年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2025届江西省高安五中学九年级数学第一学期开学联考试题【含答案】

    2025届江西省高安五中学九年级数学第一学期开学联考试题【含答案】第1页
    2025届江西省高安五中学九年级数学第一学期开学联考试题【含答案】第2页
    2025届江西省高安五中学九年级数学第一学期开学联考试题【含答案】第3页
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2025届江西省高安五中学九年级数学第一学期开学联考试题【含答案】

    展开

    这是一份2025届江西省高安五中学九年级数学第一学期开学联考试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,已知四边形ABCD是平行四边形,下列结论不正确的是( )
    A.AD=BCB.AC⊥BDC.∠DAC=∠BCAD.OA=OC
    2、(4分)下列分式,,,最简分式的个数有( )
    A.4个B.3个C.2个D.1个
    3、(4分)如图,△ABC以点C为旋转中心,旋转后得到△EDC,已知AB=1.5,BC=4,AC=5,则DE=( )
    A.1.5B.3C.4D.5
    4、(4分)一名射击运动员连续打靶10次,命中的环数如图所示,这位运动员命中环数的众数与中位数分别为( )
    A.7与7B.7与7.5C.8与7.5D.8与7
    5、(4分)将下列长度的三根木棒首尾顺次连接,能组成直角三角形的是( )
    A.3,5,6B.2,3,5C.5,6,7D.6,8,10
    6、(4分)如图所示,正比例函数和一次函数交于,则不等式的解集为( )
    A.B.C.D.
    7、(4分)下列因式分解正确的是( )
    A.2x2﹣2=2(x+1)(x﹣1)B.x2+2x﹣1=(x﹣1)2
    C.x2﹣1=(x﹣1)2D.x2﹣x+2=x(x﹣1)+2
    8、(4分)用尺现作图的方法在一个平行四边形内作菱形,下列作法错误的是 ( )
    A.B.C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)已知:,,代数式的值为_________.
    10、(4分)若b为常数,且﹣bx+1是完全平方式,那么b=_____.
    11、(4分)计算:(2+)(2-)=_______.
    12、(4分)如图,AD=8,CD=6,∠ADC=90°,AB=26,BC=24,该图形的面积等于_____.
    13、(4分)一次函数y=2x+1的图象与x轴的交点坐标为______.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)某货运公司有大小两种货车,3辆大货车与4辆小货车一次可以运货29吨,2辆大货车与6辆小货车一次可以运货31吨.
    (1)1辆大货车和1辆小货车一次可以分别运货多少吨?
    (2)有46.4吨货物需要运输,货运公司拟安排大小货车共10辆(要求两种货车都要用),全部货物一次运完,其中每辆大货车一次运货花费500元,每辆小货车一次运货花费300元,请问货运公司应如何安排车辆最节省费用?
    15、(8分)如图1,在矩形纸片ABCD中,AB=8,BC=16,将矩形纸片沿EF折叠,使点C与点A重合.
    (1)判断△AEF的形状,并说明理由;
    (2)求折痕EF的长度;
    (3)如图2,展开纸片,连接CF,则点E到CF的距离是 .
    16、(8分)为了让同学们了解自己的体育水平,八年级1班的体育老师对全班50名学生进行了一次体育模拟测试(得分均为整数).成绩满分为10分,1班的体育委员根据这次测试成绩制作了如下的统计图:
    (1)根据统计图所给的信息填写下表:
    (2)若女生队测试成绩的方差为1.76,请计算男生队测试成绩的方差.并说明在这次体育测试中,哪个队的测试成绩更整齐些?
    17、(10分)因式分解:
    18、(10分)已知四边形ABCD和四边形CEFG都是正方形,且AB>CE
    (1) 如图1,连接BG、DE,求证:BG=DE
    (2) 如图2,如果正方形CEFG绕点C旋转到某一位置恰好使得CG∥BD,BG=BD
    ① 求∠BDE的度数
    ② 若正方形ABCD的边长是,请直接写出正方形CEFG的边长____________
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,是菱形的对角线上一点,过点作于点. 若,则点到边的距离为______.
    20、(4分)甲、乙两名射击手的100次测试的平均成绩都是9环,方差分别是S2甲=0.8,S2乙=0.35,则成绩比较稳定的是_____(填“甲”或“乙”).
    21、(4分)如图,在平面直角坐标系xOy中,Rt△OA1C1,Rt△OA2C2,Rt△OA3C3,Rt△OA4C4……的斜边OA1,OA2,OA3,OA4……都在坐标轴上,∠A1OC1=∠A2OC2=∠A3OC3=∠A4OC4=……=30°.若点A1的坐标为(3,0),OA1=OC2,OA2=OC3OA3=OC4……,则依此规律,点A2018的纵坐标为___.
    22、(4分)观察分析下列数据:,则第17个数据是 _______ .
    23、(4分)数据15、19、15、18、21的中位数为_____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,铁路上A、B两点相距25km,C、D为两村庄,DA⊥AB于A,CB⊥AB于B,已知DA=15km,CB=10km,现在要在铁路AB上建一个土特产品收购站E,使得C、D两村到E站的距离相等,则E站应建在距A站多少千米处?
    25、(10分)如图,BD,CE是△ABC的高,G,F分别是BC,DE的中点,求证:FG⊥DE.
    26、(12分)在三个整式x2+2xy,y2+2xy,x2中,请你任意选出两个进行加(或减)运算,使所得整式可以因式分解,并进行因式分解.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    根据平行四边形的性质即可一一判断.
    【详解】
    解:∵四边形ABCD是平行四边形,
    ∴AD=BC,OA=OC,AD∥BC,
    ∴∠DAC=∠BCA,
    故A、C、D正确,
    无法判断AC与DB是否垂直,故B错误;
    故选:B.
    本题考查平行四边形的性质,解题的关键是熟练掌握平行四边形的性质,属于中考基础题.
    2、D
    【解析】
    直接利用分式的基本性质化简得出答案.
    【详解】
    解:,不能约分,,,
    故只有是最简分式.最简分式的个数为1.
    故选:D.
    此题主要考查了最简分式,正确化简分式是解题关键.
    3、A
    【解析】
    根据旋转的性质,得出△ABC≌△EDC,再根据全等三角形的对应边相等即可得出结论.
    【详解】
    由旋转可得,△ABC≌△EDC,
    ∴DE=AB=1.5,
    故选A.
    本题主要考查了旋转的性质的运用,解题时注意:旋转前、后的图形全等.
    4、A
    【解析】
    根据众数的定义找出出现次数最多的数;根据中位数的定义求出最中间两个数的平均数即可.
    【详解】
    解:根据统计图可得:
    7出现了4次,出现的次数最多,
    则众数是7;
    ∵共有10个数,
    ∴中位数是第5和6个数的平均数,
    ∴中位数是(7+7)÷2=7;
    故选:A.
    此题考查了众数和中位数,用到的知识点是众数和中位数的定义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),众数是一组数据中出现次数最多的数,注意众数不止一个.
    5、D
    【解析】
    判断是否为直角三角形,只要验证两小边的平方和是否等于最长边的平方即可.
    【详解】
    A.32+52=34≠62,故不能组成直角三角形,错误;
    B.22+32≠52,故不能组成直角三角形,错误;
    C.52+62≠72,故不能组成直角三角形,错误;
    D.62+82=100=102,故能组成直角三角形,正确.
    故选D.
    本题考查了勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.
    6、B
    【解析】
    利用函数的图象,写出在直线上方所对应的自变量的范围即可.
    【详解】
    当时,,
    所以不等式的解集为
    故选B.
    本题考查了一次函数与一元一次不等式,从函数图象的角度看,就是确定直线在x轴上(或下)方部分所有的点的横坐标.
    7、A
    【解析】
    由题意根据因式分解的意义,即可得答案判断选项.
    【详解】
    解:A、2x2﹣2=2(x2﹣1)=2(x+1)(x﹣1),故A符合题意;
    B、x2+2x+1=(x+1)2,故B不符合题意;
    C、x2﹣1=(x+1)(x﹣1),故C不符合题意;
    D、不能分解,故D不符合题意;
    故选:A.
    本题考查因式分解的意义,一提,二套,三检查,注意分解要彻底.
    8、A
    【解析】
    根据菱形的判定方法一一判定即可
    【详解】
    作的是角平分线,只能说明四边形ABCD是平行四边形,故A符合题意
    B、作的是连接AC,分别做两个角与已知角∠CAD、∠ACB相等的角,即∠BAC=∠DAC,∠ACB=∠ACD,能得到AB=BC,AD=CD,又AB∥CD,所以四边形ABCD为菱形,B不符合题意
    C、由辅助线可知AD=AB=BC,又AD∥BC,所以四边形ABCD为菱形,C不符合题意
    D、作的是BD垂直平分线,由平行四边形中心对称性质可知AC与BD互相平分且垂直,得到四边形ABCD是菱形,D不符合题意
    故选A
    本题考查平行四边形的判定,能理解每个图的作法是本题解题关键
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、4
    【解析】
    根据完全平方公式计算即可求出答案.
    【详解】
    解:∵,,
    ∴x−y=2,
    ∴原式=(x−y)2=4,
    故答案为:4
    本题考查二次根式的化简求值和完全平方公式,解题的关键是熟练运用完全平方公式,本题属于基础题型.
    10、±1
    【解析】
    根据完全平方式的一般式,计算一次项系数即可.
    【详解】
    解:∵b为常数,且x2﹣bx+1是完全平方式,
    ∴b=±1,
    故答案为±1.
    本题主要考查完全平方公式的系数关系,关键在于一次项系数的计算.
    11、1
    【解析】
    根据实数的运算法则,利用平方差公式计算即可得答案.
    【详解】
    (2+)(2-)
    =22-()2
    =4-3
    =1.
    故答案为:1
    本题考查实数的运算,熟练掌握运算法则并灵活运用平方差公式是解题关键.
    12、96
    【解析】
    试题解析:如图所示,连接AC ,在Rt△ADC中,CD=6,AD=8,则.
    在△ ABC中,AB=26,BC=24,AC=10,则 ,故△ ABC为直角三角形.
    .
    故本题的正确答案应为96.
    13、(-,0)
    【解析】
    令y=0可求得x的值,则可求得与x轴的交点坐标.
    【详解】
    解:令y=0,即2x+1=0,
    解得:x=-,
    ∴一次函数y=2x+1的图象与x轴的交点坐标为(-,0).
    故答案为:(-,0).
    本题考查了一次函数与x轴的交点坐标.
    三、解答题(本大题共5个小题,共48分)
    14、(1)1辆大货车和1辆小货车一次可以分别运货5吨和3.5吨;(2)货运公司安排大货车8辆,小货车2辆,最节省费用.
    【解析】
    (1)设1辆大货车和1辆小货车一次可以分别运货x吨和y吨,根据“3辆大货车与4辆小货车一次可以运货18吨、2辆大货车与6辆小货车一次可以运货17吨”列方程组求解可得;
    (2)设货运公司安排大货车m辆,则安排小货车(10-m)辆.根据10辆货车需要运输46.4吨货物列出不等式.
    【详解】
    解:(1)设1辆大货车和1辆小货车一次可以分别运货吨和吨,
    根据题意,得,解得,
    所以大货车和1辆小货车一次可以分别运货5吨和3.5吨;
    (2)设货运公司安排大货车m辆,则安排小货车(10-m)辆,
    根据题意可得:5m+3.5(10-m)≥46.4,
    解得:m≥7.6,
    因为m是正整数,且m≤10,
    所以m=8或9或10,
    所以10-m=2或1或0,
    方案一:所需费用=500×8+300×2=4600(元),
    方案二:所需费用=500×9+300×1=4800(元),
    方案三:所需费用=500×10+300×0=5000(元),
    因为4600<4800<5000,
    所以货运公司安排大货车8辆,则安排小货车2辆,最节省费用.
    考查了二元一次方程组和一元一次不等式的应用,体现了数学建模思想,考查了学生用方程解实际问题的能力,解题的关键是根据题意建立方程组,并利用不等式求解大货车的数量,解题时注意题意中一次运完的含义,此类试题常用的方法为建立方程,利用不等式或者一次函数性质确定方案.
    15、(1)△DEF是等腰三角形,理由见解析;(2);(3)1
    【解析】
    (1)根据折叠和平行的性质,可得∠AEF=∠AFE,即得出结论;
    (2)过点E作EM⊥AD于点M,得出四边形ABEM是矩形,设EC=x,则AE=x,BE=16-x,在Rt△ABE中,利用勾股定理求出x,在Rt△EMF中,用勾股定理即可求得;
    (3)证明四边形AECF是菱形,设点E到CF的距离为h,通过面积相等,即可求得.
    【详解】
    (1)△AEF是等腰三角形.
    理由如下:由折叠性质得∠AEF=∠FEC,
    在矩形ABCD中,AD∥BC,∴∠AFE=∠FEC,
    ∴∠AEF=∠AFE, ∴AF=AE;
    ∴△AEF是等腰三角形;
    故答案为:△AEF是等腰三角形.
    (2)如图,过点E作EM⊥AD于点M,
    则∠AME=90°,
    又∵在矩形ABCD中,∠BAD=∠B=90°,
    ∴四边形ABEM是矩形,
    ∴AM=BE,ME=AB=1,
    设EC=x,则AE=x,BE=16-x,
    在Rt△ABE中,AE2=AB2+BE2,x2=12+(16-x)2,
    解之得x=10,
    ∴EC=AE=10,BE=6,
    ∴AM=6,AF=AE=10,
    ∴MF=AF-AM=4,
    在Rt△EMF中,;
    故答案为:;
    (3)由(1)知,AE=AF=EC,
    ∵AF∥EC,
    ∴四边形AECF是平行四边形,
    ∴四边形AECF是菱形,
    设点E到CF的距离为h,

    ∴h=1.即E到CF的距离为1,
    故答案为:1.
    考查了折叠图形和平行线结合的性质,等腰三角形的判定和性质,勾股定理求角的应用,菱形的判定和性质,等面积法的应用,熟记和掌握几何图形的判定和性质内容是解题的关键.
    16、(1)8;8;8;(2)女生测试成绩更整齐些
    【解析】
    (1)根据平均数、众数的定义求解即可;
    (2)先计算男生队测试成绩的方差,然后根据方差越小越整齐解答.
    【详解】
    (1)男生的平均数:(5×1+6×3+7×5+8×7+9×4+10×5) ÷(1+3+5+7+4+5)=8分;
    男生的众数:∵8分出现的次数最多,∴众数是8分;
    女生的众数:∵8分出现的次数最多,∴众数是8分;
    (2)[(5-8)2×1+(6-8)2×3+(7-8)2×5+(8-8)2×7+(9-8)2×4+(10-8)2×5]÷25=2,
    ∵1.76<2,
    ∴女生测试成绩更整齐些.
    本题考查了平均数、众数、标准差的求法,平均数是指在一组数据中所有数据之和再除以数据的个数.解题的关键是掌握加权平均数和方差公式.
    17、(x+y-1)(x+y+1)
    【解析】
    将前三项先利用完全平方公式分解因式,进而结合平方差公式分解因式得出即可.
    【详解】
    解:(x2+y2+2xy)-1
    =(x+y)2-1
    =(x+y-1)(x+y+1).
    此题主要考查了分组分解法以及公式法分解因式,熟练利用公式法分解因式是解题关键.
    18、(1)见解析;(2)①∠BDE=60°;②−1.
    【解析】
    (1)根据正方形的性质可以得出BC=DC,CG=CE,∠BCD=∠GCE=90°,再证明△BCG≌△DCE就可以得出结论;
    (2)①根据平行线的性质可以得出∠DCG=∠BDC=45°,可以得出∠BCG=∠BCE,可以得出△BCG≌△BCE,得出BG=BE得出△BDE为正三角形就可以得出结论;
    ②延长EC交BD于点H,通过证明△BCE≌△BCG就可以得出∠BEC=∠DEC,就可以得出EH⊥BD,BH=BD,由勾股定理就可以求出EH的值,从而求出结论.
    【详解】
    (1)证明:∵四边形ABCD和CEFG为正方形,
    ∴BC=DC,CG=CE,∠BCD=∠GCE=90°.
    ∴∠BCD+∠DCG=∠GCE+∠DCG,
    ∴∠BCG=∠DCE.
    在△BCG和△DCE中,

    ∴△BCG≌△DCE(SAS).
    ∴BG=DE;
    (2)①连接BE.
    由(1)可知:BG=DE.
    ∵CG∥BD,
    ∴∠DCG=∠BDC=45°.
    ∴∠BCG=∠BCD+∠GCD=90°+45°=135°.
    ∵∠GCE=90°,
    ∴∠BCE=360°−∠BCG−∠GCE=360°−135°−90°=135°.
    ∴∠BCG=∠BCE.
    ∵BC=BC,CG=CE,
    在△BCG和△BCE中,
    ,
    ∴△BCG≌△BCE(SAS).
    ∴BG=BE.
    ∵BG=BD=DE,
    ∴BD=BE=DE.
    ∴△BDE为等边三角形。
    ∴∠BDE=60°.
    ②延长EC交BD于点H,
    在△BCE和△DCE中,

    ∴△BCE≌△BCG(SSS),
    ∴∠BEC=∠DEC,
    ∴EH⊥BD,BH=BD.
    ∵BC=CD=,在Rt△BCD中由勾股定理,得
    ∴BD=2.
    ∴BH=1.
    ∴CH=1.
    在Rt△BHE中,由勾股定理,得
    EH=,
    ∴CE=−1.
    ∴正方形CEFG的边长为−1.
    此题考查四边形综合题,全等三角形的判定与性质,等边三角形的判定,勾股定理,正方形的性质,解题关键在于作辅助线和掌握判定定理.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、4
    【解析】
    首先根据菱形的性质,可得出∠ABD=∠CBD,然后根据角平分线的性质,即可得解.
    【详解】
    解:∵四边形ABCD为菱形,BD为其对角线
    ∴∠ABD=∠CBD,即BD为角平分线
    ∴点E到边AB的距离等于EF,即为4.
    此题主要考查菱形和角平分线的性质,熟练运用,即可解题.
    20、乙
    【解析】
    根据方差的定义,方差越小数据越稳定,即可得出答案.
    【详解】
    解:∵甲、乙的平均成绩都是9环,方差分别是S甲2=0.8,S乙2=0.35,
    ∴S甲2>S乙2,
    ∴成绩比较稳定的是乙;
    故答案为:乙.
    本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
    21、3×()1
    【解析】
    根据含30度的直角三角形三边的关系得OA2=OC2=3×;
    OA3=OC3=3×()2;OA4=OC4=3×()3,于是可得到
    OA2018=3×()1.
    【详解】
    ∵∠A2OC2=30°,OA1=OC2=3,
    ∴;
    ∵,
    ∴;
    ∵,
    ∴,
    ∴,
    而2018=4×504+2,
    ∴点A2018在y轴的正半轴上,
    ∴点A2018的纵坐标为:.
    故答案为:.
    本题考查的知识点是规律型和点的坐标,解题关键是利用发现的规律进行解答.
    22、
    【解析】
    分析:将原数变形为:1×,2×,3×,4×…,根据规律可以得到答案.
    详解:将原数变形为:1×,2×,3×,4×…,所以第17个数据是:17×=51.
    故答案为:51.
    点睛:本题考查了算术平方根,解题的关键是将所得二次根式变形,找到规律解答.
    23、1
    【解析】
    将这五个数排序后,可知第3位的数是1,因此中位数是1.
    【详解】
    将这组数据排序得:15,15,1,19,21,处于第三位是1,因此中位数是1,
    故答案为:1.
    考查中位数的意义和求法,将一组数据排序后处在中间位置的一个数或两个数的平均数是中位数.
    二、解答题(本大题共3个小题,共30分)
    24、E点应建在距A站1千米处.
    【解析】
    关键描述语:产品收购站E,使得C、D两村到E站的距离相等,在Rt△DAE和Rt△CBE中,设出AE的长,可将DE和CE的长表示出来,列出等式进行求解即可.
    【详解】
    解:设AE=xkm,
    ∵C、D两村到E站的距离相等,∴DE=CE,即DE2=CE2,
    由勾股定理,得152+x2=12+(25﹣x)2,x=1.
    故:E点应建在距A站1千米处.
    本题主要是运用勾股定理将两个直角三角形的斜边表示出来,两边相等求解即可.
    25、如图,连接EG,DG.
    ∵CE是AB边上的高,
    ∴CE⊥AB.
    在Rt△CEB中,G是BC的中点,∴.
    同理,.∴EG=DG.
    又∵F是ED的中点,∴FG⊥DE.
    【解析】
    根据题意连接EG,DG,利用直角三角形斜边上的中线的性质可得EG=DG,然后根据等腰三角形“三线合一”的性质即可解决.
    26、答案不唯一,具体见解析
    【解析】
    解:



    题号





    总分
    得分
    平均数(分)
    中位数(分)
    众数(分)
    男生
    8
    女生
    8
    8

    相关试卷

    2025届江西省宜春市高安市高安中学数学九年级第一学期开学检测模拟试题【含答案】:

    这是一份2025届江西省宜春市高安市高安中学数学九年级第一学期开学检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年江西省高安市九上数学开学复习检测模拟试题【含答案】:

    这是一份2024年江西省高安市九上数学开学复习检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年江西省高安市高安二中学九上数学开学考试模拟试题【含答案】:

    这是一份2024年江西省高安市高安二中学九上数学开学考试模拟试题【含答案】,共17页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map