是对角线BD上的一点,点E在CD的延长线上,且,PE交AD于点F.
求证:;
求的度数;
如图,把正方形ABCD改为菱形ABCD,其它条件不变,当,连接AE,试探究线段AE与线段PC的数量关系,并给予证明.
18、(10分)化简:
(1)2ab﹣a2+(a﹣b)2
(2)
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,△ABC中,AB=AC,点B在y轴上,点A、C在反比例函数y=(k>0,x>0)的图象上,且BC∥x轴.若点C横坐标为3,△ABC的面积为,则k的值为______.
20、(4分)如图所示,四边形ABCD为矩形,点O为对角线的交点,∠BOC=120°,AE⊥BO交BO于点E,AB=4,则BE等于_____.
21、(4分)一组数据2,3,4,5,3的众数为__________.
22、(4分)在函数y=中,自变量x的取值范围是_____.
23、(4分)已知正比例函数图象经过点(4,﹣2),则该函数的解析式为_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)2019年是我们伟大祖国建国70周年,各种欢庆用品在网上热销.某网店销售甲、乙两种纪念商品,甲种商品每件进价150元,可获利润40元;乙种商品每件进价100元,可获利润30元.由于这两种商品特别畅销,网店老板计划再购进两种商品共100件,其中乙种商品不超过36件.
(1)若购进这100件商品的费用不得超过13700元,求共有几种进货方案?
(2)在(1)的条件下,该网店在7•1建党节当天对甲种商品以每件优惠m(0<m<20)元的价格进行优惠促销活动,乙种商品价格不变,那么该网店应如何调整进货方案才能获得最大利润?
25、(10分)如图,点C为AD的中点,过点C的线段BE⊥AD,且AB=DE.求证:AB∥ED.
26、(12分)中国新版高铁“复兴号”率先在北京南站和上海虹桥站双向首发“复兴号”高铁从某车站出发,在行驶过程中速度(千米/分钟)与时间(分钟)的函数关系如图所示.
(1)当时,求关于工的函数表达式,
(2)求点的坐标.
(3)求高铁在时间段行驶的路程.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
从图2中可看出当x=6时,此时△BPM的面积为0,说明点M一定在BD上,选项中只有点O在BD上,所以点M的位置可能是图1中的点O.
【详解】
解:∵AB=2,BC=4,四边形ABCD是矩形,
∴当x=6时,点P到达D点,此时△BPM的面积为0,说明点M一定在BD上,
∴从选项中可得只有O点符合,所以点M的位置可能是图1中的点O.
故选:B.
本题主要考查了动点问题的函数图象,解题的关键是找出当x=6时,此时△BPM的面积为0,说明点M一定在BD上这一信息.
2、C
【解析】
由勾股定理的几何意义可知:S1+S2=1,S2+S3=2,S3+S4=3,S1+S2+S3+S4=4,故选A.
3、D
【解析】
根据形如k、b是常数的函数是一次函数即可解答.
【详解】
选项A是反比例函数;选项B是二次函数;选项C是二次函数;选项D是一次函数.
故选D.
本题主要考查了一次函数定义,关键是掌握一次函数解析式y=kx+b的结构特征:k≠0;自变量的次数为1;常数项b可以为任意实数.
4、D
【解析】
首先证明四边形ABCD是矩形,在RT△BOE中,易知BE=2EO,只要证明EO=EC即可.
【详解】
∵四边形ABCD是平行四边形,
∴AO=OC,BO=OD,
∵△ABO是等边三角形,
∴AO=BO=AB,
∴AO=OC=BO=OD,
∴AC=BD,
∴四边形ABCD是矩形.
∴OB=OC,∠ABC=90°,
∵△ABO是等边三角形,
∴∠ABO=60°,
∴∠OBC=∠OCB=30°,∠BOC=120°,
∵BO⊥OE,
∴∠BOE=90°,∠EOC=30°,
∴∠EOC=∠ECO,
∴EO=EC,
∴BE=2EO=2CE,
∵CD=1,
∴BC=CD=,
∴EC=BC=,
故选:D.
本题考查平行四边形的性质、矩形的判定、等边三角形的性质、等腰三角形的判定等知识,解题的关键是直角三角形30度角的性质的应用,属于中考常考题型.
5、D
【解析】
根据中心对称图形的概念判断即可.(中心对称:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形与另一个图形重合.)
【详解】
根据中心对称图形的概念把图形绕着某一点旋转180°后,只有D选项才能与原图形重合,故选D.
本题主要考查中心对称图形的概念,是基本知识点,应当熟练的掌握.
6、C
【解析】
分析:根据数的平方估出介于哪两个整数之间,从而找到其对应的点.
详解:∵,∴4<<5,故选C.
点睛:本题考查了无理数的估算以及数轴上的点和数之间的对应关系,解题的关键是求出介于哪两个整数之间.
7、C
【解析】
逐一进行判断即可.
【详解】
A. 方程是分式方程,正确,故该选项不符合题意;
B. 方程是二元二次方程,正确,故该选项不符合题意;
C. 方程是一元二次方程,错误,故该选项符合题意;
D. 方程是一元二次方程,正确,故该选项不符合题意;
故选:C.
本题主要考查方程的概念,掌握一元二次方程,分式方程,二元二次方程,无理方程的概念是解题的关键.
8、B
【解析】
根据正比例函数的定义来判断:一般地,两个变量x,y之间的关系式可以表示成形如y=kx(k为常数,且k≠0)的函数,那么y就叫做x的正比例函数.
【详解】
A、该函数不符合正比例函数的形式,故本选项错误.
B、该函数是y关于x的正比例函数,故本选项正确.
C、该函数是y关于x的一次函数,故本选项错误.
D、该函数是y2关于x的函数,故本选项错误.
故选B.
主要考查正比例函数的定义:一般地,两个变量x,y之间的关系式可以表示成形如y=kx(k为常数,且k≠0)的函数,那么y就叫做x的正比例函数.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、3;
【解析】
根据矩形是中心对称图形寻找思路:△OBF≌△ODE,图中阴影部分的面积就是△ADC的面积.
【详解】
根据矩形的性质得△OBF≌△ODE,
属于图中阴影部分的面积就是△ADC的面积.
S△ADC=CD×AD=×2×3=3.
故图中阴影部分的面积是3.
本题考查全等三角形的判定与性质、矩形的性质,解题的关键是掌握全等三角形的判定与性质、矩形的性质.
10、-12
【解析】
先求出每个不等式的解集,求出不等式组的解集,根据已知不等式组的解集得出方程,求出a、b的值,代入即可求出答案.
【详解】
解:∵解不等式2x-a<1得:x<,
解不等式x-2b>3得:x>2b+3,
∴不等式组的解集是2b+3<x<a,
∵不等式组的解集为-1<x<2,
∴2b+3=-1,,
∴b=-2,a=3,
∴(a+1)(b-1)=(3+1)×(-2-1)=-12,
故答案为:-12.
本题考查了一元一次方程,一元一次不等式组的应用,解此题的关键事实能得出关于a、b的方程,题目比较好,难度适中.
11、3+.
【解析】
试题分析:先进行二次根式的乘法运算,然后把各二次根式化为最简二次根式即可.
解:原式=4﹣﹣+2
=3﹣+2
=3+.
故答案为3+.
12、45°
【解析】
∵四边形ABCD是平行四边形,
∴∠A=∠C, ∠A+∠B=180º.
∵∠A+∠C=270°,
∴∠A=∠C=135º,
∴∠B=180º-135º=45º.
故答案为45º.
13、1.
【解析】
根据正方形的性质可得出AB=AD、∠BAD=90°,由AB=AG、∠AGB=70°利用等腰三角形的性质及三角形内角和定理可求出∠BAG的度数,由∠DAG=90°-∠BAG可求出∠DAG的度数,由等腰三角形的性质结合三角形内角和定理可求出∠AGD的度数,再由∠BGD=∠AGB+∠AGD可求出∠BGD的度数.
【详解】
∵四边形ABCD为正方形,
∴AB=AD,∠BAD=90°.
∵AB=AG,∠AGB=70°,
∴∠BAG=180°﹣70°﹣70°=40°,
∴∠DAG=90°﹣∠BAG=50°,
∴∠AGD=(180°﹣∠DAG)=65°,
∴∠BGD=∠AGB+∠AGD=1°.
故答案为:1.
本题考查了正方形的性质、等腰三角形的性质以及三角形内角和定理,根据等腰三角形的性质结合三角形内角和定理求出∠AGD的度数是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)y;(2)3种修建方案:①A型12个,B型8个;②A型13个,B型7个;③A型14个,B型6个;(3)能
【解析】
试题分析:(1)根据总价=单价×数量,即可得到结果;
(2)根据幸福村共有264户村民,沼气池修建用地708平方米,即可列不等式组求解;
(3)先根据一次函数的性质求得最少费用,与村民每户集资700元与政府补助共计的费用比较即可判断.
(1) ;
(2)由题意得
解①得x≥12
解②得x≤14
∴不等式的解为12≤x≤14
是正整数
∴x的取值为12,13,14
即有3种修建方案:①A型12个,B型8个;②A型13个,B型7个;③A型14个,B型6个 ;
(3)∵y=x+40中,随的增加而增加,要使费用最少,则x=12
∴最少费用为y=x+40=52(万元)
村民每户集资700元与政府补助共计:700×264+340000=524800>520000
∴每户集资700元能满足所需要费用最少的修建方案.
考点:本题考查的是一元一次不等式组的应用
点评:解答本题的关键是读懂题意,找准不等关系列出不等式组,并注意未知数的取值是正整数.
15、(1)当t=时,四边形ABQP是平行四边形(2)y=t+3(3)存在,当t=时,点O在线段AP的垂直平分线上
【解析】
(1)根据ASA证明△APO≌△CQO,再根据全等三角形的性质得出AP=CQ=t,则BQ=5-t,再根据平行四边形的判定定理可知当AP∥BQ,AP=BQ时,四边形ABQP是平行四边形,即t=5-t,求出t的值即可求解;
(2)过A作AH⊥BC于点H,过O作OG⊥BC于点G,根据勾股定理求出AC=4,由Rt△ABC的面积计算可求得AH=,利用三角形中位线定理可得OG=,再根据四边形OQCD的面积y= S△OCD+S△OCQ=OC·CD+CQ·OG,代入数值计算即可得y与t之间的函数关系式;
(3)如图2,若OE是AP的垂直平分线,可得AE=AP=,∠AEO=90°,根据勾股定理可得AE2+OE2=AO2,由(2)知:AO=2,OE=,列出关于t的方程,解方程即可求出t的值.
【详解】
(1)∵四边形ABCD是平行四边形,
∴OA=OC,AD∥BC,
∴∠PAO=∠QCO.
又∵∠AOP=∠COQ,
∴△APO≌△CQO,
∴AP=CQ=t.
∵BC=5,
∴BQ=5-t.
∵AP∥BQ,
当AP=BQ时,四边形ABQP是平行四边形,
即t=5-t,∴t=,
∴当t=时,四边形ABQP是平行四边形;
(2) 图1
如图1,过A作AH⊥BC于点H,过O作OG⊥BC于点G.
在Rt△ABC中,∵AB=3,BC=5,∴AC=4,
∴CO=AC=2,
S△ABC=AB·AC=BC·AH,
∴3×4=5AH,
∴AH=.
∵AH∥OG,OA=OC,
∴GH=CG,
∴OG=AH=,
∴y=S△OCD+S△OCQ=OC·CD+CQ·OG,
∴y=×2×3+×t×=t+3;
图2
(3)存在.
如图2,∵OE是AP的垂直平分线,
∴AE=AP=,∠AEO=90°,
由(2)知:AO=2,OE=,
由勾股定理得:AE2+OE2=AO2,
∴(t)2+()2=22,
∴t=或- (舍去),
∴当t=时,点O在线段AP的垂直平分线上.
故答案为(1)当t=时,四边形ABQP是平行四边形(2)y=t+3(3)存在,当t=时,点O在线段AP的垂直平分线上.
本题考查平行四边的判定与性质.
16、(1)y1=80x(0≤x≤60),y2=-120x+7200(20≤x≤60);(2)甲出发36分钟后两人相遇,相遇时乙离A地2880米.
【解析】
(1)根据题意利用函数图像信息进行分析计算即可;
(2)由题意可知两人相遇时,甲、乙两人离A地的距离相等,以此建立方程求解,进而得出答案.
【详解】
解:(1)由题意设甲步行的时间为x分钟,甲、乙两人离A地的距离分别为米、米,
甲离A地的距离为y1=80x(0≤x≤60)
乙离A地的距离为y2=-120x+7200(20≤x≤60).
(2)由题意可知:
两人相遇时,甲、乙两人离A地的距离相等,即y1=y2,
∴80x=-120x+7200,解得x=36(分钟).
当x=36时,y=80×36=2880(米).
答:甲出发36分钟后两人相遇,相遇时乙离A地2880米.
本题考查一次函数图象和一元一次方程的实际应用,读懂题意和一次函数图象信息是解题的关键.
17、证明见解析证明见解析,
【解析】
由正方形性质知、,结合可证≌,据此得出答案;
由知,由知,从而得出,根据可得;
先证≌得、,由知、,进一步得出,同理得出,据此知是等边三角形,从而得出答案.
【详解】
解:四边形ABCD是正方形,
、,
在和中
,
≌,
;
≌,
,
,
,
,
,
,
,
;
,
四边形ABCD是菱形,
、,
又,
≌,
,,
又,
,,
,
,
,
是等边三角形,
,即.
本题考查了正方形的性质,全等三角形的判定与性质,菱形的性质,等腰三角形的判定和性质,正确寻找全等三角形的条件是解题的关键.
18、(1)b2;(2).
【解析】
(1)利用完全平方公式展开,然后再合并同类项即可;
(2)利用分式的基本性质通分,约分,然后再根据同分母的分式的加法法则计算即可.
【详解】
(1)原式= ;
(2)原式=
.
本题主要考查整式的加减及分式的加减运算,掌握去括号,合并同类项的法则和分式的基本性质是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、.
【解析】
先利用面积求出△ABC的高h,然后设出C点的坐标,进而可写出点A的坐标,再根据点A,C都在反比例函数图象上,建立方程求解即可.
【详解】
设△ABC的高为h,
∵S△ABC=BC•h=3h=,
∴h=.
∵ ,
∴点A的横坐标为 .
设点C(3,m),则点A(,m+),
∵点A、C在反比例函数y=(k>0,x>0)的图象上,
则k=3m=(m+),
解得 ,
则k=3m=,
故答案为:.
本题主要考查反比例函数与几何综合,找到A,C坐标之间的关系并能够利用方程的思想是解题的关键.
20、1
【解析】
根据四边形ABCD是矩形,可知因为所以△AOB是等边三角形,由三线合一性质可知的长度
【详解】
∵四边形ABCD是矩形,
∴△AOB是等边三角形,
故答案为1.
本题主要考查了矩形的性质,等边三角形的性质,熟知矩形的对角线相等且相互平分和等边三角形三线合一的性质是解题关键.
21、1.
【解析】
众数又是指一组数据中出现次数最多的数据,本题根据众数的定义就可以求解.
【详解】
本题中数据1出现了2次,出现的次数最多,所以本题的众数是1.
故答案为1.
众数是指一组数据中出现次数最多的数据.
22、x≥﹣2且x≠1.
【解析】
根据二次根式的非负性及分式有意义的条件来求解不等式即可.
【详解】
解:根据题意,得:x+2≥1且x≠1,
解得:x≥﹣2且x≠1,
故答案为x≥﹣2且x≠1.
二次根式及分式有意义的条件是本题的考点,正确求解不等式是解题的关键.
23、y=﹣x
【解析】
设正比例函数的解析式为y=kx(k≠0),然后将点(4,-2)代入该解析式列出关于系数k的方程,通过解方程即可求得k的值.
【详解】
解:设正比例函数的解析式为y=kx(k≠0).
∵正比例函数图象经过点(4,-2),
∴-2=4k,
解得,k=,
∴此函数解析式为:y=x;
故答案是:y=x.
本题考查了待定系数法确定函数解析式.此类题目需灵活运用待定系数法建立函数解析式,然后将点的坐标代入解析式,利用方程解决问题.
二、解答题(本大题共3个小题,共30分)
24、(1)11(2)当时,甲服装74件,乙服装26件;当m=10时,哪一种都可以;当时,甲服装64件,乙服装36件.
【解析】
(1)设甲种纪念商品购进x件,则乙种纪念商品购进(100-x)件,然后根据购进这100件服装的费用不得超过13700元,列出不等式解答即可;
(2)首先求出总利润W的表达式,然后针对m的不同取值范围进行讨论,分别确定其进货方案.
【详解】
(1)设购进甲商品x件,则乙商品购进(100-x),则
,解得:64≤x≤74,
所以,有11种进货方案.
(2)设总利润为W元,则有,
即.
当,,W随x增大而增大,
∴当x=74时,W有最大值,即此时购进甲种服装74件,乙种服装26件;
当m=10时,按哪一种方案进货都可以;
当时,,W随x增大而减小,
∴x=64时,W有最大值,即此时购进甲种服装64件,乙种服装36件.
本题考查了一元一次方程的应用,不等式组的应用,以及一次函数的性质,正确利用x表示出利润是关键.
25、详见解析
【解析】
由AC=CD,∠ACB=∠DCE=90°,根据HL证出Rt△ACB≌Rt△DCE,推出∠A=∠D即可.
【详解】
∵点C为AD的中点,
∴AC=CD,
∵BE⊥AD,
∴∠ACB=∠DCE=90°,
在Rt△ACB和Rt△DCE中,,
∴Rt△ACB≌Rt△DCE(HL),
∴∠A=∠D,
∴AB∥ED.
考点:全等三角形的判定与性质
26、(1);(2)点的坐标为;(3)高铁在时段共行驶了千米.
【解析】
(1)根据函数图象中的数据可以求得OA段对应的函数解析式;
(2)根据函数图象中的数据可以求得AC段对应的函数解析式,然后将x=15代入,求得相应的y值,即可得到点C的坐标;
(3)根据(2)点C的坐标和图象中的数据可以求得高铁在CD时段共行驶了多少千米.
【详解】
(1)当时,
设关于的函数表达式是,
,得,
即当,关于的函数表达式是.
(2)设段对应的函数解析式为,
得
即段对应的函数表达式为.
当时,,
即点的坐标为.
(3)(千米),
答:高铁在时段共行驶了千米.
考查了一次函数的应用,正确读取图象的信息并用待定系数求解析式是解题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
沼气池
修建费用(万元/个)
可供使用户数(户/个)
占地面积(m2/个)
A型
3
20
48
B型
2
3
6