终身会员
搜索
    上传资料 赚现金

    2025届江苏省镇江市丹阳三中学九上数学开学统考模拟试题【含答案】

    立即下载
    加入资料篮
    2025届江苏省镇江市丹阳三中学九上数学开学统考模拟试题【含答案】第1页
    2025届江苏省镇江市丹阳三中学九上数学开学统考模拟试题【含答案】第2页
    2025届江苏省镇江市丹阳三中学九上数学开学统考模拟试题【含答案】第3页
    还剩23页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2025届江苏省镇江市丹阳三中学九上数学开学统考模拟试题【含答案】

    展开

    这是一份2025届江苏省镇江市丹阳三中学九上数学开学统考模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。


    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)下列所述图形中,既是中心对称图形,又是轴对称图形的是( )
    A.矩形B.平行四边形C.正五边形D.正三角形
    2、(4分)给出下列命题:
    (1)平行四边形的对角线互相平分;(2)矩形的对角线相等;(3)菱形的对角线互相垂直平分;(4)正方形的对角线相等且互相垂直平分.其中,真命题的个数是( )
    A.2B.3C.4D.1
    3、(4分)如图,在平行四边形ABCD中,AB=4,AD=6,DE平分∠ADC,则BE的长为( )
    A.1B.2C.3D.4
    4、(4分)某服装加工厂加工校服960套的订单,原计划每天做48套.正好按时完成.后因学校要求提前5天交货,为按时完成订单,设每天就多做x套,则x应满足的方程为( )
    A.B.C.D.
    5、(4分)已知△ABC中,a、b、c分别是∠A、∠B、∠C的对边,下列条件不能判断△ABC是直角三角形的是( )
    A.b2﹣c2=a2B.a:b:c=3:4:5
    C.∠A:∠B:∠C=9:12:15D.∠C=∠A﹣∠B
    6、(4分)下列调查中,不适合普查但适合抽样调查的是( )
    A.调查年级一班男女学生比例B.检查某书稿中的错别字
    C.调查夏季冷饮市场上冰淇凌的质量D.调查载人航天飞船零件部分的质量
    7、(4分)某储运部紧急调拨一批物资,调进物资共用4小时,调进物资2小时后开始调出物资(调进物资与调出物资的速度均保持不变).储运部库存物资S(吨)与时间t(小时)之间的函数关系如图所示,这批物资从开始调进到全部调出需要的时间是( )
    A.4小时B.4.4小时C.4.8小时D.5小时
    8、(4分)下列从左到右的变形,是因式分解的是
    A.B.
    C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)学习委员调查本班学生课外阅读情况,对学生喜爱的书籍进行分类统计,其中“古诗词类”的频数为15人,频率为0.3,那么被调查的学生人数为________.
    10、(4分)若方程组的解是,则直线y=﹣2x+b与直线y=x﹣a的交点坐标是_____.
    11、(4分)如图,矩形纸片ABCD中,,把矩形纸片沿直线AC折叠,点B落在点E处,AE交DC于点F,若,则BC的长度为_______cm.
    12、(4分)若正比例函数 y k2x 的图象经过点 A1,  3 , 则k的值是_____.
    13、(4分)在函数y=中,自变量x的取值范围是_________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,在矩形ABCD中,,,E是AB上一点,连接CE,现将向上方翻折,折痕为CE,使点B落在点P处.
    (1)当点P落在CD上时,_____;当点P在矩形内部时,BE的取值范围是_____.
    (2)当点E与点A重合时:①画出翻折后的图形(尺规作图,保留作图痕迹);②连接PD,求证:;
    (3)如图,当点Р在矩形ABCD的对角线上时,求BE的长.
    15、(8分)如图,已知各顶点的坐标分别为,,.
    (1)画出以点为旋转中心,按逆时针方向旋转后得到的;
    (2)将先向右平移4个单位长度,再向上平移5个单位长度,得到.
    ①在图中画出;
    ②如果将看成是由经过一次平移得到的,请指出这一平移的平移方向和平移距离.
    16、(8分)问题背景:如图1,等腰△ABC中,AB=AC,∠BAC=120°,作AD⊥BC于点D,则D为BC的中点,∠BAD=∠BAC=60°,于是 = =;
    迁移应用:如图2,△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=120°,D,E,C三点在同一条直线上,连接BD.
    ①求证:△ADB≌△AEC;
    ②请直接写出线段AD,BD,CD之间的等量关系式;
    拓展延伸:如图3,在菱形ABCD中,∠ABC=120°,在∠ABC内作射线BM,作点C关于BM的对称点E,连接AE并延长交BM于点F,连接CE,CF.
    ①证明△CEF是等边三角形;
    ②若AE=5,CE=2,求BF的长.
    17、(10分)已知:如图,四边形ABCD是平行四边形,AE∥CF,且分别交对角线BD于点E,F.
    (1)求证:△AEB≌△CFD;
    (2)连接AF,CE,若∠AFE=∠CFE,求证:四边形AFCE是菱形.
    18、(10分)如图,一次函数y=2x+4的图象与x、y轴分别相交于点A、B,四边形ABCD是正方形.
    (1)求点A、B、D的坐标;
    (2)求直线BD的表达式.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,在平面直角坐标系中,O为坐标原点,矩形OABC中,A(10,0),C(0,4),D为OA的中点,P为BC边上一点.若△POD为等腰三角形,则所有满足条件的点P的坐标为 .
    20、(4分)如图,四边形ABCD是平行四边形,添加一个条件:________,可使它成为矩形.
    21、(4分)﹣﹣×+=.
    22、(4分)若多项式x2+mx+是一个多项式的平方,则m的值为_____
    23、(4分)在矩形中,,点是的中点,将沿折叠后得到,点的对应点为点.(1)若点恰好落在边上,则______,(2)延长交直线于点,已知,则______.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)(1)把下面的证明补充完整
    已知:如图,直线AB、CD被直线EF所截,AB∥CD,EG平分∠BEF,FG平分∠DFE,EG、FG交于点G.求证:EG⊥FG.
    证明:∵AB∥CD(已知)
    ∴∠BEF+∠DFE=180°(______),
    ∵EG平分∠BEF,FG平分∠DFE(已知),
    ∴______,______(______),
    ∴∠GEF+∠GFE=(∠BEF+∠DFE)(______),
    ∴∠GEF+∠GFE=×180°=90°(______),
    在△EGF中,∠GEF+∠GFE+∠G=180°(______),
    ∴∠G=180°-90°=90°(等式性质),
    ∴EG⊥FG(______).
    (2)请用文字语言写出(1)所证命题:______.
    25、(10分)如图,已知在△ABC中,AB=AC=13cm,D是AB上一点,且CD=12cm,BD=8cm.
    (1)求证:△ADC是直角三角形;
    (2)求BC的长
    26、(12分)某市射击队甲、乙两名队员在相同的条件下各射耙10次,每次射耙的成绩情况如图所示:
    (1)请将下表补充完整:
    (2)请从下列三个不同的角度对这次测试结果进行分析:
    ①从平均数和方差相结合看, 的成绩好些;
    ②从平均数和中位数相结合看, 的成绩好些;
    ③若其他队选手最好成绩在9环左右,现要选一人参赛,你认为选谁参加,并说明理由.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、A
    【解析】
    试题分析:在一个平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形;在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形与另一个图形重合,这样的图形叫做中心对称图形.根据定义可得:平行四边形只是中心对称图形,正五边形、正三角形只是轴对称图形,只有矩形符合.
    考点:轴对称图形与中心对称图形.
    2、C
    【解析】
    利用平行四边形的性质、矩形的性质、菱形的性质及正方形的性质分别判断后即可确定正确的选项.
    【详解】
    (1)平行四边形的对角线互相平分,正确,是真命题;
    (2)矩形的对角线相等,正确,是真命题;
    (3)菱形的对角线互相垂直平分,正确,是真命题;
    (4)正方形的对角线相等且互相垂直平分,正确,是真命题,
    故选C.
    本题考查了命题与定理的知识,解题的关键是了解平行四边形的性质、矩形的性质、菱形的性质及正方形的性质,属于基础题,难度不大.
    3、B
    【解析】
    只要证明CD=CE=4,根据BE=BC-EC计算即可.
    【详解】
    ∵四边形ABCD是平行四边形,
    ∴AB=CD=4,AD=BC=6,
    ∵AD∥BC,
    ∴∠ADE=∠DEC,
    ∵DE平分∠ADC,
    ∴∠CDE=∠ADE,
    ∴∠DEC=∠CDE,
    ∴DC=CE=AB=4,
    ∴BE=BC-CE=6-4=2,
    故选B.
    本题考查了平行线性质,等腰三角形的性质和判定,平行四边形性质等知识点,关键是求出BC、CE的长.
    4、D
    【解析】
    解:原来所用的时间为:,实际所用的时间为:,所列方程为:.故选D.
    点睛:本题考查了由实际问题抽象出分式方程,关键是时间作为等量关系,根据每天多做x套,结果提前5天加工完成,可列出方程求解.
    5、C
    【解析】
    根据勾股定理逆定理可判断出A、B是否是直角三角形;根据三角形内角和定理可得C、D是否是直角三角形.
    【详解】
    A、∵b2-c2=a2,∴b2=c2+a2,故△ABC为直角三角形;
    B、∵32+42=52,∴△ABC为直角三角形;
    C、∵∠A:∠B:∠C=9:12:15,,故不能判定△ABC是直角三角形;
    D、∵∠C=∠A-∠B,且∠A+∠B+∠C=180°,∴∠A=90°,故△ABC为直角三角形;
    故选C.
    考查勾股定理的逆定理的应用,以及三角形内角和定理.判断三角形是否为直角三角形,可利用勾股定理的逆定理和直角三角形的定义判断.
    6、C
    【解析】
    由普查得到的调查结果比较准确,但所费人力、物力和时间较多且具有破坏性,而抽样调查得到的调查结果比较近似.据此解答即可.
    【详解】
    A.调查年级一班男女学生比例,调查范围小,准确度要求高,适合普查,故该选项不符合题意,
    B.检查某书稿中的错别字是准确度要求高的调查,适合普查,故该选项不符合题意.
    C.调查夏季冷饮市场上冰淇凌的质量具有破坏性,不适合普查,适合抽样调查,故该选项符合题意,
    D.调查载人航天飞船零件部分的质量是准确度要求高的调查,适合普查,故该选项不符合题意.
    故选C
    本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
    7、B
    【解析】
    分析:由图中可以看出,2小时调进物资30吨,调进物资共用4小时,说明物资一共有60吨;2小时后,调进物资和调出物资同时进行,4小时时,物资调进完毕,仓库还剩10吨,说明调出速度为:(60-10)÷2吨,需要时间为:60÷25时,由此即可求出答案.
    解答:解:物资一共有60吨,调出速度为:(60-10)÷2=25吨,需要时间为:60÷25=2.4(时)
    ∴这批物资从开始调进到全部调出需要的时间是:2+2.4=4.4小时.
    8、D
    【解析】
    把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,结合选项进行判断即可.
    【详解】
    根据因式分解的定义得:从左边到右边的变形,是因式分解的是.其他不是因式分解:A,C右边不是积的形式,B左边不是多项式.
    故选D.
    本题考查了因式分解的意义,注意因式分解后左边和右边是相等的,不能凭空想象右边的式子.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、50
    【解析】
    根据频数与频率的数量关系即可求出答案.
    【详解】
    解:设被调查的学生人数为x,
    ∴,
    ∴x=50,
    经检验x=50是原方程的解,
    故答案为:50
    本题考查频数与频率,解题的关键是正确理解频数与频率的关系,本题属于基础题型.
    10、(-1,3)
    【解析】
    直线y=-2x+b可以变成:2x+y=b,直线y=x-a可以变成:x-y=a,
    ∴两直线的交点即为方程组的解,
    故交点坐标为(-1,3).
    故答案为(-1,3).
    11、1
    【解析】
    由折叠的性质可证AF=FC.在Rt△ADF中,由勾股定理求AD的长,然后根据矩形的性质求得AD=BC.
    【详解】
    解:由折叠的性质知,AE=AB=CD,CE=BC=AD,
    ∴△ADC≌△CEA,∠EAC=∠DCA,
    ∴CF=AF=cm,DF=CD-CF=AB-CF==,
    在Rt△ADF中,由勾股定理得,
    AD2=AF2-DF2,则AD=1cm.
    ∴BC= AD=1 cm.
    故答案为:1.
    本题考查了翻折变换的知识,其中利用了:①折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;②全等三角形的判定和性质,勾股定理求解.
    12、-1
    【解析】
    把A1,  3点代入正比例函数y k2x中即可求出k值.
    【详解】
    ∵正比例函数 y k2x 的图象经过点 A1,  3,
    ∴,解得:k=-1.
    故答案为:-1.
    本题考查了正比例函数上点的特征,正确理解正比例函数上点的特征是解题的关键.
    13、x≤1
    【解析】
    根据二次根式的性质列出不等式,求出不等式的取值范围即可.
    【详解】
    若使函数y=有意义,
    ∴1−x≥0,
    即x≤1.
    故答案为x≤1.
    本题主要考查了函数自变量取值范围的知识点,注意:二次根式中的被开方数必须是非负数,否则二次根式无意义.
    三、解答题(本大题共5个小题,共48分)
    14、(1)12,0<BE<12;(2)①见解析,②见解析;(3)2或1.
    【解析】
    (1)由折叠的性质得到推出△BCE是等腰直角三角形,即可得到结论;
    (2)①由题意画出图形即可;
    ②根据全等三角形的性质得到∠PAC=∠DCA,设AP与CD相交于O,于是得到OA=OC,求得∠OAC=∠OPD,根据平行线的判定定理得到结论;
    (3)分两种情形,当点P在对角线AC或对角线BD上时,两种情形分别求解即可.
    【详解】
    解:(1)当点P在CD上时,如图1,
    ∵将∠B向右上方翻折,折痕为CE,使点B落在点P处,
    ∴∠BCE=∠ECP=45°,
    ∴△BCE是等腰直角三角形,
    ∴BE=BC=AD=12,
    当点P在矩形内部时,BE的取值范围是0<BE<12;
    故答案为:12,0<BE<12;
    (2)①补全图形如图2所示,
    ②当点E与点A重合时,如图3,连接PD,设CD交PA于点O.
    由折叠得,AB=AP=CD,
    在△ADC与△CPA中, ,
    ∴△ADC≌△CPA,
    ∴∠PAC=∠DCA,
    设AP与CD相交于O,则OA=OC,
    ∴OD=OP,∠ODP=∠OPD,
    ∵∠AOC=∠DOP,
    ∴∠OAC=∠OPD
    ∴PD∥AC;
    (3)如图4中,当点P落在对角线AC上时,
    由折叠得,BC=PC=12,AC= =20,
    ∴PA=8,设BE=PE=x,
    在Rt△APE中,(12-x)2=x2+82,
    解得x=2.
    ∴BE=2.
    如图5中,当点P落在对角线BD上时,设BD交CE于点M.
    由折叠得,BE=PE,∠BEC=∠PEC,
    ∵EM=EM,
    ∴△MBE∽△MEP,
    ∴∠EMB=∠EMP,
    ∵∠EMB+∠EMP=180°,
    ∴EC⊥BD,
    ∴∠BCE=∠ABD,
    ∵∠A=∠ABC=10°,
    ∴△CBE∽△BAD,
    ∴ ,
    ∴ ,
    ∴BE=1,
    综上所述,满足条件的BE的值为2或1.
    本题属于四边形综合题,主要考查了矩形的性质,全等三角形的判定和性质,相似三角形的判定和性质,勾股定理折叠的性质,等腰直角三角形的性质等知识,解题的关键是学会用分类讨论的思想解决问题.
    15、(l)见解析;(2)①见解析;②平移方向为由到的方向,平移距离是个单位长度
    【解析】
    (1)利用网格特点和旋转的性质画出点A、B、C的对应点A1、B1、C1,从而得到;
    (2)①利用点平移的规律写出A2、B2、C2的坐标,然后描点即可;
    ②根据平移的规律解答即可.
    【详解】
    解:(l)如图所示.
    (2)①如图所示:
    ②连接,.
    平移方向为由到的方向,平移距离是个单位长度.
    本题考查了作图-平移及旋转:根据平移和旋转的性质,找到对应点,顺次连接得出平移和旋转后的图形.
    16、迁移应用:①证明见解析;②CD=AD+BD;拓展延伸:①证明见解析;②3.
    【解析】
    迁移应用:①如图②中,只要证明∠DAB=∠CAE,即可根据SAS解决问题;
    ②结论:CD=AD+BD.由△DAB≌△EAC,可知BD=CE,在Rt△ADH中,DH=AD•cs30°=AD,由AD=AE,AH⊥DE,推出DH=HE,由CD=DE+EC=2DH+BD=AD+BD,即可解决问题;
    拓展延伸:①如图3中,作BH⊥AE于H,连接BE.由BC=BE=BD=BA,FE=FC,推出A、D、E、C四点共圆,推出∠ADC=∠AEC=120°,推出∠FEC=60°,推出△EFC是等边三角形;
    ②由AE=5,EC=EF=2,推出AH=HE=2.5,FH=4.5,在Rt△BHF中,由∠BFH=30°,可得=cs30°,由此即可解决问题.
    【详解】
    迁移应用:①证明:如图②
    ∵∠BAC=∠DAE=120°,
    ∴∠DAB=∠CAE,
    在△DAE和△EAC中,
    ∴△DAB≌△EAC,
    ②解:结论:CD=AD+BD.
    理由:如图2-1中,作AH⊥CD于H.
    ∵△DAB≌△EAC,
    ∴BD=CE,
    在Rt△ADH中,DH=AD•cs30°=AD,
    ∵AD=AE,AH⊥DE,
    ∴DH=HE,
    ∵CD=DE+EC=2DH+BD=AD+BD.
    拓展延伸:①证明:如图3中,作BH⊥AE于H,连接BE.
    ∵四边形ABCD是菱形,∠ABC=120°,
    ∴△ABD,△BDC是等边三角形,
    ∴BA=BD=BC,
    ∵E、C关于BM对称,
    ∴BC=BE=BD=BA,FE=FC,
    ∴A、D、E、C四点共圆,
    ∴∠ADC=∠AEC=120°,
    ∴∠FEC=60°,
    ∴△EFC是等边三角形,
    ②解:∵AE=5,EC=EF=2,
    ∴AH=HE=2.5,FH=4.5,
    在Rt△BHF中,∵∠BFH=30°,
    ∴=cs30°,
    ∴BF==3=3.
    本题考查全等三角形的判定和性质、等腰三角形的性质、四点共圆、等边三角形的判定和性质、锐角三角函数等知识,解题关键是灵活应用所学知识解决问题,学会添加辅助圆解决问题,属于中考压轴题.
    17、(1)证明见解析;(2)证明见解析.
    【解析】
    (1)利用平行四边形的性质结合全等三角形的判定方法(AAS),得出即可;
    (2)利用全等三角形的性质得出AE=CF,进而求出四边形AFCE是平行四边形.,再利用菱形的判定方法得出答案.
    【详解】
    (1)如图1.
    ∵四边形ABCD是平行四边形,
    ∴AB∥DC,AB="DC."
    ∴∠1=∠2.
    ∵AE∥CF,
    ∴∠3=∠4.
    在△AEB和△CFD中,

    ∴△AEB≌△CFD;
    (2)如图2.
    ∵△AEB≌△CFD,
    ∴AE=CF.
    ∵AE∥CF,
    ∴四边形AFCE是平行四边形.
    ∵∠5=∠4,∠3=∠4,
    ∴∠5=∠3.
    ∴AF=AE.
    ∴四边形AFCE是菱形.
    18、(1)A(﹣2,0),点B(0,1),D(2,﹣2);(2)y=﹣3x+1.
    【解析】
    (1)由于ー次函数y=2x+1的图象与x、y轴分别相交于点A、B,所以利用函数解析式即可求出AB两点的坐标,然后过D作DH⊥x轴于H点,由四边形ABCD是正方形可以得到∠BAD=∠AOB=∠AHD=90°,AB=AD,接着证明△ABO≌△DAH,最后利用全等三角形的性质可以得到DH=AO=2,AH=BO=1,从而求出点D的坐标;
    (2)利用待定系数法即可求解
    【详解】
    解:(1)∵当y=0时,2x+1=0,x=﹣2.
    ∴点A(﹣2,0).
    ∵当x=0时,y=1.
    ∴点B(0,1).
    过D作DH⊥x轴于H点,
    ∵四边形ABCD是正方形,
    ∴∠BAD=∠AOB=∠AHD=90°,AB=AD.
    ∴∠BAO+∠ABO=∠BAO+∠DAH,
    ∴∠ABO=∠DAH.
    ∴△ABO≌△DAH.
    ∴DH=AO=2,AH=BO=1,
    ∴OH=AH﹣AO=2.
    ∴点D(2,﹣2).
    (2)设直线BD的表达式为y=kx+b.

    解得 ,
    ∴直线BD的表达式为y=﹣3x+1.
    此题考查一次函数综合题,利用全等三角形的性质是解题关键
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(2.5,4)或(3,4)或(2,4)或(8,4).
    【解析】
    试题解析:∵四边形OABC是矩形,
    ∴∠OCB=90°,OC=4,BC=OA=10,
    ∵D为OA的中点,
    ∴OD=AD=5,
    ①当PO=PD时,点P在OD得垂直平分线上,
    ∴点P的坐标为:(2.5,4);
    ②当OP=OD时,如图1所示:
    则OP=OD=5,PC==3,
    ∴点P的坐标为:(3,4);
    ③当DP=DO时,作PE⊥OA于E,
    则∠PED=90°,DE==3;
    分两种情况:当E在D的左侧时,如图2所示:
    OE=5-3=2,
    ∴点P的坐标为:(2,4);
    当E在D的右侧时,如图3所示:
    OE=5+3=8,
    ∴点P的坐标为:(8,4);
    综上所述:点P的坐标为:(2.5,4),或(3,4),或(2,4),或(8,4)
    考点:1.矩形的性质;2.坐标与图形性质;3.等腰三角形的判定;4.勾股定理.
    20、∠ABC=90°(或AC=BD等)
    【解析】
    本题是一道开放题,只要掌握矩形的判定方法即可.由有一个角是直角的平行四边形是矩形.想到添加∠ABC=90°;由对角线相等的平行四边形是矩形.想到添加AC=BD.
    21、3+.
    【解析】
    试题分析:先进行二次根式的乘法运算,然后把各二次根式化为最简二次根式即可.
    解:原式=4﹣﹣+2
    =3﹣+2
    =3+.
    故答案为3+.
    22、±.
    【解析】
    根据完全平方公式的结构特征即可求出答案.
    【详解】
    解:∵x2+mx+=x2+mx+()2,
    ∴mx=±2××x,
    解得m=±.
    故答案为±.
    本题考查完全平方公式,解题的关键是熟练运用完全平方公式,本题属于基础题型.
    23、6 或
    【解析】
    (1)由矩形的性质得出,,由折叠的性质得出,由平行线的性质得出,推出,得出,即可得出结果;
    (2)①当点在矩形内时,连接,由折叠的性质得出,,,由矩形的性质和是的中点,得出,,,由证得,得出,由,得出,,,由勾股定理即可求出;
    ②当点在矩形外时,连接,由折叠的性质得出,,,由矩形的性质和是的中点,得出,,,由证得,得出,由,得出,由勾股定理得出:,即,即可求出.
    【详解】
    解:(1)四边形是矩形,
    ,,
    由折叠的性质可知,,如图1所示:




    是的中点,


    (2)①当点在矩形内时,连接,如图2所示:
    由折叠的性质可知,,,,
    四边形是矩形,是的中点,
    ,,,
    在和中,,



    ,,,

    ②当点在矩形外时,连接,如图3所示:
    由折叠的性质可知,,,,
    四边形是矩形,是的中点,
    ,,,
    在和中,,





    即:,

    解得:,(不合题意舍去),
    综上所述,或,
    故答案为(1)6;(2)或.
    本题考查了折叠的性质、矩形的性质、平行线的性质、勾股定理、全等三角形的判定与性质等知识,熟练掌握折叠的性质、证明三角形全等并运用勾股定理得出方程是解题的关键.
    二、解答题(本大题共3个小题,共30分)
    24、(1)见解析;(2)两条平行线被第三条直线所截,同旁内角的平分线互相垂直
    【解析】
    (1)先根据AB∥CD求出∠BEF与∠DFE的关系,再由角平分线的性质求出∠FEG+∠EFG的度数,然后由三角形内角和定理即可求出∠EGF的度数,进而可得结论;
    (2)根据(1)的结论写出所证命题即可.
    【详解】
    (1)证明:∵AB∥CD(已知),
    ∴∠BEF+∠DFE=180°(两直线平行,同旁内角互补),
    ∵EG平分∠BEF,FG平分∠DFE(已知),
    ∴∠GEF=∠BEF,∠GFE=∠DFE(角平分线的定义),
    ∴∠GEF+∠GFE=(∠BEF+∠DFE)(等式的性质),
    ∴∠GEF+∠GFE=×180°=90°(等量代换),
    在△EGF中,∠GEF+∠GFE+∠G=180°(三角形的内角和定理),
    ∴∠G=180°-90°=90°(等式性质),
    ∴EG⊥FG( 垂直的定义);
    (2)用文字语言可表示为:两条平行线被第三条直线所截,同旁内角的平分线互相垂直.
    故答案为:两条平行线被第三条直线所截,同旁内角的平分线互相垂直.
    本题考查的是平行线的性质、角平分线的性质和三角形内角和定理,属于基础题型,熟练掌握上述基本知识是解题关键.
    25、(1)见解析;(2)4cm.
    【解析】
    (1)求出AD的长,再根据勾股定理的逆定理判断即可;
    (2)根据勾股定理求出BC即可.
    【详解】
    (1)证明:∵AB=13ccm,BD=8cm,
    ∴AD=AB﹣BD=5cm,
    ∴AC=13cm,CD=12cm,
    ∴AD2+CD2=AC2,
    ∴∠ADC=90°,
    即△ADC是直角三角形;
    (2)在Rt△BDC中,∠BDC=180°﹣90°=90°,BD=8cm,CD=12cm,
    由勾股定理得:BC===4(cm),
    即BC的长是4cm.
    本题考查了勾股定理和勾股定理的逆定理,能熟记勾股定理的逆定理的内容是解此题的关键.
    26、(1)见解析;(2)(2)①甲;②乙;③选乙;理由见解析.
    【解析】
    试题分析:(1)分别根据方差公式、中位数的定义以及算术平均数的计算方法进行计算即可得解;
    (2)①在平均数相等的情况下,方差小的成绩稳定,比较方差可得结论;②在平均数相等的情况下,中位数大的成绩好,比较中位数可得结论;③根据数据特征、折线图的趋势和命中9环以上的次数来进行综合判断,继而选出参赛队员.
    解:(1)
    (2)①甲;②乙;③选乙;
    理由:综合看,甲发挥更稳定,但射击精准度差;乙发挥虽然不稳定,但击中高靶环次数更多,成绩逐步上升,提高潜力大,更具有培养价值,应选乙
    题号





    总分
    得分
    批阅人
    平均数
    方差
    中位数

    1.2

    7
    7.5

    相关试卷

    2025届江苏省靖江市城南新区中学九上数学开学统考模拟试题【含答案】:

    这是一份2025届江苏省靖江市城南新区中学九上数学开学统考模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年江苏省镇江市实验九上数学开学考试模拟试题【含答案】:

    这是一份2024年江苏省镇江市实验九上数学开学考试模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年江苏省无锡市锡中学实验学校数学九上开学统考模拟试题【含答案】:

    这是一份2024年江苏省无锡市锡中学实验学校数学九上开学统考模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map