2025届江西省庐山市数学九年级第一学期开学预测试题【含答案】
展开
这是一份2025届江西省庐山市数学九年级第一学期开学预测试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为扩大销售,尽快减少库存,商场决定釆取降价措施,调查发现,每件衬衫,每降价1元,平均每天可多销售2件,若商场每天要盈利1200元,每件衬衫应降价( )
A.5元 B.10元 C.20元 D.10元或20元
2、(4分)下列各组数,不能作为直角三角形的三边长的是( )
A.3,4,5B.1,1,C.2,3,4D.6,8,10
3、(4分)在△ABC中,AB=6,AC=8,BC=10,则该三角形为( )
A.锐角三角形B.直角三角形C.钝角三角形D.等腰直角三角形
4、(4分)如图,两张等宽的纸条交叉重叠在一起,重叠的部分为四边形ABCD,若测得A,C之间的距离为6cm,点B,D之间的距离为8cm,则线段AB的长为( )
A.5 cmB.4.8 cmC.4.6 cmD.4 cm
5、(4分)如图,中,增加下列选项中的一个条件,不一定能判定它是矩形的是( )
A.B.C.D.
6、(4分)如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为,则所有正方形的面积的和是 .
A.28B.49C.98D.147
7、(4分)新定义,若关于x的一元二次方程:与,称为“同族二次方程”.如与是“同族二次方程”.现有关于x的一元二次方程:与是“同族二次方程”.那么代数式能取的最小值是( )
A.2011B.2013C.2018D.2023
8、(4分)如图,一同学在湖边看到一棵树,他目测出自己与树的距离为20m,树的顶端在水中的倒影距自己5m 远,该同学的身高为1.7m ,则树高为( ).
A.3.4mB.4.7 mC.5.1mD.6.8m
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,点A,B,E在同一条直线上,正方形ABCD,BEFG的边长分别为3,4,H为线段DF的中点,则BH=_____________.
10、(4分)在方程组中,已知,,则a的取值范围是______.
11、(4分)把抛物线y=2(x﹣1)2+1向左平移1个单位,再向上平移2个单位得到的抛物线解析式_____.
12、(4分)若代数式有意义,则的取值范围为__________.
13、(4分)己知一个菱形的边长为2,较长的对角线长为2,则这个菱形的面积是_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,直线y=﹣2x+7与x轴、y轴分别相交于点C、B,与直线y=x相交于点A.
(1)求A点坐标;
(2)求△OAC的面积;
(3)如果在y轴上存在一点P,使△OAP是以OA为底边的等腰三角形,求P点坐标;
(4)在直线y=﹣2x+7上是否存在点Q,使△OAQ的面积等于6?若存在,请求出Q点的坐标,若不存在,请说明理由.
15、(8分)(1)先化简,再求值:÷(﹣),其中a2+3a﹣1=1.
(2)若关于x的分式方程+1的解是正数,求m的取值范围.
16、(8分)如图,边长为1的正方形组成的网格中,的顶点均在格点上,点、的坐标分是,.
(1)的面积为______;
(2)点在轴上,当的值最小时,在图中画出点,并求出的最小值.
17、(10分)某大型物件快递公司送货员每月的工资由底薪加计件工资两部分组成,计件工资与送货件数成正比例.有甲乙两名送货员,如果送货量为x件时,甲的工资是y1(元),乙的工资是y2(元),如图所示,已知甲的每月底薪是800元,每送一件货物,甲所得的工资比乙高2元
(1)根据图中信息,分别求出y1和y2关于x的函数解析式;(不必写定义域)
(2)如果甲、乙两人平均每天送货量分别是12件和14件,求两人的月工资分别是多少元?(一个月为30天)
18、(10分)已知,正方形ABCD中,,绕点A顺时针旋转,它的两边长分别交CB、DC或它们的延长线于点MN,于点H.
如图,当点A旋转到时,请你直接写出AH与AB的数量关系;
如图,当绕点A旋转到时,中发现的AH与AB的数量关系还成立吗?如果不成立请写出理由,如果成立请证明.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)点P在第四象限内,P到轴的距离是3,到轴的距离是5,那么点P的坐标为 .
20、(4分)分式方程有增根,则m=_____________.
21、(4分)某商场为了统计某品牌运动鞋哪个号码卖得最好,则应关注该品牌运动鞋各号码销售数据的平均数、众数、中位数这三个数据中的_____________.
22、(4分)一次函数 的图象如图所示,则关于的不等式的解集为__________.
23、(4分)如图,小明作出了边长为2的第1个正△A1B1C1 , 算出了正△A1B1C1的面积. 然后分别取△A1B1C1的三边中点A2、B2、C2 , 作出了第2个正△A2B2C2 , 算出了正△A2B2C2的面积. 用同样的方法,作出了第3个正△A3B3C3 , 算出了正△A3B3C3的面积……,由此可得,第2个正△A2B2C2的面积是_______,第n个正△AnBnCn的面积是______
二、解答题(本大题共3个小题,共30分)
24、(8分)在直角坐标系中,正方形OABC的边长为8,连结OB,P为OB的中点.
(1)直接写出点B的坐标B( , )
(2)点D从B点出发,以每秒1个单位长度的速度在线段BC上向终点C运动,连结PD,作PD⊥PE,交OC于点E,连结DE.设点D的运动时间为秒.
①点D在运动过程中,∠PED的大小是否发生变化?如果变化,请说明理由如果不变,求出∠PED的度数
②连结PC,当PC将△PDE分成的两部分面积之比为1:2时,求的值.
25、(10分)先化简,再求值,其中a=3,b=﹣1.
26、(12分)如图,中,平分交于点 ,为的中点.
(1)如图①,若为的中点,,,,,求;
(2)如图②,为线段上一点,连接,满足,.求证:.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
设每件衬衫应降价x元,则每天可销售(1+2x)件,根据每件的利润×销售数量=总利润,即可得出关于x的一元二次方程,解之取其较大值即可得出结论.
【详解】
设每件衬衫应降价x元,则每天可销售(1+2x)件,
根据题意得:(40-x)(1+2x)=110,
解得:x1=10,x2=1.
∵扩大销售,减少库存,
∴x=1.
故选C.
本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.
2、C
【解析】
根据勾股定理的逆定理,只需验证两较小边的平方和是否等于最长边的平方即可.
【详解】
A. 3 +4=25=5,故能构成直角三角形,故本选项错误;
B. 1+1=2=(),故能构成直角三角形,故本选项错误;
C.2+3=13≠4,故不能构成直角三角形,故本选项正确;
D. 6+8=100=10,故能构成直角三角形,故本选项错误。
故选C.
此题考查勾股定理的逆定理,解题关键在于掌握其定义
3、B
【解析】
在△ABC中,AB=6,AC=8,BC=10,推断出62+82=102,由勾股定理的逆定理得此三角形是直角三角形,故选B.
4、A
【解析】
作AR⊥BC于R,AS⊥CD于S,根据题意先证出四边形ABCD是平行四边形,再由AR=AS得平行四边形ABCD是菱形,再根据根据勾股定理求出AB即可.
【详解】
解:作AR⊥BC于R,AS⊥CD于S,连接AC、BD交于点O.
由题意知:AD∥BC,AB∥CD,
∴四边形ABCD是平行四边形,
∵两个矩形等宽,
∴AR=AS,
∵AR•BC=AS•CD,
∴BC=CD,
∴平行四边形ABCD是菱形,
∴AC⊥BD,
在Rt△AOB中,∵OA=3,OB=4,
∴AB==5,
故选:A.
本题考查菱形的判定、勾股定理,解题的关键是掌握一组邻边相等的平行四边形是菱形.
5、B
【解析】
根据矩形的判定定理逐个判断即可.
【详解】
A、∵四边形ABCD是平行四边形,,
∴四边形ABCD是矩形,故本选项不符合题意;
B、根据四边形ABCD是平行四边形和AC⊥BD不能推出四边形ABCD是矩形,故本选项符合题意;
C、∵四边形ABCD是平行四边形,AC=BD,
∴四边形ABCD是矩形,故本选项不符合题意;
D、∵,
∴OA=OB,
∵四边形ABCD是平行四边形,
∴AO=OC,BO=OD,
∴AC=BD,
∴四边形ABCD是矩形,故本选项不符合题意;
故选:B.
本题考查了矩形的判定定理,能熟记矩形的判定定理的内容是解此题的关键,注意:有一个角是直角的平行四边形是矩形,对角线相等的平行四边形是矩形.
6、D
【解析】
根据勾股定理即可得到正方形A的面积加上B的面积等于E的面积,同理,C,D的面积的和是F的面积,E,F的面积的和是M的面积.即可求解.
【详解】
解:根据勾股定理可得:SA+SB=SE,SC+SD=SM,SE+SF=SM
所以,所有正方形的面积的和是正方形M的面积的3倍:即49×3=147cm1.
故选:D
理解正方形A,B的面积的和是E的面积是解决本题的关键.若把A,B,E换成形状相同的另外的图形,这种关系仍成立.
7、B
【解析】
根据同族二次方程的定义,可得出a和b的值,从而解得代数式的最小值.
【详解】
解:与为同族二次方程.
,
,
∴,
解得:.
,
当时,取最小值为2013.
故选:B.
此题主要考查了配方法的应用,解二元一次方程组的方法,理解同族二次方程的定义是解答本题的关键.
8、C
【解析】
由入射光线和反射光线与镜面的夹角相等,可得两个相似三角形,根据相似三角形的性质解答即可.
【详解】
解:由题意可得:∠BCA=∠EDA=90°,∠BAC=∠EAD,
故△ABC∽△AED,
由相似三角形的性质,设树高x米,
则,
∴x=5.1m.
故选:C.
本题考查相似三角形的应用,关键是由入射光线和反射光线与镜面的夹角相等,得出两个相似三角形.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
连接BD,BF,由正方形性质求出∠DBF=90〫,根据勾股定理求出BD,BF,再求DF,再根据直角三角形斜边上的中线等于斜边一半求BH.
【详解】
连接BD,BF,
∵四边形ABCD和四边形BEFG是正方形,
∴∠DBC=∠GBF =45〫, BD=,BF=,
∴∠DBF=90〫,
∴DF= ,
∵H为线段DF的中点,
∴BH=
故答案为
本题考核知识点:正方形性质,直角三角形. 解题关键点:熟记正方形,直角三角形的性质.
10、
【解析】
先根据加减消元法解二元一次方程组,解得,再根据,,可列不等式组,解不等式组即可求解.
【详解】
方程组,
由①+②,可得:
,
解得,
把代入①可得:,
因为,,
所以,
所以不等式组的解集是,
故答案为:.
本题主要考查解含参数的二元一次方程组和一元一次不等式组,解决本题的关键是要熟练掌握解含参数的二元一次方程的解法.
11、y=2x2+1.
【解析】
先利用顶点式得到抛物线y=2(x﹣1)2+1顶点坐标为(1,1),再根据点平移的坐标特征得到点(1,1)平移后所得对应点的坐标为(0,1),然后根据顶点式写出平移后的抛物线的解析式即可.
【详解】
抛物线y=2(x﹣1)2+1顶点坐标为(1,1),点(1,1)先向左平移2个单位,再向上平移1个单位后所得对应点的坐标为(0,1),所以平移后的抛物线的解析式为y=2x2+1.
故答案是:y=2x2+1.
本题考查了抛物线的平移,根据平移规律得到平移后抛物线的顶点坐标为(0,1)是解决问题的关键.
12、且.
【解析】
根据二次根式和分式有意义的条件进行解答即可.
【详解】
解:∵代数式有意义,
∴x≥0,x-1≠0,
解得x≥0且x≠1.
故答案为x≥0且x≠1.
本题考查了二次根式和分式有意义的条件,二次根式的被开方数为非负数,分式的分母不为零.
13、
【解析】
分析:根据菱形的性质结合勾股定理可求出较短的对角线的长,再根据菱形的面积公式即可求出该菱形的面积.
详解:依照题意画出图形,如图所示.
在Rt△AOB中,AB=2,OB=,
∴OA==1,
∴AC=2OA=2,
∴S菱形ABCD=AC•BD=×2×2=2.
故答案为2.
点睛:本题考查了菱形的性质以及勾股定理,根据菱形的性质结合勾股定理求出较短的对角线的长是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)A点坐标是(2,3);(2)=;(3)P点坐标是(0, );(4)点Q是坐标是(,)或(,-).
【解析】
解析
联立方程,解方程即可求得;
C点位直线y=﹣2x+7与x轴交点,可得C点坐标为(,0),由(1)得A点坐标,可得的值;
(3)设P点坐标是(0,y),根据勾股定理列出方程,解方程即可求得;
(4)分两种情况:①当Q点在线段AB上:作QD⊥y轴于点D,则QD=x,根据
=-列出关于x的方程解方程求得即可;②当Q点在AC的延长线上时,作QD⊥x轴于点D,则QD=-y,根据=- 列出关于y的方程解方程求得即可.
【详解】
解(1)解方程组:得:,
A点坐标是(2,3);
(2) C点位直线y=﹣2x+7与x轴交点,可得C点坐标为(,0)
==
(3)设P点坐标是(0,y ),
△OAP是以OA为底边的等腰三角形,
OP=PA,
,
解得y=,
P点坐标是(0, ),
故答案为(0, );
(4)存在;
由直线y=-2x+7可知B(0,7),C(,0),
==<6,
==7>6,
Q点有两个位置:Q在线段AB上和AC的延长线上,设点Q的坐标是(x,y),
当Q点在线段AB上:作QD⊥y轴于点D,如图1,
则QD=x,=-=7-6=1,
OBQD=1,即: 7x=1,
x=,
把x=代入y=-2x+7,得y=,
Q的坐标是(,),
当Q点在AC的延长线上时,作QD⊥x轴于点D,如图2
则QD=-y,
=- =6-=,
OCQD=,即:,
y=-,
把y=-代入y=-2x+7,解得x=
Q的坐标是(,-),
综上所述:点Q是坐标是(,)或(,-).
本题是一次函数的综合题,考查了交点的求法,勾股定理的应用,三角形面积的求法等,分类讨论思想的运用是解题的关键.
15、(1);(2)m>1且m≠2.
【解析】
(1)根据分式混合运算顺序和运算法则化简原式,再将a2+2a-1=1,即a2+2a=1整体代入可得;
(2)解分式方程得出x=m-1,由分式方程的解为正数得m-1>1且m-1≠2,解之即可.
【详解】
(1)原式=÷=•==,
当a2+2a﹣1=1,即a2+2a=1时, 原式==.
(2)解方程=+1,得:x=m﹣1,根据题意知m﹣1>1且m﹣1≠2,解得:m>1且m≠2.
本题考查分式的混合运算、解分式方程,解题关键是熟练掌握分式的混合运算顺序和运算法则.
16、(1);(2)
【解析】
(1)利用正方形的面积减去三个顶点上三角形的面积即可;
(2)作点A关于x轴的对称点A′,连接A′B交x轴于点P,则P点即为所求,利用勾股定理求出A′P的长即可.
【详解】
解:(1)(1)S△ABC=3×3−×2×3−×3×1−×2×1=9−3−−1=
故填:;
(2)点关于轴对称的点
连接,(或点关于轴对称的点连接)
与轴的交点即为满足条件的点,(注:点的坐标为)
是边长为5和2的矩形的对角线
所以
即的最小值为.
本题考查的是作图−应用与设计作图,根据题意作出点A的对称点A′是解答此题的关键.
17、(1)y1=20x+800;y2=18x+1200;(2)y1=8000元;y2=8760元.
【解析】
(1)设y1关于x的函数解析式为y1=kx+800,将(200,4800)代入,利用待定系数法即可求出y1=20x+800;根据每送一件货物,甲所得的工资比乙高2元,可设y2关于x的函数解析式为y2=18x+b,将(200,4800)代入,利用待定系数法即可求出y2=18x+1200;
(2)根据甲、乙两人平均每天送货量分别是12件和14件,得出甲、乙两人一个月送货量分别是12×30=360件和14×30=420件.再把x=360代入y1=20x+800,x=420代入y2=18x+1200,计算即可求解.
【详解】
(1)设y1关于x的函数解析式为y1=kx+800,
将(200,4800)代入,
得4800=200k+800,解得k=20,
即y1关于x的函数解析式为y1=20x+800;
∵每送一件货物,甲所得的工资比乙高2元,
而每送一件货物,甲所得的工资是20元,
∴每送一件货物,乙所得的工资比乙高18元.
设y2关于x的函数解析式为y2=18x+b,
将(200,4800)代入,
得4800=18×200+b,解得b=1200,
即y2关于x的函数解析式为y2=18x+1200;
(2)如果甲、乙两人平均每天送货量分别是12件和14件,
那么甲、乙两人一个月送货量分别是12×30=360件和14×30=420件.
把x=360代入y1=20x+800,得y1=20×360+800=8000(元);
把x=420代入y2=18x+1200,得y2=18×420+1200=8760(元).
本题考查了一次函数的应用,利用待定系数法求直线的解析式,以及代数式求值,读懂题目信息,理解函数图象是解题的关键.
18、;(2)数量关系还成立.证明见解析.
【解析】
(1)由题意可证△ABM≌△ADN,可得AM=AN,∠BAM=∠DAN=22.5°,再证△ABM≌△AMH可得结论;
(2)延长CB至E,使BE=DN,可证△ABE≌△ADN,可得AN=AE,∠BAE=∠DAN,可得∠EAM=∠MAN=45°且AM=AM,AE=AN,可证△AME≌△AMN,则结论可证.
【详解】
,理由如下:
是正方形
,且,
≌,
,,
,
,
,
,,
,
且,,
≌,
;
数量关系还成立.
如图,延长CB至E,使,
,,,
≌,
,,
,
即,
且,,
≌,
,≌,
,
.
本题考查了旋转的性质,正方形的性质,全等三角形的判定和性质,正确添加辅助线构建全等三角形是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(5,-1).
【解析】
试题分析:已知点P在第四象限,可得点P的横、纵坐标分别为正数、负数,又因为点P到x轴的距离为1,到y轴的距离为5,所以点P的横坐标为5或-5,纵坐标为1或-1.所以点P的坐标为(5,-1).
考点:各象限内点的坐标的特征.
20、1
【解析】
分式方程去分母得:x+x﹣1=m, 根据分式方程有增根得到x﹣1=0,即x=1,
将x=1代入整式方程得:1+1﹣1=m,
则m=1,
故答案为1.
21、众数
【解析】
根据题意可得:商场应该关注鞋的型号的销售量,特别是销售量最大的鞋型号即众数.
【详解】
某商场应该关注的各种鞋型号的销售量,特别是销售量最大的鞋型号,由于众数是数据中出现次数最多的数,故最应该关注的是众数.
故答案为:众数.
本题考查了统计的有关知识,主要包括平均数、中位数、众数和极差.反映数据集中程度的统计量有平均数、中位数、众数等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.
22、x≥1
【解析】
由图象得出解集即可.
【详解】
由图象可得再x轴下方,即x≥1的时候,
故答案为: x≥1.
本题考查一次函数图象的性质,关键在于牢记基础知识.
23、
【解析】
根据相似三角形的性质,先求出正△A2B2C2,正△A3B3C3的面积,依此类推△AnBnCn的面积是.
【详解】
正△A1B1C1的面积是×22==,
∵△A2B2C2与△A1B1C1相似,并且相似比是1:2,
∴面积的比是1:4,
则正△A2B2C2的面积是× ==;
∵正△A3B3C3与正△A2B2C2的面积的比也是1:4,
∴面积是×==;
依此类推△AnBnCn与△An﹣1Bn﹣1Cn﹣1的面积的比是1:4,
第n个三角形的面积是.
故答案是: , .
考查了相似三角形的判定与性质,以及等边三角形的性质,找出题中的规律是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)8,8;(2)①∠PED的大小不变,∠PED=45°;②t的值为:秒或秒.
【解析】
(1)根据正方形的边长为8和正方形的性质写出点B的坐标;
(2)①如图1,作辅助线,证明四边形PMCN是正方形,再证明△DPN≌△EPM(ASA),可得△DPE是等腰直角三角形,可得结论;
②分两种情况:当PC将△PDE分成的两部分面积之比为1:2时,即G是ED的三等分点,根据面积法可知:EC与CD的比为1:2或2:1,列方程可得结论.
【详解】
解:(1)∵正方形OABC的边长为8,
∴B(8,8);
故答案为:8,8;
(2)①∠PED的大小不变;理由如下:
作PM⊥OC于M,PN⊥CB于N,如图1所示:
∵四边形OABC是正方形,
∴OC⊥BC,
∴∠MCN=∠PMC=∠PNC=90°,
∴四边形PMCN是矩形,
∵P是OB的中点,
∴N、M分别是BC和OC的中点,
∴MC=NC,
∴矩形PMCN是正方形,
∴PM=PN,∠MPN=90°,
∵∠DPE=90°,
∴∠DPN=∠EPM,
∵∠PND=∠PME=90°,
∴△DPN≌△EPM(ASA),
∴PD=PE,
∴△DPE是等腰直角三角形,
∴∠PED=45°;
②如图2,作PM⊥OC于M,PN⊥CB于N,
若PC将△PDE的面积分成1:2的两部分,
设PC交DE于点G,则点G为DE的三等分点;
当点D到达中点之前时,如图2所示,CD=8-t,
由△DPN≌△EPM得:ME=DN=4-t,
∴EC=CM-ME=4-(4-t)=t,
∵点G为EF的三等分点,
∴或
∵CP平分∠OCB,
∴或2,
即CD=2CE或CE=2CD,
∴8-t=2t或t=2(8-t),
t=或(舍);
当点D越过中点N之后,如图3所示,CD=8-t,
由△DPN≌△EPM得:CD=8-t,DN=t-4
∴EC=CM+ME=4+(t-4)=t,
∵点G为EF的三等分点,
∴或
∵CP平分∠OCB,
∴或2,
即CD=2CE或CE=2CD,
∴8-t=2t或t=2(8-t),
t=(舍)或;
综上所述,当PC将△PED分成的两部分的面积之比为1:2时,t的值为:秒或秒.
本题是四边形综合题目,考查了正方形的性质、坐标与图形性质、三角形中位线定理、全等三角形的判定与性质、面积法等知识;本题综合性强,难度适中.
25、,.
【解析】
根据分式的减法和除法可以化简题目中的式子,然后将a、b的值代入化简后的式子即可解答本题.
【详解】
=
=
=
=
=
=
=
=,
当a=3,b=﹣1时,原式==.
本题考查分式的混合运算,熟练掌握运算法则是解题关键.
26、(1) (2)见解析
【解析】
(1)根据平行四边形的性质得出AB∥CD,AD∥BC,由DF平分∠ADC可得△DCF为等腰三角形,即DC=FC=8,再根据AB⊥CD得出△ACD为直角三角形,由G是HD的中点得出DH=2GC=,利用勾股定理得出HC=4,即AH=5,最后根据为的中点,即可得出MG的值.
(2)过点D作DN∥AC交CG延长线于N,可得, ,由G是DH的中点得,故,即,再由四边形ABCD是平行四边形可得∠DAC=∠ACB=∠AND,根据三角形内角和定理可得∠BMF=∠AND,∠BMF+∠B=∠AND+∠ADC,再由∠MFC=∠NDC,且CF=CD,∠FCM=∠DCM证明得出△MFC△NDC(ASA),即可得出CM=CN=2CG.
【详解】
(1)四边形ABCD是平行四边形
AB∥CD,AD∥BC
又AD∥BC
∠ADF=∠DFC
DF平分∠ADC
∠ADF=∠FDC
∠DFC=∠FDC
△DCF为等腰三角形
CD=FC=8
AB⊥CD且AB∥CD
AC⊥CD
△ACD为直角三角形
又G是HD的中点且GC=
DH=2GC=(斜边中线=斜边的一半)
RT△HCD中
DC=8,HD=
AC=9
AH=5
M是AD的中点
.
(2)
证明:过点D作DN∥AC交CG延长线于N
,
G是DH的中点
,且∠N=∠ACG,∠CGH=∠DGN
又四边形ABCD是平行四边形
∠B=∠ADC,AD∥BC
∠DAC=∠ACB=∠AND
∠MFB=∠BAC,且∠BMF=180°-∠B-∠BFM,∠ACB=180°-∠B-∠BAC
∠BMF=∠ACB
∠BMF=∠ADN
∠BMF+∠B=∠AND+∠ADC
∠MFC=∠NDC,且CF=CD,∠FCM=∠DCM
△MFC△NDC(ASA)
CM=CN=2CG
本题主要考查平行四边形的性质、斜边的性质、勾股定理,解题关键是熟练掌握平行四边形的性质及斜边的性质,利用勾股定理求出AH的值.
题号
一
二
三
四
五
总分
得分
相关试卷
这是一份2025届河北保定雄县数学九年级第一学期开学预测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年江西省抚州市临川区数学九年级第一学期开学预测试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年北京顺义九年级数学第一学期开学预测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。