|试卷下载
终身会员
搜索
    上传资料 赚现金
    2025届辽宁省丹东市第六中学数学九年级第一学期开学调研试题【含答案】
    立即下载
    加入资料篮
    2025届辽宁省丹东市第六中学数学九年级第一学期开学调研试题【含答案】01
    2025届辽宁省丹东市第六中学数学九年级第一学期开学调研试题【含答案】02
    2025届辽宁省丹东市第六中学数学九年级第一学期开学调研试题【含答案】03
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2025届辽宁省丹东市第六中学数学九年级第一学期开学调研试题【含答案】

    展开
    这是一份2025届辽宁省丹东市第六中学数学九年级第一学期开学调研试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)12名同学参加了学校组织的经典诵读比赛的个人赛(12名同学成绩各不相同),按成绩取前6名进入决赛,如果小明知道自己的成绩后,要判断自己能否进入决赛,他需要知道这12名同学成绩的( )
    A.众数B.方差C.中位数D.平均数
    2、(4分)如图,从边长为a的大正方形中剪掉一个边长为b的小正方形,将阴影部分沿虚线剪开,拼成右边的矩形.根据图形的变化过程写出的一个正确的等式是( )
    A.(a﹣b)2=a2﹣2ab+b2B.a(a﹣b)=a2﹣ab
    C.(a﹣b)2=a2﹣b2D.a2﹣b2=(a+b)(a﹣b)
    3、(4分)下列图案中,既是轴对称图形又是中心对称图形的是( )
    A.B.
    C.D.
    4、(4分)已知一组数据:10,8,6,10,8,13,11,12,10,10,7,9,8,12,9,11,12,9,10,11,则分组后频率为0.2的一组是( )
    A.6~7 B.8~9 C.10~11 D.12~13
    5、(4分)如图,在直线l上有三个正方形m、q、n,若m、q的面积分别为5和11,则n的面积( )
    A.4B.6C.16D.55
    6、(4分)如图,在菱形ABCD中,点E,点F为对角线BD的三等分点,过点E,点F与BD垂直的直线分别交AB,BC,AD,DC于点M,N,P,Q,MF与PE交于点R,NF与EQ交于点S,已知四边形RESF的面积为5cm2,则菱形ABCD的面积是( )
    A.35cm2B.40cm2C.45cm2D.50cm2
    7、(4分)化简的结果是
    A.-2B.2C.-4D.4
    8、(4分)下列交通标志图案中,是中心对称图形的是( )
    A.B.C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)正方形网格中,∠AOB如图放置,则tan∠AOB=______________.
    10、(4分)把点向上平移个单位长度,再向右平移个单位长度后得到点,则点的坐标是_____.
    11、(4分)如图,矩形ABCD的对角线AC与BD相交点O,∠AOB=60°,AB=10,E、F分别为AO、AD的中点,则EF的长是_____.
    12、(4分)如图,在矩形中,于点,对角线、相交于点,且,,则__________.
    13、(4分)已知,化简:__________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,已知△ABC的三个顶点的坐标分别为A(﹣2,3)、B(﹣6,0)、C(﹣1,0).
    (1)画出△ABC关于原点成中心对称的三角形△A′B′C′;
    (2)将△ABC绕坐标原点O逆时针旋转90°,画出图形,直接写出点B的对应点B″的坐标;
    (3)请直接写出:以A、B、C为顶点的平行四边形的第四个顶点D的坐标.
    15、(8分)已知关于 x 的一元二次方程有实数根.
    (1)求 k 的取值范围;
    (2)若原方程的一个根是 2,求 k 的值和方程的另一个根.
    16、(8分)在正方形中,是对角线上的点,连接、.
    (1)求证:;
    (2)如果,求的度数.
    17、(10分)某超市销售一种水果,迸价为每箱40元,规定售价不低于进价.现在的售价为每箱72元,每月可销售60箱.经市场调查发现:若这种牛奶的售价每降低2元,则每月的销量将增加10箱,设每箱水果降价x元(x为偶数),每月的销量为y箱.
    (1)写出y与x之间的函数关系式和自变量x的取值范围.
    (2)若该超市在销售过程中每月需支出其他费用500元,则如何定价才能使每月销售水果的利润最大?最大利润是多少元?
    18、(10分)已知:P是正方形ABCD对角线BD上一点,PE⊥DC,PF⊥BC,E、F分别为垂足.
    求证:AP=EF.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,已知点是双曲线在第一象限上的一动点,连接,以为一边作等腰直角三角形(),点在第四象限,随着点的运动,点的位置也不断的变化,但始终在某个函数图像上运动,则这个函数表达式为______.
    20、(4分)菱形有一个内角是120°,其中一条对角线长为9,则菱形的边长为____________.
    21、(4分)已知P1(-4,y1)、P2(1,y2)是一次函数y=-3x+1图象上的两个点,则y1_______y2(填>,<或=)
    22、(4分)如图,菱形ABCD的面积为24cm2,正方形ABCF的面积为18cm2,则菱形的边长为_____.
    23、(4分)当时,二次根式的值是 _________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,▱ABCD中,,,垂足分别是E,求证:.
    25、(10分)某校八年级共有四个班,人数分别为:人,有一次数学测试,每个班同学的平均成绩分别为:分、分、分、分。
    (1)求这次数学测试的全年级平均成绩;
    (2)若所有学生的原测试成绩的方差为。后来发现有一道分题,所有同学都不得分,是题错了,老师只好在每位同学的原成绩上加上分,那么现在全年级的平均成绩和这些成绩数据的方差各是多少?
    (3)其中八(1)班人的平均分66分,测试成绩的中位数也恰好,且成绩是分的只有一人,每个同学的测试成绩都是整数,那么八(1)班所有同学的测试成绩的方差不会小于哪个数?
    26、(12分)已知四边形ABCD和四边形CEFG都是正方形,且AB>CE
    (1) 如图1,连接BG、DE,求证:BG=DE
    (2) 如图2,如果正方形CEFG绕点C旋转到某一位置恰好使得CG∥BD,BG=BD
    ① 求∠BDE的度数
    ② 若正方形ABCD的边长是,请直接写出正方形CEFG的边长____________
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、C
    【解析】
    参赛选手要想知道自己是否能进入前6名,只需要了解自己的成绩与全部成绩的中位数的大小即可.
    【详解】
    由于总共有12个人,且他们的分数互不相同,要判断是否进入前6名,只要把自己的成绩与中位数进行大小比较,故应知道中位数的多少,
    故选C.
    本题考查了统计量的选择,包括平均数、中位数、众数、方差等,正确理解和掌握各自的意义是解题的关键.
    2、D
    【解析】
    利用正方形的面积公式和矩形的面积公式分别表示出阴影部分的面积,然后根据面积相等列出等式即可.
    【详解】
    解:第一个图形阴影部分的面积是a2﹣b2,
    第二个图形的面积是(a+b)(a﹣b),
    则a2﹣b2=(a+b)(a﹣b),
    故选D.
    本题考查了平方差公式的几何背景,正确用两种方法表示阴影部分的面积是关键.
    3、B
    【解析】
    根据轴对称图形与中心对称图形的概念求解.
    【详解】
    A、是轴对称图形,不是中心对称图形,故此选项错误;
    B、是轴对称图形,也是中心对称图形,故此选项正确;
    C、不是轴对称图形,是中心对称图形,故此选项错误;
    D、不是轴对称图形,是中心对称图形,故此选项错误.
    故选:B.
    本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.
    4、D
    【解析】分析:分别计算出各组的频数,再除以10即可求得各组的频率,看谁的频率等于0.1.
    详解:A中,其频率=1÷10=0.1;
    B中,其频率=6÷10=0.3;
    C中,其频率=8÷10=0.4;
    D中,其频率=4÷10=0.1.
    故选:D.
    点睛:首先数出数据的总数,然后数出各个小组内的数据个数,即频数.根据频率=频数÷总数进行计算.
    5、C
    【解析】
    运用正方形边长相等,再根据同角的余角相等可得∠BAC=∠DCE,然后证明△ACB≌△DCE,再结合全等三角形的性质和勾股定理来求解即可.
    【详解】
    解:由于m、q、n都是正方形,所以AC=CD,∠ACD=90°;
    ∵∠ACB+∠DCE=∠ACB+∠BAC=90°,
    ∴∠BAC=∠DCE,且AC=CD,∠ABC=∠DEC=90°
    ∴△ACB≌△DCE(AAS),
    ∴AB=CE,BC=DE;
    在Rt△ABC中,由勾股定理得:AC2=AB2+BC2=AB2+DE2,
    即Sn=Sm+Sq=11+5=16,
    ∴正方形n的面积为16,
    故选C.
    本题主要考查对全等三角形和勾股定理的综合运用,关键是证明三角形全等.
    6、C
    【解析】
    依据图形可发现菱形ABCD与菱形RESF相似,连接RS交EF与点O,可求得它们的相似比=OE:OB,然后依据面积比等于相似比的平方求解即可.
    【详解】
    连接RS,RS交EF与点O.
    由图形的对称性可知RESF为菱形,且菱形ABCD与菱形RESF相似,
    ∴OE=OF.
    ∴OB=3OE,
    ∴,
    ∴菱形ABCD的面积=5×9=45cm1.
    故选:C.
    本题主要考查的是菱形的性质,掌握求得两个菱形的相似比是解题的关键.
    7、B
    【解析】

    故选:B
    8、C
    【解析】
    根据中心对称图形的概念,分别判断即可.
    【详解】
    解:A、B、D不是中心对称图形,C是中心对称图形.
    故选C.
    点睛:本题考查了中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后与原图重合.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、1
    【解析】
    试题解析:如图,
    tan∠AOB==1,
    故答案为1.
    10、
    【解析】
    根据向上平移纵坐标加,向右平移横坐标加解答即可.
    【详解】
    解:点(-2,1)向上平移2个单位长度,纵坐标变为1+2=3,
    向右平移3个单位长度横坐标变为-2+3=1,
    所以,点B的坐标为(1,3).
    故答案为:(1,3).
    本题本题考查了坐标系中点的平移规律,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.
    11、1.
    【解析】
    根据矩形的性质得出AO=OC,DO=BO,AC=BD,求出DO=CO=AO=BO,求出△AOB是等边三角形,根据等边三角形的性质得出AO=OB=DO=10,根据三角形的中位线定理求出即可.
    【详解】
    ∵四边形ABCD是矩形,
    ∴AO=OC,DO=BO,AC=BD,
    ∴DO=CO=AO=BO,
    ∵∠AOB=60°,
    ∴△AOB是等边三角形,
    ∵AB=10,
    ∴AO=OB=DO=10,
    ∵E、F分别为AO、AD的中点,
    ∴EF=DO==1,
    故答案为:1.
    本题考查了矩形的性质,等边三角形的判定与性质,三角形的中位线等知识. 矩形的性质:①矩形的对边平行且相等;②矩形的四个角都是直角;③矩形的对角线相等且互相平分.
    12、
    【解析】
    由矩形的性质可得AO=CO=BO=DO,可证△ABE≌△AOE,可得AO=AB=BO=DO,由勾股定理可求AE的长.
    【详解】
    在矩形中, AO=CO=BO=DO
    ∵,,
    ∴BE=EO
    ∵AE⊥BD
    ∴垂直平分.
    ∴AB=AO
    ∴AB=AO=BO
    ∴为等边三角形.
    ∴∠BAO=60°
    ∵AE⊥BD
    ∴∠BAE=30°
    ∴,
    ∴.
    故答案为:
    本题考查了矩形的性质,等边三角形的判定和性质,熟练运用矩形的性质是本题的关键.
    13、1
    【解析】
    直接利用二次根式的性质化简得出答案.
    【详解】
    解:∵0<a<1,
    ∴,
    故答案为:1.
    此题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键.
    三、解答题(本大题共5个小题,共48分)
    14、(1)图略;(2)图略,点B″的坐标为(0,﹣6);(3)点D坐标为(﹣7,3)或(3,3)或(﹣5,﹣3).
    【解析】
    (1)根据网格结构找出点A、B、C关于原点对称的点A′、B′、C′的位置,然后顺次连接即可;
    (2)根据网格结构找出点A、B、C绕坐标原点O逆时针旋转90°的对应点的位置,然后顺次连接即可,再根据平面直角坐标系写出点B的对应点的坐标;
    (3)分AB、BC、AC是平行四边形的对角线三种情况解答.
    【详解】
    解:(1)如图所示△A′B′C′即为所求;
    (2)如图所示,△即为所求;
    (3)D(-7,3)或(-5,-3)或(3,3).
    当以BC为对角线时,点D3的坐标为(-5,-3);
    当以AB为对角线时,点D2的坐标为(-7,3);
    当以AC为对角线时,点D1坐标为(3,3).
    本题考查了利用旋转变换作图,平行四边形的对边相等,熟记性质以及网格结构准确找出对应点的位置是解题的关键.
    15、(1);(2),.
    【解析】
    (1)根据根的判别式可得关于k的不等式,解不等式即可得出的取值范围;
    (2)把代入方程得出的值,再解方程即可.
    【详解】
    (1)关于的一元二次方程有实数根,



    的取值范围;
    (2)把代入,得,
    方程的两根为,,
    综上所述,.
    本题考查了根与系数的关系以及根的判别式,掌握一元二次方程的解法是解题的关键.
    16、 (1)详见解析;(2)
    【解析】
    (1)证明△ABP≌△ADP,可得BP=DP;
    (2)证得∠ABP=∠APB,由∠BAP=45°可得出∠ABP=67.5°.
    【详解】
    证明:(1)四边形是正方形,
    ,,
    在和中



    (2),

    又,

    本题考查正方形的性质、全等三角形的判定和性质,解题的关键是熟练运用图形的性质证明问题.
    17、(1)y=60+5x,(0≤x≤32,且x为偶数);(2)售价为62元时,每月销售水果的利润最大,最大利润是1920元.
    【解析】
    (1)根据价格每降低2元,平均每月多销售10箱,由每箱降价元,多卖,据此可以列出函数关系式;
    (2)由利润=(售价−成本)×销售量−每月其他支出列出函数关系式,求出最大值.
    【详解】
    解:(1)根据题意知y=60+5x,(0≤x≤32,且x为偶数);
    (2)设每月销售水果的利润为w,
    则w=(72﹣x﹣40)(5x+60)﹣500
    =﹣5x2+100x+1420
    =﹣5(x﹣10)2+1920,
    当x=10时,w取得最大值,最大值为1920元,
    答:当售价为62元时,每月销售水果的利润最大,最大利润是1920元.
    本题主要考查二次函数的应用,由利润=(售价−成本)×销售量列出函数关系式求最值,用二次函数解决实际问题是解题的关键.
    18、见试题解析
    【解析】
    试题分析:利用正方形的关于对角线成轴对称,利用轴对称的性质可得出EF=AP.
    证明:如图,连接PC,
    ∵PE⊥DC,PF⊥BC,四边形ABCD是正方形,
    ∴∠PEC=∠PFC=∠ECF=90°,
    ∴四边形PECF为矩形,
    ∴PC=EF,
    又∵P为BD上任意一点,
    ∴PA、PC关于BD对称,
    可以得出,PA=PC,所以EF=AP.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、.
    【解析】
    设点B所在的反比例函数解析式为,分别过点A、B作AD⊥轴于 D,BE⊥轴于点E,由全等三角形的判定定理可知△AOD△OBE(ASA),故可得出,即可求得的值.
    【详解】
    解:设点B所在的反比例函数解析式为,分别过点A、B作AD⊥轴于 D,BE⊥轴于点E,如图:
    ∵∠AOE+∠DOB=90°,∠AOE+∠OAD=90°,
    ∴∠OAD=∠BOE,
    同理可得∠AOD=∠OBE,
    在△AOD和△OBE中, ,
    ∴△AOD△OBE(ASA),
    ∵点B在第四象限,
    ∴,即,
    解得,
    ∴反比例函数的解析式为:.
    故答案为.
    本题考查动点问题,难度较大,是中考的常考知识点,正确作出辅助线,证明两个三角形全等是解题的关键.
    20、9 或
    【解析】
    如图,根据题意得:∠BAC=120°,易得∠ABC=60°,所以△ABC为等边三角形.如果AC=9,那么AB=9;如果BD=9,由菱形的性质可得边AB的长.
    【详解】
    ∵四边形ABCD是菱形,
    ∴AD∥BC,∠ABD=∠CBD,OA=OC,OB=OD,AC⊥BD,AB=BC,
    ∵∠BAD=120°,
    ∴∠ABC=60°,
    ∴△ABC为等边三角形,
    如果AC=9,则AB=9,
    如果BD=9,
    则∠ABD=30°,OB=,
    ∴OA=AB,
    在Rt△ABO中,∠AOB=90°,∴AB2=OA2+OB2,
    即AB2=(AB)2 +()2,
    ∴AB=3,
    综上,菱形的边长为9或3.

    本题考查了菱形的性质,等边三角形的判定与性质,勾股定理等知识,熟练掌握相关知识是解题的关键.注意分类讨论思想的运用.
    21、>
    【解析】
    根据一次函数的性质即可得答案.
    【详解】
    ∵一次函数y=-3x+1中,-3<0,
    ∴函数图象经过二、四象限,y随x的增大而减小,
    ∵-4<1,
    ∴y1>y2,
    故答案为:>
    本题考查一次函数的性质,对于一次函数y=kx+b(k≠0),当k>0时,图象经过一、三象限,y随x的增大而增大;当k<0时,图象经过二、四象限,y随x的增大而减小;当b>0时,图象与y轴交于正半轴;当b<0时,图象与y轴交于负半轴;熟练掌握一次函数的性质是解题关键.
    22、5cm
    【解析】
    根据正方形的面积可用对角线进行计算解答即可.
    【详解】
    解:因为正方形AECF的面积为18cm2,
    所以AC==6cm,
    因为菱形ABCD的面积为24cm2,
    所以BD==8cm,
    所以菱形的边长==5cm.
    故答案为:5cm.
    此题考查正方形的性质,关键是根据正方形和菱形的面积进行解答.
    23、3
    【解析】
    根据题意将代入二次根式之中,然后进一步化简即可.
    【详解】
    将代入二次根式可得:

    故答案为:3.
    本题主要考查了二次根式的化简,熟练掌握相关方法是解题关键.
    二、解答题(本大题共3个小题,共30分)
    24、证明见解析.
    【解析】
    根据平行四边形性质可得,,结合已知利用AAS易证,可得.
    【详解】
    证明:四边形ABCD是平行四边形,
    ,,

    在和中,

    ≌,

    本题考核知识点:平行四边形性质.解题关键点:熟记平行四边形性质.
    25、(1)65.99分;(2)全年级的平均成绩为68.99分,这些成绩数据的方差为25;(3)方差不会小于.
    【解析】
    (1)利用平均数的计算公式计算;
    (2)根据平均数的性质、方差的性质解答;
    (3)根据方差的性质得到符合条件的与平均数最接近的一组数据是20个65、1个66,20个67,根据方差的计算公式计算即可.
    【详解】
    (1)全年级平均成绩=≈65.99(分);
    (2)每位同学的原成绩上加上3分,
    全年级的平均成绩为65.99+3=68.99(分),
    这些成绩数据的方差为25;
    (3)∵所有数据越接近平均数,方差越小,且平均数只有一个,
    ∴符合条件的与平均数最接近的一组数据是20个65、1个66,20个67,
    S2=×[20×(-1)2+0+20×12]=,
    则八(1)班所有同学的测试成绩的方差不会小于.
    本题考查的是方差、平均数、中位数的概念和计算,掌握平均数的计算公式、方差的计算公式、中位数的概念和性质是解题的关键.
    26、(1)见解析;(2)①∠BDE=60°;②−1.
    【解析】
    (1)根据正方形的性质可以得出BC=DC,CG=CE,∠BCD=∠GCE=90°,再证明△BCG≌△DCE就可以得出结论;
    (2)①根据平行线的性质可以得出∠DCG=∠BDC=45°,可以得出∠BCG=∠BCE,可以得出△BCG≌△BCE,得出BG=BE得出△BDE为正三角形就可以得出结论;
    ②延长EC交BD于点H,通过证明△BCE≌△BCG就可以得出∠BEC=∠DEC,就可以得出EH⊥BD,BH=BD,由勾股定理就可以求出EH的值,从而求出结论.
    【详解】
    (1)证明:∵四边形ABCD和CEFG为正方形,
    ∴BC=DC,CG=CE,∠BCD=∠GCE=90°.
    ∴∠BCD+∠DCG=∠GCE+∠DCG,
    ∴∠BCG=∠DCE.
    在△BCG和△DCE中,

    ∴△BCG≌△DCE(SAS).
    ∴BG=DE;
    (2)①连接BE.
    由(1)可知:BG=DE.
    ∵CG∥BD,
    ∴∠DCG=∠BDC=45°.
    ∴∠BCG=∠BCD+∠GCD=90°+45°=135°.
    ∵∠GCE=90°,
    ∴∠BCE=360°−∠BCG−∠GCE=360°−135°−90°=135°.
    ∴∠BCG=∠BCE.
    ∵BC=BC,CG=CE,
    在△BCG和△BCE中,
    ,
    ∴△BCG≌△BCE(SAS).
    ∴BG=BE.
    ∵BG=BD=DE,
    ∴BD=BE=DE.
    ∴△BDE为等边三角形。
    ∴∠BDE=60°.
    ②延长EC交BD于点H,
    在△BCE和△DCE中,

    ∴△BCE≌△BCG(SSS),
    ∴∠BEC=∠DEC,
    ∴EH⊥BD,BH=BD.
    ∵BC=CD=,在Rt△BCD中由勾股定理,得
    ∴BD=2.
    ∴BH=1.
    ∴CH=1.
    在Rt△BHE中,由勾股定理,得
    EH=,
    ∴CE=−1.
    ∴正方形CEFG的边长为−1.
    此题考查四边形综合题,全等三角形的判定与性质,等边三角形的判定,勾股定理,正方形的性质,解题关键在于作辅助线和掌握判定定理.
    题号





    总分
    得分
    相关试卷

    2025届辽宁省丹东二十四中学数学九年级第一学期开学调研模拟试题【含答案】: 这是一份2025届辽宁省丹东二十四中学数学九年级第一学期开学调研模拟试题【含答案】,共22页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。

    2025届蚌埠市重点中学数学九年级第一学期开学调研模拟试题【含答案】: 这是一份2025届蚌埠市重点中学数学九年级第一学期开学调研模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年陕西省博爱中学数学九年级第一学期开学调研试题【含答案】: 这是一份2024年陕西省博爱中学数学九年级第一学期开学调研试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map