2025届江苏省扬州市江都区五校联谊九年级数学第一学期开学联考模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)若是关于的一元二次方程,则的取值范围是( )
A.B.C.D.
2、(4分)下列根式中属于最简二次根式的是( )
A.B.C.D.
3、(4分)如图,已知二次函数,它与轴交于、,且、位于原点两侧,与的正半轴交于,顶点在轴右侧的直线:上,则下列说法:① ② ③ ④其中正确的结论有( )
A.①②B.②③C.①②③D.①②③④
4、(4分)若分式有意义,则x应满足的条件是( )
A.x≠0B.x=2C.x>2D.x≠2
5、(4分)如图,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,则下列结论:①AD平分∠CDE;②∠BAC=∠BDE;③DE平分∠ADB;④BE+AC=AB,其中正确的有( )
A.2个B.3个C.4个D.1个
6、(4分)以下列各组数为边长,能构成直角三角形的是( )
A.1,2,3B.4,5,6C.,,D.32,42,52
7、(4分)估计的值在( )
A.2和3之间B.3和4之间
C.4和5之间D.5和6之间
8、(4分)如图,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC.若AC=4,则四边形CODE的周长是( )
A.4B.6C.8D.10
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,点A,B在反比例函数(k>0)的图象上,AC⊥x轴,BD⊥x轴,垂足C,D分别在x轴的正、负半轴上,CD=k,已知AB=2AC,E是AB的中点,且△BCE的面积是△ADE的面积的2倍,则k的值是______.
10、(4分)与最简二次根式是同类二次根式,则__________.
11、(4分)如图,在平行四边形ABCD中,EF是△BCD的中位线,且EF=4,则AD=___.
12、(4分)在五边形中,若,则__________.
13、(4分)如图,已知菱形的两条对角线分别为6cm和8cm,则这个菱形的高DE为_____cm.
三、解答题(本大题共5个小题,共48分)
14、(12分) (1)因式分解:9(m+n)2﹣(m﹣n)2
(2)已知:x+y=1,求x2+xy+y2的值.
15、(8分)解不等式.
16、(8分)已知关于x、y的方程组的解都小于1,若关于a的不等式组恰好有三个整数解;
⑴ 分别求出m与n的取值范围;
⑵请化简:。
17、(10分)由甲、乙两个工程队承包某校校园绿化工程,甲、乙两队单独完成这项工程所需时间比是3︰2,两队合做6天可以完成.
(1)求两队单独完成此项工程各需多少天;
(2)此项工程由甲、乙两队合做6天完成任务后,学校付给他们20000元报酬,若
按各自完成的工程量分配这笔钱,问甲、乙两队各得到多少元.
18、(10分)某超市预测某饮料会畅销、先用1800元购进一批这种饮料,面市后果然供不应求,又用8100元购进这种饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.
(1)第一批饮料进货单价多少元?
(2)若两次进饮料都按同一价格销售,两批全部售完后,获利不少于2700元,那么销售单价至少为多少元?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)函数y=的自变量x的取值范围是_____.
20、(4分)已知关于的方程的解是正数,则的取值范围是__________.
21、(4分)若是整数,则最小的正整数a的值是_________.
22、(4分)2019年1月18日,重庆经开区新时代文明实践“五进企业”系列活动----2019年新春游园会成功矩形,这次新春游园会的门票分为个人票和团体票两大类其中个人票设置有三种,票得种类 夜票(A) 平日普通票(B)指定日普通票(C)某社区居委会欲购买个人票100张,其中B种票的张数是A种票的3倍还多8张,设购买A种票的张数为x,C种票张数为y,则化简后y与x之间的关系式为:_______(不必写出x的取值范围)
23、(4分)若关于x的分式方程﹣=1无解,则m的值为_____.
二、解答题(本大题共3个小题,共30分)
24、(8分).
25、(10分)八年级物理兴趣小组20位同学在实验操作中的得分如表:
(1)求这20位同学实验操作得分的众数,中位数;
(2)这20位同学实验操作得分的平均分是多少?
26、(12分)淮安日报社为了了解市民“获取新闻的主要途径”,开展了一次抽样调查,根据调查结果绘制了如图三种不完整的统计图表.
请根据图表信息解答下列问题:
(1)统计表中的m= ,n= ;
(2)并请补全条形统计图;
(3)若该市约有80万人,请你估计其中将“电脑上网”和“手机上网”作为“获取新闻的主要途径”的总人数.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
根据一元二次方程的定义即可求出答案.
【详解】
解:由题意可知:a﹣1≠0,
∴a≠1,
故选:B.
本题考查一元二次方程的定义,解题的关键是正确理解一元二次方程的定义,本题属于基础题型.
2、A
【解析】
根据最简二次根式的定义选择即可.
【详解】
、是最简二次根式,故本选项正确;
、不是最简二次根式,故本选项错误;
、不是最简二次根式,故本选项错误;
、不是最简二次根式,故本选项错误.
故选:.
本题考查了最简二次根式,掌握最简二次根式的定义是解题的关键.
3、D
【解析】
由根与系数的关系,结合顶点位置和坐标轴位置,进行分析即可得到答案.
【详解】
解:设函数图像与x轴交点的横坐标分别为x1,x2
则根据根于系数的关系得到:x1+x2=b, x1x2=c
∵A,B两点位于y轴两侧,且对称轴在y轴的右侧,则b>0
函数图像交y轴于C点,则c<0,
∴bc<0,即①正确;
又∵顶点坐标为( ),即()
∴=4,即
又∵ =,即
∴AB=4即③正确;
又∵A,B两点位于y轴两侧,且对称轴在y轴的右侧
∴<2,即b<4
∴0<b<4,故②正确;
∵顶点的纵坐标为4,
∴△ABD的高为4
∴△ABD的面积= ,故④正确;
所以答案为D.
本题考查了二次函数与一元二次方程的联系,熟练掌握二次函数和一元二次方程的性质是解答本题的关键.
4、D
【解析】
本题主要考查分式有意义的条件:分母不能为1.
【详解】
解:由代数式有意义可知:x﹣2≠1,
∴x≠2,
故选:D.
本题考查的是分式有意义的条件,当分母不为1时,分式有意义.
5、B
【解析】
根据题中条件,结合图形及角平分线的性质得到结论,与各选项进行比对,排除错误答案,选出正确的结果.
【详解】
∵AD平分∠BAC
∴∠DAC=∠DAE
∵∠C=90°,DE⊥AB
∴∠C=∠E=90°
∵AD=AD
∴△DAC≌△DAE
∴∠CDA=∠EDA
∴①AD平分∠CDE正确;
无法证明∠BDE=60°,
∴③DE平分∠ADB错误;
∵BE+AE=AB,AE=AC
∴BE+AC=AB
∴④BE+AC=AB正确;
∵∠BDE=90°-∠B,∠BAC=90°-∠B
∴∠BDE=∠BAC
∴②∠BAC=∠BDE正确.
故选:B.
考查了角平分线的性质,解题关键是灵活运用其性质进行分析.
6、C
【解析】
根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,这个就是直角三角形.
【详解】
解:A、∵12+22≠32,∴该三角形不是直角三角形,故此选项不符合题意;
B、∵42+52≠62,∴该三角形不是直角三角形,故此选项不符合题意;
C、∵∴该三角形是直角三角形,故此选项符合题意;
D、∵(32)2+(42)2≠(52)2,∴该三角形不是直角三角形,故此选项不符合题意.
故选C.
考查勾股定理的逆定理,:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形.
7、C
【解析】
由可知,再估计的范围即可.
【详解】
解:,.
故选:C.
本题考查了实数的估算,熟练的确定一个无理数介于哪两个整数之间是解题的关键.
8、C
【解析】
∵CE∥BD,DE∥AC,
∴四边形CODE是平行四边形,
∵四边形ABCD是矩形,
∴AC=BD=4,OA=OC,OB=OD,
∴OD=OC=AC=2,
∴四边形CODE是菱形,
∴四边形CODE的周长为:4OC=4×2=1.
故选C.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
试题解析:过点B作直线AC的垂线交直线AC于点F,如图所示.
∵△BCE的面积是△ADE的面积的2倍,E是AB的中点,
∴S△ABC=2S△BCE,S△ABD=2S△ADE,
∴S△ABC=2S△ABD,且△ABC和△ABD的高均为BF,
∴AC=2BD,
∴OD=2OC.
∵CD=k,
∴点A的坐标为(,3),点B的坐标为(-,-),
∴AC=3,BD=,
∴AB=2AC=6,AF=AC+BD=,
∴CD=k=.
【点睛】本题考查了反比例函数图象上点的坐标特征、三角形的面积公式以及勾股定理.构造直角三角形利用勾股定理巧妙得出k值是解题的关键.
10、1
【解析】
先把化为最简二次根式,再根据同类二次根式的定义得到m+1=2,然后解方程即可.
【详解】
解:∵,
∴m+1=2,
∴m=1.
故答案为1.
本题考查了同类二次根式:几个二次根式化为最简二次根式后,若被开方数相同,那么这几个二次根式叫同类二次根式.
11、1.
【解析】
利用三角形中位线定理求出BC,再利用平行四边形的对边相等即可解决问题.
【详解】
∵EF是△DBC的中位线,
∴BC=2EF=1,
∵四边形ABCD是平行四边形,
∴AD=BC=1,
故答案为1.
此题考查平行四边形的性质和三角形中位线定理,解题关键在于利用中位线的性质计算出BC的长度
12、130°
【解析】
首先利用多边形的外角和定理求得正五边形的内角和,然后减去已知四个角的和即可.
【详解】
解:正五边形的内角和为(5-2)×180°=540°,
∵∠A+∠B+∠C+∠D=410°,
∴∠E=540°-410°=130°,
故答案为:130°.
本题主要考查了多边形的内角和公式,熟记公式是解题的关键.
13、4.1
【解析】
直接利用勾股定理得出菱形的边长,再利用菱形的面积求法得出答案.
【详解】
解:∵菱形的两条对角线分别为6cm和1cm,
∴菱形的边长为:=5(cm),
设菱形的高为:xcm,则5x=×6×1,
解得:x=4.1.
故答案为:4.1.
此题主要考查了菱形的性质,正确得出菱形的边长是解题关键.
三、解答题(本大题共5个小题,共48分)
14、 (1)4(2m+n)(m+2n);(2).
【解析】
(1)直接利用平方差公式分解因式得出答案;
(2)直接提取公因式,再利用完全平方公式分解因式,进而把已知代入求出答案.
【详解】
解:(1)9(m+n)2﹣(m﹣n)2
=[3(m+n)+(m﹣n)][3(m+n)﹣(m﹣n)]
=(4m+2n)(2m+4n)
=4(2m+n)(m+2n);
(2)x2+xy+y2
=(x2+2xy+y2)
=(x+y)2,
当x+y=1时,
原式=×12=.
此题主要考查了公式法分解因式,正确运用公式是解题关键.
15、.
【解析】
先去分母再移项,系数化为1,即可得到答案.
【详解】
将不等式两边同乘以2得,
,
解得.
本题考查解一元一次不等式,解题的关键是熟练掌握一元一次不等式的求解方法.
16、(1)(2)2m-2n-1
【解析】
(1)解关于x、y的不等式组,得﹣3<m<1 .同理可以得出﹣5≤a≤. 由于原不等式组恰好有三个整数解,则-3≤<-2,解得-4≤n<﹣.
(2)由m、n的取值范围得出m+3>0,1﹣m>0,2n+8>0,从而化简得出最后结果.
【详解】
(1),
①+②得:2x=m+1,即x=<1;
①﹣②得:4y=1﹣m,即y=<1,
解得:﹣3<m<1;
由a+2≥1得a≥﹣5,
2n-3a≥1得a≤.
所以﹣5≤a≤.
原不等式组恰好有三个整数解,则-3≤<-2,
解得-4≤n<﹣.
(2)∵﹣3<m<1,
∴m+3>0,1﹣m>0,2n+8>0
原式=m+3﹣(1-m)-(2n+8)=2m-2n-1.
本题是考查解不等式组、绝对值的化简、算术平方根的化简、相反数的综合性题目,是中考常出现的题型.理解关于a的方程组恰好有三个整数解是解决本题的关键.
17、(1)甲队单独完成此项工程需15天,乙队单独完成此项工程需10天;(2)甲队所得报酬8000元,乙队所得报酬12000元.
【解析】
(1)求工效,时间明显,一定是根据工作总量来列等量关系的.等量关系为:甲6天的工作总量+乙6天的工作总量=1;
(2)让20000×各自的工作量即可.
【详解】
解:(1)设甲队单独完成此项工程需x天,
由题意得
解之得x=15
经检验,x=15是原方程的解.
答:甲队单独完成此项工程需15天,
乙队单独完成此项工程需15×=10(天)
(2)甲队所得报酬:20000××6=8000(元)
乙队所得报酬:20000××6=12000(元)
本题主要考查了分式方程的应用.
18、 (1)4元/瓶.(2) 销售单价至少为1元/瓶.
【解析】
(1)设第一批饮料进货单价为x元/瓶,则第二批饮料进货单价为(x+2)元/瓶,根据数量=总价÷单价结合第二批购进饮料的数量是第一批的3倍,即可得出关于x的分式方程,解之经检验后即可得出结论;
(2)由数量=总价÷单价可得出第一、二批购进饮料的数量,设销售单价为y元/瓶,根据利润=销售单价×销售数量﹣进货总价结合获利不少于2100元,即可得出关于y的一元一次不等式,解之取其最小值即可得出结论.
【详解】
(1)设第一批饮料进货单价为x元/瓶,则第二批饮料进货单价为(x+2)元/瓶,
依题意,得:=3×,
解得:x=4,
经检验,x=4是原方程的解,且符合题意.
答:第一批饮料进货单价是4元/瓶;
(2)由(1)可知:第一批购进该种饮料450瓶,第二批购进该种饮料1350瓶.
设销售单价为y元/瓶,
依题意,得:(450+1350)y﹣1800﹣8100≥2100,
解得:y≥1.
答:销售单价至少为1元/瓶.
本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、x≤且x≠0
【解析】
根据题意得x≠0且1﹣2x≥0,
所以且.
故答案为且.
20、m>-6且m-4
【解析】
试题分析:分式方程去分母转化为整式方程,表示出x,根据x为正数列出关于m的不等式,求出不等式的解集即可确定出m的范围.
试题解析:分式方程去分母得:2x+m=3(x-2),
解得:x=m+6,
根据题意得:x=m+6>0,且m+6≠2,
解得:m>-6,且m≠-4.
考点: 分式方程的解.
21、1.
【解析】
由于41a=1×3×3×a,要使其为整数,则必能被开得尽方,所以满足条件的最小正整数a为1.
【详解】
解: 41a=1×3×3×a,
若为整数,则必能被开方,所以满足条件的最小正整数a为1.
故答案为:1.
本题考查二次根式的化简.
22、
【解析】
根据题意,A种票的张数为x张,则B种票(3x+8)张,C种为y张,由总数为100张,列出等式即可.
【详解】
解:由题可知,,
∴.
故答案为:.
本题考查了函数关系式,根据数量关系,找准函数关系式是解题的关键.
23、﹣2或1
【解析】
分式方程去分母转化为整式方程,由分式方程无解确定出x的值,代入整式方程计算即可求出m的值.
【详解】
去分母得:x2﹣mx﹣3x+3=x2﹣x,
解得:(2+m)x=3,
由分式方程无解,得到2+m=0,即m=﹣2或,即m=1,
综上,m的值为﹣2或1.
故答案为:﹣2或1
此题考查了分式方程的解,注意分母不为0这个条件.
二、解答题(本大题共3个小题,共30分)
24、
【解析】
先分别根据平方差公式和完全平方公式进行计算,再合并即可.
【详解】
原式=25-10-2+4-3
=10+4
此题考查平方差公式和完全平方公式,掌握运算法则是解题关键
25、(1)众数是9分,中位数是9分;(2)这20位同学的平均得分是8.75分
【解析】
(1)众数是指一组数据中出现次数最多的数,而中位数是指在将一组数据按照大小顺序排列后位于中间的那个数或位于中间的两个数的平均数,据此进一步求解即可;
(2)根据平均数的计算公式进一步加以计算即可.
【详解】
(1)∵9分的有8个人,人数最多,
∴众数是9分;
把这些数从小到大排列,中位数是第10、11个数的平均数,
∴中位数是(分);
(2)根据题意得:(分)
答:这20位同学的平均得分是8.75分.
本题主要考查了众数、中位数的定义与平均数的计算,熟练掌握相关概念是解题关键.
26、(1)m=400,n=100;(2)见解析;(3)54.4万人;
【解析】
(1)先根据样本中看电视获取新闻的人数与占比求出此次调查的总人数,再根据B组别的占比即可求出人数m,再用用人数将去各组别即可求出n;
(2)根据数据即可补全统计图;
(3)求出样本中“电脑上网”和“手机上网”作为“获取新闻的主要途径”的占比,再乘以该市总人数即可.
【详解】
(1)此次调查的总人数为140÷14%=1000(人),
∴m=1000×40%=400,
n=1000-280-400-140-80=100;
(2)补全统计图如下:
(3)该市将“电脑上网”和“手机上网”作为“获取新闻的主要途径”的人数约为
80×=54.4(万人)
此题主要考查统计调查的应用,解题的关键是根据题意求出调查的总人数.
题号
一
二
三
四
五
总分
得分
得分(分)
10
9
8
7
人数(人)
5
8
4
3
2025届江苏省扬州市江都区江都实验中学九上数学开学联考模拟试题【含答案】: 这是一份2025届江苏省扬州市江都区江都实验中学九上数学开学联考模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年江苏省扬州市江都区十校联考九年级数学第一学期开学达标检测试题【含答案】: 这是一份2024年江苏省扬州市江都区十校联考九年级数学第一学期开学达标检测试题【含答案】,共22页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。
2023-2024学年江苏省扬州市江都区五校联谊九上数学期末综合测试模拟试题含答案: 这是一份2023-2024学年江苏省扬州市江都区五校联谊九上数学期末综合测试模拟试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,已知与各边相切于点,,则的半径,抛物线y=2,在下列命题中,正确的是等内容,欢迎下载使用。