2025届江西省赣州市石城县数学九年级第一学期开学经典试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)估计的值应在( )
A.2和3之间B.3和4之间C.4和5之间D.5和6之间
2、(4分)下列曲线中能够表示y是x的函数的有( )
A.①②③B.①②④C.①③④D.②③④
3、(4分)下列由左边到右边的变形,属于因式分解的是( )
A.B.
C.D.
4、(4分)如图,在平行四边形中,于点E,以点B为中心,取旋转角等于,将顺时针旋转,得到.连接,若,,则的度数为( )
A.B.C.D.
5、(4分)将一次函数的图象向上平移2个单位,平移后,若,则x的取值范围是( )
A.B.C.D.
6、(4分)如图,某工厂有甲,乙两个大小相同的蓄水池,且中间有管道连通,现要向甲池中注水,若单位时间内的注水量不变,那么从注水开始,乙水池水面上升的高度 与注水时间 之间的函数关系图象可能是如图,某工厂有甲,乙两个大小相同的蓄水池,且中间有管道连通,现要向甲池中注水,若单位时间内的注水量不变,那么从注水开始,乙水池水面上升的高度 与注水时间 之间的函数关系图象可能是( )
A.B.C.D.
7、(4分)已知关于x的函数y=k(x-1)和y= (k≠0),它们在同一坐标系内的图象大致是( )
A.B.C.D.
8、(4分)已知甲、乙、丙三个旅行团的游客人数都相等,且每个旅行团游客的平均年龄都是35岁,这三个旅行团游客年龄的方差分别是,,,如果你最喜欢带游客年龄相近的旅行团,若在三个旅行团中选一个,则你应选择( )
A.甲团B.乙团C.丙团D.采取抽签方式,随便选一个
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)在湖的两侧有A,B两个观湖亭,为测定它们之间的距离,小明在岸上任选一点C,并量取了AC中点D和BC中点E之间的距离为50米,则A,B之间的距离应为______米.
10、(4分)2019年中国北京世界园艺博览会(以下简称“世园会”)于4月29日至10月7日在北京延庆区举行世园会为满足大家的游览需求,倾情打造了4条各具特色的趣玩路线,分别是:.“解密世园会”、.“爱我家,爱园艺”、C.“园艺小清新之旅”和D.“快速车览之旅”李欣和张帆都计划暑假去世园会,他们各自在这4条线路中任意选择条线路游览,每条线路被选择的可能性相同.李欣和张帆恰好选择同线路游览的概率为_______.
11、(4分)已知,则的值等于__________.
12、(4分)如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点处,当△为直角三角形时,BE的长为 .
13、(4分)把长为20,宽为a的长方形纸片(10<a<20),如图那样折一下,剪下一个边长等于长方形宽度的正方形(称为第一次操作);再把剩下的长方形如图那样折一下,剪下一个边长等于此时长方形宽度的正方形(称为第二次操作);如此反复操作下去,若在第n次操作后,剩下的长方形为正方形,则操作停止.当n=3时,a的值为________.
三、解答题(本大题共5个小题,共48分)
14、(12分)已知x=+1,y=-1,求的值.
15、(8分)定义:既相等又垂直的两条线段称为“等垂线段”,如图1,在中,,,点、分别在边、上,,连接、,点、、分别为、、的中点,且连接、.
观察猜想
(1)线段与 “等垂线段”(填“是”或“不是”)
猜想论证
(2)绕点按逆时针方向旋转到图2所示的位置,连接,,试判断与是否为“等垂线段”,并说明理由.
拓展延伸
(3)把绕点在平面内自由旋转,若,,请直接写出与的积的最大值.
16、(8分)如图,折叠长方形ABCD的一边AD,使点D落在BC上的点F处,已知AB=8,BC=10,求EC.
17、(10分)关于x的方程:-=1.
(1)当a=3时,求这个方程的解;
(2)若这个方程有增根,求a的值.
18、(10分)我市晶泰星公司安排名工人生产甲、乙两种产品,每人每天生产件甲产品或件乙产品.根据市场行情测得,甲产品每件可获利元,乙产品每件可获利元.而实际生产中,生产乙产品需要数外支出一定的费用,经过核算,每生产件乙产品,当天每件乙产品平均荻利减少元,设每天安排人生产乙产品.
(1)根据信息填表:
(2)若每天生产甲产品可获得的利润比生产乙产品可获得的利润多元,试问:该企业每天生产甲、乙产品可获得总利润是多少元?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,四边形ABCD是菱形,对角线AC和BD相交于点O,AC=4cm,BD=8cm,则这个菱形的面积是_____cm1.
20、(4分)如图,折线ABC是某市在2018年乘出租车所付车费y(元)与行车里程x(km)之间的函数关系图像,观察图像回答,乘客在乘车里程超过3千米时,每多行驶1km,要再付费__________元.
21、(4分)如图是一个棱长为6的正方体盒子,一只蚂蚁从棱上的中点出发,沿盒的表面爬到棱上后,接着又沿盒子的表面爬到盒底的处.那么,整个爬行中,蚂蚁爬行的最短路程为__________.
22、(4分)平行四边形的一个内角平分线将该平行四边形的一边分为2cm和3cm两部分,则该平行四边形的周长为______.
23、(4分)已知是一元二次方程x2-4x+c=0的一个根,则方程的另一个根是______.
二、解答题(本大题共3个小题,共30分)
24、(8分)某校九年级两个班各捐款1800元.已知(2)班比(1)班人均捐款多4元,(2)班的人数比(1)班的人数少10%.求两个班人均捐款各为多少元?
25、(10分)求证:矩形的对角线相等要求:画出图形,写出已知,求证和证明过程
26、(12分)如图,在□ABCD中,点E在AD上,请仅用无刻度直尺按要求作图(保留作图痕迹,不写作法)
(1)在图1中,过点E作直线EF将□ABCD分成两个全等的图形;
(2)在图2中,DE=DC,请你作出∠BAD的平分线AM.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
找到被开方数5前后的完全平方数4和9进行比较,可得答案
【详解】
解:∵,且
∴
∴
本题考查了估算无理数的大小,利用被开方数越大算术平方根越大得出是解题关键,又利用了不等式的性质.
2、A
【解析】
根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之相对应,据此即可确定哪一个是函数图象.
【详解】
解:①②③的图象都满足对于x的每一个取值,y都有唯一确定的值与之相对应,故①②③的图象是函数,
④的图象不满足满足对于x的每一个取值,y都有唯一确定的值与之相对应,故D不能表示函数.
故选:A.
主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.
3、D
【解析】
根据因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,判断求解.
【详解】
解:A、右边不是积的形式,故本选项错误;
B、右边不是积的形式,故本选项错误;
C、x2-4y2=(x+2y)(x-2y),故本项错误;
D、是因式分解,故本选项正确.
故选:D.
此题考查因式分解的定义.解题的关键是掌握因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解.
4、D
【解析】
根据平行四边形的性质得∠ABC=∠ADC=60°,AD∥BC,则根据平行线的性质可计算出∠DA′B=130°,接着利用互余计算出∠BAE=30°,然后根据旋转的性质得∠BA′E′=∠BAE=30°,于是可得∠DA′E′=160°.
【详解】
解:∵四边形ABCD为平行四边形,
∴∠ABC=∠ADC=60°,AD∥BC,
∴∠ADA′+∠DA′B=180°,
∴∠DA′B=180°−50°=130°,
∵AE⊥BE,
∴∠BAE=30°,
∵△BAE顺时针旋转,得到△BA′E′,
∴∠BA′E′=∠BAE=30°,
∴∠DA′E′=130°+30°=160°.
故答案为:D.
本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了平行四边形的性质.
5、B
【解析】
试题分析:利用一次函数平移规律得出平移后解析式,进而得出图象与坐标轴交点坐标,进而利用图象判断y>0时,x的取值范围. ∵将一次函数y=x的图象向上平移2个单位,
∴平移后解析式为:y=x+2, 当y=0时,x=﹣4, 当x=0时,y=2, 如图: ∴y>0,
则x的取值范围是:x>﹣4,
考点:一次函数图象与几何变换.
6、D
【解析】
根据注水后水进入水池情况,结合特殊点的实际意义即可求出答案.
【详解】
解:该蓄水池就是一个连通器.开始时注入甲池,乙池无水,
当甲池中水位到达与乙池的连接处时,乙池才开始注水,所以A、B不正确,
此时甲池水位不变,所有水注入乙池,所以水位上升快.
当乙池水位到达连接处时,所注入的水使甲乙两个水池同时升高,所以升高速度变慢.
在乙池水位超过连通部分,甲和乙部分同时升高,但蓄水池底变小,此时比连通部分快. 故选:D.
主要考查了函数图象的读图能力.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.
7、A
【解析】
若k>0时,反比例函数图象经过二四象限;一次函数图象经过一三四象限;若k<0时,反比例函数经过一三象限;一次函数经过二三四象限;由此可得只有选项A正确,故选A.
8、B
【解析】
试题解析:∵S甲2=17,S乙2=14.6,S丙3=19,
∴S乙2最小,游客年龄相近,
故选B.
点睛:方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
根据三角形中位线的性质定理,解答即可.
【详解】
∵点D、E分别为AC、BC的中点,
∴AB=2DE=1(米),
故答案为:1.
本题主要考查三角形中位线的性质定理,掌握三角形的中位线平行于第三边,且等于第三边长的一半,是解题的关键.
10、
【解析】
画出树状图,共有16种等可能的结果,李欣和张帆恰好选择同一线路游览的结果有4种,由概率公式即可得出结果.
【详解】
画树状图分析如下:
共有16种等可能的结果,李欣和张帆恰好选择同一线路游览的结果有4种,
∴李欣和张帆恰好选择同一线路游览的概率为.
本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.
11、3
【解析】
将已知的两式相乘即可得出答案.
【详解】
解:∵
∴
∴的值等于3.
本题主要考查了因式分解的解法:提公因式法.
12、1或.
【解析】
当△CEB′为直角三角形时,有两种情况:
①当点B′落在矩形内部时,如答图1所示.
连结AC,先利用勾股定理计算出AC=5,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=1,可计算出CB′=2,设BE=x,则EB′=x,CE=4-x,然后在Rt△CEB′中运用勾股定理可计算出x.
②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形.
【详解】
当△CEB′为直角三角形时,有两种情况:
①当点B′落在矩形内部时,如答图1所示.
连结AC,
在Rt△ABC中,AB=1,BC=4,
∴AC==5,
∵∠B沿AE折叠,使点B落在点B′处,
∴∠AB′E=∠B=90°,
当△CEB′为直角三角形时,只能得到∠EB′C=90°,
∴点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,
∴EB=EB′,AB=AB′=1,
∴CB′=5-1=2,
设BE=x,则EB′=x,CE=4-x,
在Rt△CEB′中,
∵EB′2+CB′2=CE2,
∴x2+22=(4-x)2,解得,
∴BE=;
②当点B′落在AD边上时,如答图2所示.
此时ABEB′为正方形,∴BE=AB=1.
综上所述,BE的长为或1.
故答案为:或1.
13、12或2
【解析】
根据操作步骤,可知每一次操作时所得正方形的边长都等于原矩形的宽.所以首先需要判断矩形相邻的两边中,哪一条边是矩形的宽.当10<a<1时,矩形的长为1,宽为a,所以第一次操作时所得正方形的边长为a,剩下的矩形相邻的两边分别为1-a,a.由1-a<a可知,第二次操作时所得正方形的边长为1-a,剩下的矩形相邻的两边分别为1-a,a-(1-a)=2a-1.由于(1-a)-(2a-1)=40-3a,所以(1-a)与(2a-1)的大小关系不能确定,需要分情况进行讨论.又因为可以进行三次操作,故分两种情况:①1-a>2a-1;②1-a<2a-1.对于每一种情况,分别求出操作后剩下的矩形的两边,根据剩下的矩形为正方形,列出方程,求出a的值.
【详解】
由题意,可知当10<a<1时,第一次操作后剩下的矩形的长为a,宽为1-a,所以第二次操作时正方形的边长为1-a,
第二次操作以后剩下的矩形的两边分别为1-a,2a-1.此时,分两种情况:
①如果1-a>2a-1,即a<,那么第三次操作时正方形的边长为2a-1.
∵经过第三次操作后所得的矩形是正方形,
∴矩形的宽等于1-a,
即2a-1=(1-a)-(2a-1),
解得a=12;
②如果1-a<2a-1,即a>,那么第三次操作时正方形的边长为1-a.
则1-a=(2a-1)-(1-a),
解得a=2.
故答案为:12或2.
三、解答题(本大题共5个小题,共48分)
14、
【解析】
先对原代数式进行通分,然后将分子利用平方差公式 分解因式,最后再整体代入即可求值.
【详解】
.
,
∴原式= .
本题主要考查二次根式的运算,掌握平方差公式和整体代入法是解题的关键.
15、(1)是;(2)是,理由详见解析;(3)49
【解析】
(1)根据题意,利用等腰三角形和三角形中位线定理得出,∠MPN=90°判定即可;
(2)由旋转和三角形中位线的性质得出,再由中位线定理进行等角转换,得出∠MPN=90°,即可判定;
(3)由题意,得出最大时,与的积最大,点在的延长线上,再由(1)(2)结论,得出与的积的最大值.
【详解】
(1)是;
∵,
∴DB=EC,∠ADE=∠AED=∠B=∠ACB
∴DE∥BC
∴∠EDC=∠DCB
∵点、、分别为、、的中点
∴PM∥EC,PN∥BD,
∴,∠DPM=∠DCE,∠PNC=∠DBC
∵∠DPN=∠PNC+∠DCB
∴∠MPN=∠DPM+∠DPN=∠ACD+∠DCB+∠B=180°-90°=90°
∴线段与是“等垂线段”;
(2)由旋转知
∵,
∴≌()
∴,
利用三角形的中位线得,,
∴
由中位线定理可得,
∴,
∵
∴
∵
∴
∴
∴与为“等垂线段”;
(3)与的积的最大值为49;
由(1)(2)知,
∴最大时,与的积最大
∴点在的延长线上,如图所示:
∴
∴
∴.
此题主要考查等腰三角形以及三角形中位线的性质,熟练掌握,即可解题.
16、EC=1
【解析】
根据勾股定理求出BF的长;进而求出FC的长度;由题意得EF=DE;利用勾股定理列出关于EC的方程,解方程即可解决问题.
【详解】
∵四边形ABCD为矩形,
∴DC=AB=8cm;∠B=∠C=90°;
由题意得:AF=AD=10,
设EF=DE=xcm,EC=8-x;
由勾股定理得:BF2=102-82,
∴BF=6,
∴CF=10-6=4;
在Rt△EFC中,由勾股定理得:x2=42+(8-x)2,
解得:x=5,
EC=8-5=1.
故答案为:1
此题主要考查了翻折变换的性质、矩形的性质、勾股定理;运用勾股定理得出方程是解决问题的关键解题的关键.
17、(1)x=-2;(2)a=-3.
【解析】
(1)将a=3代入,求解-=1的根,验根即可,
(2)先求出增根是x=1,将分式化简为ax+1+2=x-1,代入x=1即可求出a的值.
【详解】
解:(1)当a=3时,原方程为-=1,
方程两边同乘x-1,得3x+1+2=x-1,
解这个整式方程得x=-2,
检验:将x=-2代入x-1=-2-1=-3≠0,
∴x=-2是原分式方程的解.
(2)方程两边同乘x-1,得ax+1+2=x-1,
若原方程有增根,则x-1=0,解得x=1,
将x=1代入整式方程得a+1+2=0,解得a=-3.
本题考查解分式方程,属于简单题,对分式方程的结果进行验根是解题关键.
18、 (1) ;;;(2)该企业每天生产甲、乙产品可获得总利润是元.
【解析】
(1)设每天安排x人生产乙产品,则每天安排(65-x)人生产甲产品,每天可生产x件乙产品,每件的利润为(120-2x)元,每天可生产2(65-x)件甲产品,此问得解;
(2)由总利润=每件产品的利润×生产数量结合每天生产甲产品可获得的利润比生产乙产品可获得的利润多650元,即可得出关于x的一元二次方程,解之取其较小值即可得出结论.
【详解】
解:(1)设每天安排x人生产乙产品,则每天安排(65-x)人生产甲产品,每天可生产x件乙产品,每件的利润为(120-2x)元,每天可生产2(65-x)件甲产品.
故答案为:;;;
(2)依题意,得:15×2(65-x)-(120-2x)•x=650,
整理,得:x2-75x+650=0,
解得:x1=10,x2=65(不合题意,舍去),
∴15×2(65-x)+(120-2x)•x=2650,
答:该企业每天生产甲、乙产品可获得总利润是2650元.
本题考查了一元二次方程的应用以及列代数式,解题的关键是:(1)根据各数量之间的关系,用含x的代数式表示出每天生产甲产品的数量及每件乙产品的利润;(2)找准等量关系,正确列出一元二次方程.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、2.
【解析】
试题分析:根据菱形的面积等于对角线乘积的一半解答.
试题解析:∵AC=4cm,BD=8cm,
∴菱形的面积=×4×8=2cm1.
考点:菱形的性质.
20、1.1
【解析】
分析:由图象可知,出租车行驶距离超过3km时,车费开始增加,而且行驶距离增加5km,车费增加7元,由此可解每多行驶1km要再付的费用.
详解:由图象可知,出租车行驶距离超过3km时,车费开始增加,而且行驶距离增加5km,车费增加7元,所以,每多行驶1km要再付费7÷5=1.1(元).
故答案为1.1.
点睛:本题考查了函数图象问题,解题的关键是理解函数图象的意义.
21、15
【解析】
根据题意,先将正方体展开,再根据两点之间线段最短求解.
【详解】
将上面翻折起来,将右侧面展开,如图,连接,依题意得:
,,
∴.
故答案:15
此题考查最短路径,将正方体展开,根据两点之间线段最短,运用勾股定理是解题关键.
22、14cm或16cm
【解析】
试题分析:根据题意画出图形,由平行四边形得出对边平行,又由角平分线可以得出△ABE为等腰三角形,然后分别讨论BE=2cm,CE=3cm或BE=3cm,CE=2cm,继而求得答案.
解:如图,∵四边形ABCD为平行四边形,
∴AD∥BC,
∴∠DAE=∠AEB,
∵AE为角平分线,
∴∠DAE=∠BAE,
∴∠AEB=∠BAE,
∴AB=BE,
∴①当AB=BE=2cm,CE=3cm时,
则周长为14cm;
②当AB=BE=3cm时,CE=2cm,
则周长为16cm.
故答案为14cm或16cm.
考点:平行四边形的性质.
23、
【解析】
【分析】由于已知方程的一根,并且一次项系数也已知,根据两根之和公式可以求出方程的另一根.
【详解】设方程的另一根为x1,由x1+2-=4,得x1=2+.
故答案为2+.
【点睛】根据方程中各系数的已知情况,合理选择根与系数的关系式是解决此类题目的关键.
二、解答题(本大题共3个小题,共30分)
24、1班人均捐款36元,2班人均捐款40元.
【解析】
解:设1班有x人,则2班有0.9x人,
由题意,得-=4,解之得x=50(人).
经检验x=50是原分式方程的根.
∴2班有45人,∴1班人均捐款为=36(元),2班人均捐款为=40(元).
答:1、2两个班人均捐款各36元和40元.
25、证明见解析.
【解析】
分析:由“四边形ABCD是矩形”得知,AB=CD,AD=BC,矩形的四个角都是直角,再根据全等三角形的判定原理SAS判定全等三角形,由此,得出全等三角形的对应边相等的结论.
详解:已知:四边形ABCD是矩形,AC与BD是对角线,
求证:,
证明:四边形ABCD是矩形,
,,
又,
≌,
,
所以矩形的对角线相等
点睛:本题考查的是矩形的性质和全等三角形的判定.(1)在矩形中,对边平行相等,四个角都是直角;(2)全等三角形的判定原理AAS;三个判定公理(ASA、SAS、SSS);(3)全等三角形的对应边、对应角都相等.
26、(1)详见解析;(2)详见解析
【解析】
(1)作▱ABCD的对角线AC、BD,交于点O,作直线EO交BC于点F,直线EF即为所求;
(2)作射线AF即可得.
【详解】
(1)如图1,直线EF即为所求;
(2)如图2,射线AM即为所求.
本题主要考查作图-基本作图,熟练掌握平行四边形的性质是解题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
产品种类
每天工人数(人)
每天产量(件)
每件产品可获利润(元)
甲
乙
江西省赣州市名校2023-2024学年九年级数学第一学期期末经典试题含答案: 这是一份江西省赣州市名校2023-2024学年九年级数学第一学期期末经典试题含答案,共9页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。
2023-2024学年江西省赣州市石城县数学九年级第一学期期末学业水平测试试题含答案: 这是一份2023-2024学年江西省赣州市石城县数学九年级第一学期期末学业水平测试试题含答案,共8页。试卷主要包含了下列说法中,正确的是等内容,欢迎下载使用。
江西省赣州市石城县2023-2024学年八上数学期末教学质量检测模拟试题含答案: 这是一份江西省赣州市石城县2023-2024学年八上数学期末教学质量检测模拟试题含答案,共8页。试卷主要包含了若是关于的完全平方式,则的值为,若分式的值为零,则x的值为,下列各数中是无理数的是等内容,欢迎下载使用。