宁夏回族自治区石嘴山市光明中学2024-2025学年高二上学期第一次月考(10月)数学试卷
展开1.若,,则( )
A.B.C.D.
2.在空间直角坐标系中,点,,点P为线段的中点,则点P的位置向量的坐标是( )
A.B.C.D.
3.直线的倾斜角为( )
A.30°B.45°C.60°D.135°
4.过点且与直线垂直的直线l的方程为( )
A.B.C.D.
5.若直线l的方向向量,平面的一个法向量,若,则实数( )
A.2B.C.D.10
6.下列向量中,与向量,平行的是( )
A.B.C.D.
7.若直线与直线平行,则( )
A.B.C.或D.不存在
8.如图,在四面体中,若,,,点M在上且,N为中点,则等于( )
A.B.C.D.
二、多选题:(本题共4小题,共20分。在每小题给出的选项中,有多项符合题目要求)。
9.下列说法正确的有( )
A.直线过定点
B.过点且斜率为的直线的点斜式方程为
C.斜率为,在y轴上的截距为3的直线方程为
D.经过点且在x轴和y轴上截距相等的直线方程为
10.已知向量,,则下列结论中正确的是( )
A.若,则B.若,则
C.不存在实数,使得D.若,则
11.已知直线的斜率为a,那么直线的斜率可能为( )
A.B.C.D.不存在
12.已知向量,,,则( )
A.向量,的夹角为B.
C.D.
三、填空题:(本题共4小题,每小题5分,共20分)。
13.已知空间向量,,则向量在向量上投影向量的坐标是 .
14.已知,,若与共线,则 .
15.已知过点和的直线与斜率为的直线平行,则m的值为 .
16.已知向量,,,若,,,三向量共面,则实数 .
四、解答题:本题共6小题,共70分。解答应写出文字说明,证明过程或演算步骤。
17.(本小题10分)
已知(a,)是直线l的方向向量,是平面的法向量.
(1)若,求a,b的关系式;
(2)若,求a,b的值.
18.(本小题12分)
求下列直线方程;
(1)经过点,斜率是1;
(2)经过点,倾斜角
19.(本小题12分)
如图,在棱长为1的正方体中,E为线段的中点,求点C到平面的距离。
20.(本小题12分)
已知点,直线l:.
(1)求经过点P且与直线l平行的直线的方程;
(2)求经过点P且与直线l垂直的直线的方程.
21.(本小题12分)
已知向量,
(1)求与的夹角;
(2)若与垂直,求实数t的值.
22.(本小题12分)
如图,在四棱锥中,底面为正方形,底面,M为中点,.
(1)求证:平面;
(2)求直线与平面所成角的正弦值.
高二数学月考答案
1.A2.B3.D4.C5A6C7B8B9AB10AC11CD12CD
13.14.15.16.2
四、解答题:
17.
(1)
(2)∴
18.(1)(2)
19.解:如图,以为坐标原点,,,所在直线分别为x,y,z轴,建立空间直角坐标系,
,,,,,,
,,
设平面的一个法向量为,
由即,可令,则,,
则,又,
点C到面的距离.
20解:
(1)经过点P且与直线l平行的直线方程为;
(2)经过点P且与直线l垂直的直线方程为.
21.解:
(1)令与的夹角为,则,
则与的夹角为.
(2)∵,,
又与垂直,
∴,
即,解得.
22.解:
(1)证明:连接,与交于点O,连接,
因为底面为正方形,
所以O为的中点,
因为M为中点,
所以,
因为面,面,
所以面.
(2)如图建立空间直角坐标系,
因为,
所以,,,,,,
设面的法向量,
所以,
即,解得,
令,则,
所以,,
所以,
所以直线与平面所成角的正弦值为.
宁夏回族自治区银川市宁夏育才中学2024-2025学年高一上学期第一次月考数学试卷: 这是一份宁夏回族自治区银川市宁夏育才中学2024-2025学年高一上学期第一次月考数学试卷,文件包含宁夏育才中学2024-2025学年第一学期高一年级第一次月考高一数学参考答案pdf、宁夏育才中学2024-2025学年第一学期高一年级第一次月考高一数学试卷pdf等2份试卷配套教学资源,其中试卷共6页, 欢迎下载使用。
河南省实验中学2024-2025学年高二上学期第一次月考数学试卷: 这是一份河南省实验中学2024-2025学年高二上学期第一次月考数学试卷,共20页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年河南省实验中学高二上学期第一次月考数学试卷及答案: 这是一份2024-2025学年河南省实验中学高二上学期第一次月考数学试卷及答案,共9页。