2025届江西省抚州市乐安县数学九上开学质量跟踪监视模拟试题【含答案】
展开这是一份2025届江西省抚州市乐安县数学九上开学质量跟踪监视模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,在正方形ABCD的对角线BD是菱形BEFD的一边,菱形BEFD的对角线交正方形ABCD的一边CD于点P,∠FPC的度数是( )
A.135°B.120°C.1.5°D.2.5°
2、(4分)若代数式有意义,则实数x的取值范围是( )
A.x=0B.x=3C.x≠0D.x≠3
3、(4分)关于的方程有实数解,那么的取值范围是()
A.B.C.D.且
4、(4分)中两条边的长分别为,,则第三边的长为( )
A.B.C.或D.无法确定
5、(4分)若正比例函数y=kx的图象经过点(1,2),则k的值为
A.B.-2C.D.2
6、(4分)用反证法证明:“若整数系数一元二次方程ax2+bx+c=0(a≠0)有有理根,则a,b,c中至少有一个是偶数”,下列假设中正确的是( )
A.假设a,b,c都是偶数 B.假设a,b,c都不是偶数
C.假设a,b,c至多有一个是偶数 D.假设a,b,c至多有两个是偶数
7、(4分)如图是根据某班 40 名同学一周的体育锻炼情况绘制的统计图,该班 40 名同学一周参加体育锻炼时间的中位数,众数分别是( )
A.10.5,16B.8.5,16C.8.5,8D.9,8
8、(4分)如图,在△ABC中,点D,E分别是边AB,AC的中点,AF⊥BC,垂足为点F,∠ADE=30°,DF=2,则△ABF的周长为( )
A.4B.8C.6+D.6+2
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如下图,用方向和距离表示火车站相对于仓库的位置是__________.
10、(4分)将直线y=ax+5的图象向下平移2个单位后,经过点A(2,1),则平移后的直线解析式为_____.
11、(4分)根据数量关系:的5倍加上1是正数,可列出不等式:__________.
12、(4分)使为整数的的值可以是________(只需填一个).
13、(4分)已知:如图,在△ABC中,∠ACB=90°,D、E、F分别是AC、AB、BC的中点,若CE=8,则DF的长是________.
三、解答题(本大题共5个小题,共48分)
14、(12分)根据《佛山﹣环西拓规划方案》,三水区域内改造提升的道路约37公里,届时,沿线将串联起狮山、乐平、三水新城、水都基地、白坭等城镇节点,在这项工程中,有一段4000米的路段由甲、乙两个工程队负责完成.已知甲工程队每天完成的工作量是乙工程队每天完成的工作量的2倍,且甲工程队单独完成此项工程比乙工程队单独完成此项工程少用20天.求甲、乙两个工程队平均每天各完成多少米?
15、(8分)如图,已知一次函数y= x−3与反比例函数y= 的图象相交于点A(4,n),与x轴相交于点B.
(1)填空:n的值为___,k的值为___;
(2)以AB为边作菱形ABCD,使点C在x轴正半轴上,点D在第一象限,求点D的坐标;
(3)观察反比例函数y=的图象,当y⩾−2时,请直接写出自变量x的取值范围。
16、(8分)如图,已知△ABC和△DEC都是等腰直角三角形, ,连接AE.
(1)如图(1),点D在BC边上,连接AD,ED延长线交AD于点F,若AB=4,求△ADE的面积
(2)如图2,点D在△ABC的内部,点M是AE的中点,连接BD,点N是BD中点,连接MN,NE,求证且.
17、(10分)已知是的函数,自变量的取值范围为,下表是与的几组对应值
小明根据学习函数的经验,利用上述表格所反映出的与之间的变化规律,对该函数的图象与性质进行了探究.下面是小明的探究过程,请补充完整:
(1)如图,在平面直角坐标系中,指出了以上表中各对对应值为坐标的点. 根据描出的点,画出该函数的图象.
(2)根据画出的函数图象填空.
①该函数图象与轴的交点坐标为_____.
②直接写出该函数的一条性质.
18、(10分)如图1,在四边形ABCD中,∠DAB被对角线AC平分,且AC2=AB•AD,我们称该四边形为“可分四边形”,∠DAB称为“可分角”.
(1)如图2,四边形ABCD为“可分四边形”,∠DAB为“可分角”,求证:△DAC∽△CAB.
(2)如图2,四边形ABCD为“可分四边形”,∠DAB为“可分角”,如果∠DCB=∠DAB,则∠DAB= °
(3)现有四边形ABCD为“可分四边形”,∠DAB为“可分角”,且AC=4,BC=2,∠D=90°,求AD的长.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)我们知道,正整数的和1+3+5+…+(2n﹣1)=n2,若把所有正偶数从小到大排列,并按如下规律分组:(2),(4,6,8),(10,12,14,16,18),(20,22,24,26,28,30,32),…,现有等式Am=(i,j)表示正偶数m是第i组第j个数(从左到右数),如A8=(2,3),则A2018=_____
20、(4分)如果正数m的平方根为x+1和x-3,则m的值是_____
21、(4分)如图1,在菱形中,,点在的延长线上,在的角平分线上取一点(含端点),连结并过点作所在直线的垂线,垂足为.设线段的长为,的长为,关于的函数图象及有关数据如图2所示,点为图象的端点,则时,_____,_____.
22、(4分)若一组数据1,3,5,,的众数是3,则这组数据的方差为______.
23、(4分)最简二次根式与是同类二次根式,则=______.
二、解答题(本大题共3个小题,共30分)
24、(8分)用配方法解方程:x2-6x+5=0
25、(10分)如图,在平面直角坐标系xy中,矩形OABC的顶点B坐标为(12,5),点D在 CB边上从点C运动到点B,以AD为边作正方形ADEF,连BE、BF,在点D运动过程中,请探究以下问题:
(1)△ABF的面积是否改变,如果不变,求出该定值;如果改变,请说明理由;
(2)若△BEF为等腰三角形,求此时正方形ADEF的边长;
(3)设E(x,y),直接写出y关于x的函数关系式及自变量x的取值范围.
26、(12分)如图所示,方格纸中的每个小方格都是边长为个单位长度的正方形,在建立平面直角坐标系后,的顶点均在格点上.
①以原点为对称中心,画出与关于原点对称的.
②将绕点沿逆时针方向旋转得到,画出,并求出的长.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
因为正方形ABCD的对角线BD是菱形BEFD的一边,菱形BEFD的对角线BF交于P,
所以∠DBC=∠BDC=45°,∠DBF=∠FBE=6.5°,
所以∠BPD=∠PBC+∠BCP=90°+6.5°=4.5°.
所以∠FPC=∠BPD=4.5°.
故选C
考点:4.正方形的性质;5.菱形的性质;6.三角形外角的性质.
2、D
【解析】
分析:根据分式有意义的条件进行求解即可.
详解:由题意得,x﹣3≠0,
解得,x≠3,
故选D.
点睛:此题考查了分式有意义的条件.注意:分式有意义的条件事分母不等于零,分式无意义的条件是分母等于零.
3、B
【解析】
由于x的方程(m-2)x2-2x+1=0有实数解,则根据其判别式即可得到关于m的不等式,解不等式即可求出m的取值范围.但此题要分m=2和m≠2两种情况.
【详解】
(1)当m=2时,原方程变为-2x+1=0,此方程一定有解;
(2)当m≠2时,原方程是一元二次方程,
∵有实数解,
∴△=4-4(m-2)≥0,
∴m≤1.
所以m的取值范围是m≤1.
故选:B.
此题考查根的判别式,解题关键在于分两种情况进行讨论,错误的认为原方程只是一元二次方程.
4、C
【解析】
分b是直角边、b是斜边两种情况,根据勾股定理计算.
【详解】
解:当b是直角边时,斜边c==,
当b是斜边时,直角边c==,
则第三边c的长为和,
故选:C.
本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a1+b1=c1.
5、D
【解析】
∵正比例函数y=kx的图象经过点(1,1),
∴把点(1,1)代入已知函数解析式,得k=1.故选D.
6、B
【解析】
用反证法法证明数学命题时,应先假设命题的反面成立,求出要证的命题的否定,即为所求.
【详解】
解:用反证法法证明数学命题时,应先假设要证的命题的反面成立,即要证的命题的否定成立,
而命题:“若整数系数一元二次方程ax2+bx+c=0(a≠0)有有理根,则a,b,c中至少有一个是偶数”的否定为:“假设a,b,c都不是偶数”,
故选:B.
7、D
【解析】
将这组数据按从小到大的顺序排列后,由中位数的定义可知,这组数据的中位数是9;众数是一组数据中出现次数最多的数,为1.故选D.
8、D
【解析】
先利用直角三角形斜边中线性质求出AB,再利用30角所对的直角边等于斜边的一半,求出AF即可解决问题.
【详解】
∵AF⊥BC,点D是边AB的中点,
∴AB=2DF=4,
∵点D,E分别是边AB,AC的中点,
∴DE∥BC,
∴∠B=∠ADE=30°,
∴AF=AB=2,
由勾股定理得,BF=,
则△ABF的周长=AB+AF+BF=4+2+2=6+2,
故选:D.
此题考查三角形中位线定理,含30度角的直角三角形,直角三角形斜边上的中线,解题关键在于利用30角所对的直角边等于斜边的一半求解.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、东偏北20°方向,距离仓库50km
【解析】
根据方位角的概念,可得答案.
【详解】
解:火车站相对于仓库的位置是东偏北20°方向,距离仓库50km,
故答案为:东偏北20°方向,距离仓库50km.
本题考查了方向角的知识点,解答本题的关键是注意是火车站在仓库的什么方向.
10、y=-x+1.
【解析】
根据一次函数的平移可得直线y=ax+5的图象向下平移2个单位后得y=ax+1,然后把(2,1)代入y=ax+1即可求出a的值,问题得解.
【详解】
解:由一次函数y=ax+5的图象向下平移2个单位后得y=ax+1,
∵经过点(2,1),
∴1=2a+1,解得:a=-1,
∴平移后的直线的解析式为y=-x+1,
故答案为:y=-x+1.
本题考查一次函数图像上的点的应用和图像平移规律,其中一次函数图像上的点的应用是解答的关键,即将点的坐标代入解析式,解析式成立,则点在函数图像上.
11、
【解析】
问题中的“正数”是关键词语,将它转化为数学符号即可.
【详解】
题中“x的5倍加上1”表示为:
“正数”就是
的5倍加上1是正数,可列出不等式:
故答案为:.
用不等式表示不等关系是研究不等式的基础,在表示时,一定要抓住关键词语,
弄清不等关系,把文字语言和不等关系转化为用数学符号表示的不等式.
12、1.
【解析】
根据=1填上即可.
【详解】
使为整数的x的值可以是1,
故答案为1.
本题考查了实数,能理解算术平方根的意义是解此题的关键,此题答案比唯一,如还有5、﹣3、﹣10等.
13、1
【解析】
根据直角三角形的性质得到AB=2CE=16,根据三角形中位线定理计算即可.
【详解】
∵∠ACB=90°,E是AB的中点,
∴AB=2CE=16,
∵D、F分别是AC、BC的中点,
∴DF=AB=1.
本题考查的是三角形中位线定理、直角三角形的性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、甲工程队平均每天完成1米,乙工程队平均每天完成100米.
【解析】
设乙工程队平均每天完成x米,则甲工程队平均每天完成2x米,根据工作时间=总工作量÷工作效率结合甲工程队单独完成此项工程比乙工程队单独完成此项工程少用20天,即可得出关于x的分式方程,解之经检验后即可得出结论.
【详解】
设乙工程队平均每天完成x米,则甲工程队平均每天完成2x米,
根据题意得:,
解得:x=100,
经检验,x=100是原分式方程的解,且符合题意,
∴2x=1.
答:甲工程队平均每天完成1米,乙工程队平均每天完成100米.
本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.
15、(1)n=3,k=12;(2)(4+,3);(3)x⩽−6或x>0.
【解析】
(1)把点A(4,n)代入一次函数y=x-3,得到n的值为3;再把点A(4,3)代入反比例函数y=,得到k的值为12;
(2)根据坐标轴上点的坐标特征可得点B的坐标为(2,0),过点A作AE⊥x轴,垂足为E,过点D作DF⊥x轴,垂足为F,根据勾股定理得到AB=,根据AAS可得△ABE≌△DCF,根据菱形的性质和全等三角形的性质可得点D的坐标;
(3)根据反比例函数的性质即可得到当y≥-2时,自变量x的取值范围.
【详解】
(1)把点A(4,n)代入一次函数y=x−3,可得n=×4−3=3;
把点A(4,3)代入反比例函数y=,可得3=,
解得k=12.
(2)∵一次函数y=x−3与x轴相交于点B,
∴ x−3=0,
解得x=2,
∴点B的坐标为(2,0),
如图,过点A作AE⊥x轴,垂足为E,
过点D作DF⊥x轴,垂足为F,
∵A(4,3),B(2,0),
∴OE=4,AE=3,OB=2,
∴BE=OE−OB=4−2=2,
在Rt△ABE中,
AB=,
∵四边形ABCD是菱形,
∴AB=CD=BC=,AB∥CD,
∴∠ABE=∠DCF,
∵AE⊥x轴,DF⊥x轴,
∴∠AEB=∠DFC=90°,
在△ABE与△DCF中,
,
∴△ABE≌△DCF(ASA),
∴CF=BE=2,DF=AE=3,
∴OF=OB+BC+CF=2+ +2=4+,
∴点D的坐标为(4+,3).
(3)当y=−2时,−2= ,解得x=−6.
故当y⩾−2时,自变量x的取值范围是x⩽−6或x>0.
此题考查反比例函数综合题,解题关键在于作辅助线
16、(1)2;(2)证明见详解.
【解析】
(1)由等腰直角三角形的性质,即可得到CE=DE=AF=,然后根据面积公式即可得到答案;
(2)如图2中,延长EN至F使NF=NE,连接AF、BF,先证明△DNE≌△BNF,再证明△ABF≌△ACE,推出∠FAB=∠EAC,可得∠FAE=∠FAB+∠BAE=∠BAE+∠EAC=90°,由此即可解决问题.
【详解】
解:(1)∵△ABC和△DEC都是等腰直角三角形,
∴AB=AC,DE=EC,∠B=∠ACB=∠EDC=∠ECD=45°,
∵,
∴AD⊥BC,
∴△ABD是等腰直角三角形,
∴AF=,
∵
∴四边形AFEC是矩形,
∴CE=AF=DE=2,
∴;
(2)如图2中,延长EN至F使NF=NE,连接AF、BF.
在△DNE和△BNF中,,
∴△DNE≌△BNF,
∴BF=DE=EC,∠FBN=∠EDN,
∵∠ACB=∠DCE=45°,
∴∠ACE=90°-∠DCB,
∴∠ABF=∠FBN-∠ABN
=∠BDE-∠ABN
=180°-∠DBC-∠DGB-∠ABN
=180°-∠DBC-∠DCB-∠CDE-∠ABN
=180°-(∠DBC+∠ABN)-∠DCB-45°
=180°-45°-45°-∠DCB=90°-∠DCB=∠ACE,
在△ABF和△ACE中,,
∴△ABF≌△ACE.
∴∠FAB=∠EAC,AE=AF
∴∠FAE=∠FAB+∠BAE=∠BAE+∠EAC=90°,
∵N为FE中点,M为AE中点,
∴AF∥NM,MN=AF,ME=AE
∴MN⊥AE,MN=ME.
即且.
本题考查全等三角形的判定和性质、等腰直角三角形、勾股定理、三角形中位线等知识,解题的关键是添加辅助线,构造全等三角形,学会添加辅助线的方法,属于中考压轴题.
17、 (1)见解析;(2)①(5,0);②见解析.
【解析】
(1)根据坐标,连接点即可得出函数图像;
(2)①根据图像,当x≥3时,根据两点坐标可得出函数解析式,进而可得出与轴的交点坐标;
②根据函数图像,相应的自变量的取值范围,可得出其性质.
【详解】
(1) 如图:
(2)①(5,0)
根据图像,当x≥3时,函数图像为一次函数,
设函数解析式为,将(3,4)和(4,2)两点代入,即得
解得
即函数解析式为
与x轴的交点坐标为(5,0);
②答案不唯一.如下几种答案供参考:
当0≤x≤3时,函数值y随x值增大而增大;
当x≥3时,函数值y随x值增大而减小;
当x=3时,函数有最大值为4;
该函数没有最小值.
此题主要考查利用函数图像获取信息,进行求解,熟练运用,即可解题.
18、(1)见解析;(2)120°;(3)
【解析】
(1)先判断出,即可得出结论;
(2)由已知条件可证得△ADC∽△ACB,得出D=∠4,再由已知条件和三角形内角和定理得出∠1+2∠1=180°,求出∠1=60°,即可得出∠DAB的度数;
(3)由已知得出AC2=AB•AD,∠DAC=∠CAB,证出△ADC∽△ACB,得出∠D=∠ACB=90°,由勾股定理求出AB,即可得出AD的长.
【详解】
(1)证明:∵四边形ABCD为“可分四边形”,∠DAB为“可分角”,
∴AC2=AB•AD,
∴,
∵∠DAB为“可分角”,
∴∠CAD=∠BAC,
∴△DAC∽△CAB;
(2)解:如图所示:
∵AC平分∠DAB,
∴∠1=∠2,
∵AC2=AB•AD,
∴AD:AC=AC:AB,
∴△ADC∽△ACB,
∴∠D=∠4,
∵∠DCB=∠DAB,
∴∠DCB=∠3+∠4=2∠1,
∵∠1+∠D+∠3=∠1+∠4+∠3=180°,
∴∠1+2∠1=180°,
解得:∠1=60°,
∴∠DAB=120°;
故答案为:120;
(3)解:∵四边形ABCD为“可分四边形”,∠DAB为“可分角”,
∴AC2=AB•AD,∠DAC=∠CAB,
∴AD:AC=AC:AB,
∴△ADC∽△ACB,
∴∠D=∠ACB=90°,
∴AB=,
∴AD= .
故答案为.
此题考查相似形综合题目,相似三角形的判定与性质,三角形内角和定理,勾股定理,新定义四边形,熟练掌握新定义四边形,证明三角形相似是解决问题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(32,48)
【解析】
先计算出2018是第1009个数,然后判断第1009个数在第几组,进一步判断是这一组的第几个数即可.
【详解】
解:2018是第1009个数,
设2018在第n组,则1+3+5+7+(2n﹣1)=×2n×n=n2,
当n=31时,n2=961,
当n=32时,n2=1024,
故第1009个数在第32组,
第32组第一个数是961×2+2=1924,
则2018是第+1=48个数,
故A2018=(32,48).
故答案为:(32,48).
此题考查规律型:数字的变化类,找出数字之间排列的规律,得出数字的运算规律,利用规律解决问题是关键.
20、4
【解析】
根据数m的平方根是x+1和x-3,可知x+1和x-3互为相反数,据此即可列方程求得x的值,然后根据平方根的定义求得m的值.
【详解】
由题可得(x+1)+(x-3)=0,解得x=1,则m=(x+1)2=22=4.
所以m的值是4.
本题主要考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.
21、8
【解析】
先根据为图象端点,得到Q此时与B点重合,故得到AB=4,再根据,根据,得到,从而得到,再代入即可求出x,过点作于.设,根据,利用三角函数表示出,,故在中,利用得到方程即可求出m的值.
【详解】
解∵为图象端点,
∴与重合,
∴.
∵四边形为菱形,,
∴,此时,
∵=
∴,即.
∴当时,,即;
过点作于.设.
∵,
∴,.
在中,
∴,即,
∴,即.
故答案为:8;.
此题主要考查菱形的动点问题,解题的关键是熟知菱形的性质、勾股定理及解直角三角形的方法.
22、2
【解析】
先根据众数的概念得出x=3,再依据方差的定义计算可得.
【详解】
解:∵数据1,3,5,x的众数是3,
∴x=3,
则数据为1、3、3、5,
∴这组数据的平均数为:,
∴这组数据的方差为:;
故答案为:2.
本题主要考查众数和方差,解题的关键是根据众数的概念求出x的值,并熟练掌握方差的定义和计算公式.
23、4
【解析】
由于与是最简二次根式,故只需根式中的代数式相等即可确定的值.
【详解】
由最简二次根式与是同类二次根式,可得
3a-1=11
解得
a=4
故答案为:4.
本题主要考察的是同类二次根式的定义:几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式就叫做同类二次根式.
二、解答题(本大题共3个小题,共30分)
24、x1=5,x2=1.
【解析】
首先移项,把方程变形为x2-6x=-5的形式,方程两边同时加上一次项系数的一半,则方程的左边是完全平方式,右边是常数,然后利用直接开平方法即可求解.
【详解】
x2-6x+5=0
移项得,x2-6x=-5
x2-6x+9=-5+9,
∴(x-3)2=4,
∴x-3=±2,
解得x1=5,x2=1.
配方法的一般步骤:
(1)把常数项移到等号的右边;
(2)把二次项的系数化为1;
(3)等式两边同时加上一次项系数一半的平方.
选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.
25、(1)不变,,理由见解析;(2)5或或;(3)y=-x+22(5x17)
【解析】
(1)由“SAS”可证△ABD≌△FHA,可得HF=AB=5,即可求△ABF的面积;
(2)分三种情况讨论,由等腰三角形的性质和勾股定理可求正方形ADEF的边长;
(3)由全等三角形的性质,DH=AB=5,EH=DB,可得y=EH+5=DB+5,x=12-DB+DH=17-DB,即可求y关于x的函数关系式.
【详解】
解:(1)作FH⊥AB交AB延长线于H,
∵正方形ADEF中,AD=AF,∠DAF=90°,
∴∠DAH+∠FAH=90°.
∵∠H=90°,
∴∠FAH+∠AFH=90°,
∴∠DAH=∠AFH,
∵矩形OABC中,AB=5,∠ABD=90°,
∴∠ABD=∠H∴△ABD≌△FHA,
∴FH=AB=5,
∴;
(2)①当EB=EF时,作EG⊥CB
∵正方形ADEF中,ED=EF,
∴ED=EB ,
∴DB=2DG,
同(1)理得△ABD≌△GDE,
∴DG=AB=5 , ∴ DB=10,
∴;
②当EB=BF时,∠BEF=∠BFE,
∵正方形ADEF中,ED=AF,∠DEF=∠AFE=90°,
∴∠BED=∠BFA,
∴△ABF≌△DBE,
∴BD=AB=5 ,
∵矩形OABC中,∠ABD=90°,
∴ ;
③当FB=FE时,作FQ⊥AB,
同理得BQ=AQ=, BD=AQ=,
∴;
(3)当5≤x≤12时,如图,
由(2)可知DH=AB=5,EH=DB,且E(x,y),
∴y=EH+5=DB+5,x=12-DB+DH=17-DB,
∴y=22-x,
当12<x≤17时,如图,
同理可得:x=12-DB+5=17-DB,y=DB+5,
∴y=22-x,
综上所述:当5≤x≤17时,y=22-xy=-x+22(5x17).
本题是四边形综合题,考查了正方形的性质,矩形的性质,全等三角形的判定和性质,勾股定理,等腰三角形的性质,添加恰当辅助线构造全等三角形是本题的关键.
26、①见解析;②
【解析】
试题分析:(1)根据对称点平分对应点连线可找到各点的对应点,从而顺次连接即可得出△A1B1C1;
(2)根据图形旋转的性质画出△A2B2C2,并求得的长.
试题解析:
①
②∴即为所求
设点为点,
∵,,
∴,.
∵,
∴.
∵旋转,
∴,.
∵,,
∴,.
∵,
∴.
题号
一
二
三
四
五
总分
得分
批阅人
0
1
2
3
3.5
4
4.5
…
1
2
3
4
3
2
1
…
相关试卷
这是一份2025届湖南长郡教育集团九上数学开学质量跟踪监视模拟试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届甘肃临夏和政县九上数学开学质量跟踪监视模拟试题【含答案】,共20页。试卷主要包含了选择题,第四象限,解答题等内容,欢迎下载使用。
这是一份2024年深圳龙文数学九上开学质量跟踪监视试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。