2025届江苏省启东市南苑中学九年级数学第一学期开学检测模拟试题【含答案】
展开
这是一份2025届江苏省启东市南苑中学九年级数学第一学期开学检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,直线y=kx和y=ax+4交于A(1,k),则不等式kx﹣6<ax+4<kx的解集为( )
A.1<x<B.1<x<3C.﹣<x<1D.<x<3
2、(4分)如图,E是边长为4的正方形ABCD的对角线BD上一点,且BE=BC,P为CE上任意一点,PQ⊥BC于点Q,PR⊥BR于点R,则PQ+PR的值是( )
A.2B.2C.2D.
3、(4分)某学习小组9名学生参加“数学竞赛”,他们的得分情况如下表:
那么这9名学生所得分数的众数和中位数分别是( )
A.90,87.5B.90,85C.90,90D.85,85
4、(4分)已知一元二次方程x2-2x-m=0有两个实数根,那么m的取值范围是( )
A.B.C.D.
5、(4分)如图,DE是的中位线,则与四边形DBCE的面积之比是( )
A.B.C.D.
6、(4分)等式成立的条件是( )
A.B.C.x>2D.
7、(4分)如图,在平面直角坐标系xOy中,直线经过点A,作AB⊥x轴于点B,将△ABO绕点B逆时针旋转60°得到△CBD.若点B的坐标为(2, 0),则点C的坐标为( )
A.(﹣1,)B.(﹣2,)C.(,1)D.(,2)
8、(4分)在△ABC中,已知∠A、∠B、∠C的度数之比是1:1:2,BC=4,△ABC的面积为( )
A.2B.C.4D.8
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)今年我市有5万名考生参加中考,为了解这些考生的数学成绩,从中抽取1000名考生的数学成绩进行统计分析,在这个调查中样本容量是______.
10、(4分)点A(0,3)向右平移2个单位长度后所得的点A’的坐标为_____.
11、(4分)一次函数不经过第_________象限;
12、(4分)长、宽分别为a、b的矩形,它的周长为14,面积为10,则a2b+ab2的值为_____.
13、(4分)若关于的一次函数(为常数)中,随的增大而减小,则的取值范围是____.
三、解答题(本大题共5个小题,共48分)
14、(12分)一家蔬菜公司收购到某种绿色蔬菜140吨,准备加工后进行销售,销售后获利的情况如下表所示:
已知该公司的加工能力是:每天能精加工5吨或粗加工15吨,但两种加工不能同时进行.受季节等条件的限制,公司必须在一定时间内将这批蔬菜全部加工后销售完.
(1)如果要求12天刚好加工完140吨蔬菜,则公司应安排几天精加工,几天粗加工?
(2)如果先进行精加工,然后进行粗加工.
①试求出销售利润元与精加工的蔬菜吨数之间的函数关系式;
②若要求在不超过10天的时间内,将140吨蔬菜全部加工完后进行销售,则加工这批蔬菜最多获得多少利润?此时如何分配加工时间?
15、(8分)某校组织275名师生郊游,计划租用甲、乙两种客车共7辆,已知甲客车载客量是30人,乙客车载客量是45人,其中,每辆乙种客车租金比甲种客车多100元,5辆甲种客车和2辆乙种客车租金共需3000元.
(1)租用一辆甲种客车、一辆乙种客车的租金各多少元?
(2)设租用甲种客车辆,总租车费为元,求与的函数关系式;在保证275名师生都有座位的前提下,求当租用甲种客车多少辆时,总租车费最少,并求出这个最少费用.
16、(8分)如图,中,点,分别是边,的中点,过点作交的延长线于点,连结.
(1)求证:四边形是平行四边形.
(2)当时,若,,求的长.
17、(10分)如图,在直角三角形ABC中,∠C=90°,∠B=60°,AB=8cm,E、F分别为边AC、AB的中点.
(1)求∠A的度数;
(2)求EF和AE的长.
18、(10分)阅读材料I:
教材中我们学习了:若关于的一元二次方程的两根为,根据这一性质,我们可以求出己知方程关于的代数式的值.
问题解决:
(1)已知为方程的两根,则: __ _,__ _,那么_ (请你完成以上的填空)
阅读材料:II
已知,且.求的值.
解:由可知
又且,即
是方程的两根.
问题解决:
(2)若且则 ;
(3)已知且.求的值.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,将菱形纸片ABCD折叠,使点C,D的对应点C',D'都落在直线AB上,折痕为EF,若EF=1.AC'=8,则阴影部分(四边形ED'BF)的面积为________ 。
20、(4分)已知关于x的不等式3x - m+1>0的最小整数解为2,则实数m的取值范围是___________.
21、(4分)根据如图所示的程序,当输入x=3时,输出的结果y=________.
22、(4分)如图,将一副直角三角板如图所示放置,使含30°角的三角板的一条直角边和含45°的三角板的一条直角边重合,则∠1的度数为______.
23、(4分)已知在正方形中,,则正方形的面积为__________.
二、解答题(本大题共3个小题,共30分)
24、(8分)在正方形中,是对角线上的点,连接、.
(1)求证:;
(2)如果,求的度数.
25、(10分)如图是小明设计用手电来测量都匀南沙州古城墙高度的示意图,点P处放一水平的平面镜,光线从点A出发经过平面镜反射后刚好射到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,且测得AB=1.2米,BP=1.8米,PD=12米,那么该古城墙的高度是_____米(平面镜的厚度忽略不计).
26、(12分)甲、乙两家旅行社为了吸引更多的顾客,分别推出赴某地旅游的团体(多于4人)优惠办法.甲旅行社的优惠办法是:买4张全票,其余人按半价优惠;乙旅行社的优惠办法是:所有人都打七五折优惠.已知这两家旅行社的原价均为每人1000元,那么随着团体人数的变化,哪家旅行社的收费更优惠.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
把A(1,k)代入y=ax+4得a=k-4,则解不等式kx-4<ax+4得x<,再结合图象得到x>1时,ax+4<kx,从而得到不等式kx-6<ax+4<kx的解集.
【详解】
解:把A(1,k)代入y=ax+4得k=a+4,则a=k﹣4,
解不等式kx﹣4<ax+4得x<,
而当x>1时,ax+4<kx,
所以不等式kx﹣6<ax+4<kx的解集为1<x<.
故选A.
本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.也考查了一次函数的性质.
2、A
【解析】
如图,连接BP,设点C到BE的距离为h,
则S△BCE=S△BCP+S△BEP,
即BE⋅h=BC⋅PQ+BE⋅PR,
∵BE=BC,
∴h=PQ+PR,
∵正方形ABCD的边长为4,
∴h=4×=.
故答案为.
3、C
【解析】
根据中位数(按由小到大顺序排列,最中间位置的数)、众数(出现次数最多的数)的概念确定即可.
【详解】
解:90分出现了4次,出现次数最多,故众数为90;将9位同学的分数按从小到大排序为80,85,85,85,90,90,90,90,95,处于最中间的是90,故中位数是90.
故答案为:C
本题考查了中位数和众数,准确理解两者的定义是解题的关键.
4、B
【解析】
根据根的判别式,令△≥0即可求出m的取值范围.
【详解】
解:∵一元二次方程x2-2x-m=0有两个实数根,
∴△≥0,即(-2)2-4×(-m) ≥0,
∴m≥-1.
故选B.
本题考查了根的判别式.
5、B
【解析】
首先根据DE是△ABC的中位线,可得△ADE∽△ABC,且DE:BC=1:2;然后根据相似三角形面积的比等于相似比的平方,求出△ADE与△ABC的面积之比是多少,进而求出△ADE与四边形DBCE的面积之比是多少即可.
【详解】
解:∵DE是△ABC的中位线,
∴△ADE∽△ABC,且DE:BC=1:2,
∴△ADE与△ABC的面积之比是1:4,
∴△ADE与四边形DBCE的面积之比是1:1.
故选:B.
(1)此题主要考查了三角形的中位线定理的应用,要熟练掌握,解答此题的关键是要明确:三角形的中位线平行于第三边,并且等于第三边的一半.
(2)此题还考查了相似三角形的面积的比的求法,要熟练掌握,解答此题的关键是要明确:相似三角形面积的比等于相似比的平方.
6、C
【解析】
直接利用二次根式的性质得出关于x的不等式进而求出答案.
【详解】
解:∵等式=成立,
∴,
解得:x>1.
故选:C.
此题主要考查了二次根式的性质,正确解不等式组是解题关键.
7、A
【解析】
作CH⊥x轴于H,如图,先根据一次函数图象上点的坐标特征确定A(2,2),再利用旋转的性质得BC=BA=2,∠ABC=60°,则∠CBH=30°,然后在Rt△CBH中,利用含30度的直角三角形三边的关系可计算出CH=BC=,BH=CH=3,所以OH=BH-OB=3-2=1,于是可写出C点坐标.
【详解】
作CH⊥x轴于H,如图,
∵点B的坐标为(2,0),AB⊥x轴于点B,
∴A点横坐标为2,
当x=2时,y=x=2,
∴A(2,2),
∵△ABO绕点B逆时针旋转60°得到△CBD,
∴BC=BA=2,∠ABC=60°,
∴∠CBH=30°,
在Rt△CBH中,CH=BC=,
BH=CH=3,
OH=BH-OB=3-2=1,
∴C(-1,).
故选A.
8、D
【解析】
根据比例设∠A=k,∠B=k,∠C=2k,然后根据三角形的内角和等于180°列方程求出k的值,从而得到三个内角的度数,再根据直角三角形30°角所对的直角边等于斜边的一半求出AB,利用勾股定理列式求出AC,然后根据三角形的面积公式列式计算即可得解.
【详解】
解:设∠A=k,∠B=k,∠C=2k,
由三角形的内角和定理得,k+k+2k=180°,
解得k=45°,
所以,∠A=45°,∠B=45°,∠C=90°,
∴AC=BC=4,,
所以,△ABC的面积=.
故选:D.
本题考查的知识点是直角三角形的性质和三角形的内角和定理,解题关键是利用“设k法”求解三个内角的度数.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
根据样本容量的定义:样本中个体的数目称为样本容量,即可求解.
【详解】
解:这个调查的样本是1名考生的数学成绩,故样本容量是1.
故答案为1.
本题考查样本容量,难度不大,熟练掌握样本容量的定义是顺利解题的关键.
10、(2,3)
【解析】根据横坐标右移加,左移减;纵坐标上移加,下移减可得A′的坐标为(0+2,3).
解:点A(0,3)向右平移2个单位长度后所得的点A′的坐标为(0+2,3),
即(2,3),
故答案为:(2,3).
11、三
【解析】
根据一次函数的图像与性质即可得出答案.
【详解】
∵一次函数解析式为:y=-x+1
其中k=-10
∴函数图像经过一、二、四象限,不经过第三象限
故答案为:三.
本题考查的是一次函数的图像与性质,熟练掌握一次函数的图像与性质是解决本题的关键.
12、1.
【解析】
由周长和面积可分别求得a+b和ab的值,再利用因式分解把所求代数式可化为ab(a+b),代入可求得答案
【详解】
∵长、宽分别为a、b的矩形,它的周长为14,面积为10,
∴a+b==7,ab=10,
∴a2b+ab2=ab(a+b)=10×7=1,
故答案为:1.
本题主要考查因式分解的应用,把所求代数式化为ab(a+b)是解题的关键.
13、
【解析】
根据一次函数的增减性可求得k的取值范围.
【详解】
∵一次函数y=(1-k)x+1(k是常数)中y随x的增大而减小,
∴1-k1,
故答案为:k>1.
本题主要考查一次函数的增减性,掌握一次函数的增减性是解题的关键,即在y=kx+b中,当k>0时y随x的增大而增大,当k<0时y随x的增大而减小.
三、解答题(本大题共5个小题,共48分)
14、(1)应安排4天进行精加工,8天进行粗加工
(2)①=
②安排1天进行精加工,9天进行粗加工,可以获得最多利润为元
【解析】
解:(1)设应安排天进行精加工,天进行粗加工,
根据题意得
解得
答:应安排4天进行精加工,8天进行粗加工.
(2)①精加工吨,则粗加工()吨,根据题意得
=
②要求在不超过10天的时间内将所有蔬菜加工完,
解得
又在一次函数中,,
随的增大而增大,
当时,
精加工天数为=1,
粗加工天数为
安排1天进行精加工,9天进行粗加工,可以获得最多利润为元.
15、(1)租用一辆甲种客车的费用为300元,则一辆乙种客车的费用为400元;(2)w=-100x+2800;当租用甲种客车2辆时,总租车费最少,最少费用为1元.
【解析】
(1)设租用一辆甲种客车的费用为x元,则一辆乙种客车的费用为(x+100)元,列出方程即可解决问题;
(2)由题意w=300x+400(7-x)=-100x+2800,列出不等式求出x的取值范围,利用一次函数的性质即可解决问题.
【详解】
(1)设租用一辆甲种客车的费用为x元,则一辆乙种客车的费用为(x+100)元,
由题意5x+2(x+100)=2300,
解得x=300,
答:租用一辆甲种客车的费用为300元,则一辆乙种客车的费用为400元.
(2)由题意w=300x+400(7-x)=-100x+2800,
又30x+45(7-x)≥275,
解得x≤,
∴x的最大值为2,
∵-100<0,
∴x=2时,w的值最小,最小值为1.
答:当租用甲种客车2辆时,总租车费最少,最少费用为1元.
本题考查一元一次方程的应用、一次函数的应用、一元一次不等式的应用等知识,解题的关键是理解题意,学会构建一次函数解决最值问题.
16、(1)详见解析;(2)
【解析】
(1)根据三角形的中位线的性质得出DE∥BC,再根据已知CF∥AB即可得到结论;
(2)根据等腰三角形的性质三线合一得出,然后利用勾股定理即可得到结论.
【详解】
(1)证明:∵点D,E分别是边AB,AC的中点,
∴DE∥BC.
∵CF∥AB,
∴四边形BCFD是平行四边形;
(2)解:∵AB=BC,E为AC的中点,
∴BE⊥AC.
∴
∵AB=2DB=4,BE=3,
本题考查了平行四边形的判定和性质,三角形中位线定理,勾股定理,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
17、(1)30°(2)EF=2cm,AE=2cm
【解析】
(1)由“直角三角形的两个锐角互余”的性质来求∠A的度数;
(2)由“30度角所对的直角边等于斜边的一半”求得BC= AB=4cm,再利用中位线的性质即可解答
【详解】
(1)∵在Rt△ABC中,∠C=90°,∠B=60°
∴∠A=90°-∠B=30°
即∠A的度数是30°.
(2)∵在Rt△ABC中,∠C=90°,∠A=30°,AB=8cm
∴BC=AB=4cm
∴AC= =cm
∴AE=AC=2cm
∵E、F分别为边AC、AB的中点
∴EF是△ABC的中位线
∴EF=BC=2cm.
此题考查三角形中位线定理,含30度角的直角三角形,解题关键在于利用勾股定理进行计算
18、(1)-3;-1;11;(2);(3).
【解析】
(1)根据根与系数的关系可求出x1+x2和x1x2的值,然后利用完全平方公式将变形为,再代值求解即可;
(2)利用加减法结合因式分解解方程组,然后求值即可;
(3)根据材料中的的解法将等式变形,然后将m和看作一个整体,利用一元二次方程根与系数的关系,可求出m+和m•的值,然后再代值求解.
【详解】
解:(1)∵为方程的两根,
∴,
故答案为:-3;-1;11;
(2)
①×b得:
②×a得:
③-④得:
或
∴或
又∵
∴,即
故答案为:;
(3)由n2+3n-2=0可知n≠0;
∴
∴
又2m2-3m-1=0,且mn≠1,即m≠;
∴m、是方程2x2-3x-1=0的两根,
∴m+=,m•=;
∴.
本题考查一元二次方程根与系数的关系,能够正确的理解材料的含义,并熟练地掌握根与系数的关系是解答此题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
根据对称图形的特点,算出BC和的长,则的长可求,然后过E作EH垂直AB,由勾股定理求出EH的长,将所求线段代入梯形面积公式即可求出阴影部分的面积.
【详解】
解:如图,过E作EH⊥,
由对称图形的特征可知:
又
故答案为:
本题考查了菱形的性质,对称的性质及勾股定理,对称的两个图形对应边相等,灵活应用对称的性质求线段长是解题的关键.
20、
【解析】
先用含m的代数式表示出不等式的解集,再根据最小整数解为2即可求出实数m的取值范围.
【详解】
∵3x - m+1>0,
∴3x> m-1,
∴x>,
∵不等式3x - m+1>0的最小整数解为2,
∴1≤
相关试卷
这是一份2025届江苏南通启东市南苑中学数学九上开学联考试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份江苏南通启东市南苑中学2023-2024学年九年级数学第一学期期末调研试题含答案,共8页。试卷主要包含了反比例函数的图象位于等内容,欢迎下载使用。
这是一份2023-2024学年江苏省启东市南苑中学数学九上期末学业水平测试模拟试题含答案,共9页。试卷主要包含了考生必须保证答题卡的整洁,关于抛物线的说法中,正确的是等内容,欢迎下载使用。