|试卷下载
终身会员
搜索
    上传资料 赚现金
    2025届辽宁省皇姑区数学九年级第一学期开学复习检测模拟试题【含答案】
    立即下载
    加入资料篮
    2025届辽宁省皇姑区数学九年级第一学期开学复习检测模拟试题【含答案】01
    2025届辽宁省皇姑区数学九年级第一学期开学复习检测模拟试题【含答案】02
    2025届辽宁省皇姑区数学九年级第一学期开学复习检测模拟试题【含答案】03
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2025届辽宁省皇姑区数学九年级第一学期开学复习检测模拟试题【含答案】

    展开
    这是一份2025届辽宁省皇姑区数学九年级第一学期开学复习检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)用科学记数法表示,结果为( )
    A.B.C.D.
    2、(4分)若分式的值为0,则( )
    A.B.C.D.
    3、(4分)生物学家发现了一种病毒,其长度约为,将数据0. 00000032用科学记数法表示正确的是( )
    A.B.C.D.
    4、(4分)矩形一个角的平分线分矩形一边为2cm和3cm两部分,则这个矩形的面积为( )
    A.10cm2B.15cm2C.12cm2D.10cm2或15cm2
    5、(4分)点(1,m),(2,n)都在函数y=﹣2x+1的图象上,则m、n的大小关系是( )
    A.m=n B.m<n C.m>n D.不确定
    6、(4分)若分式有意义,则的值是( )
    A.B.C.D.
    7、(4分)若,则下列不等式成立的是( )
    A.B.C.D.
    8、(4分)数据2,2,6,2,3,4,3,2,6,5,4,5,4的众数是( ).
    A.2B.3C.4D.6
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)命题“全等三角形的对应角相等”的逆命题是____________________________这个逆命题是______(填“真”或“假”)
    10、(4分)点A(-2,3)关于x轴对称的点B的坐标是_____
    11、(4分)如果直线 y=-2x+k 与两坐标轴所围成的三角形面积是 9,则 k的值为_____.
    12、(4分)在矩形ABCD中,∠BAD的角平分线交于BC点E,且将BC分成1:3的两部分,若AB=2,那么BC=______
    13、(4分)对于一个函数,如果它的自变量 x 与函数值 y 满足:当−1≤x≤1 时,−1≤y≤1,则称这个函数为“闭 函数”.例如:y=x,y=−x 均是“闭函数”. 已知 y  ax2 bx  c(a0) 是“闭函数”,且抛物线经过点 A(1,−1)和点 B(−1,1),则 a 的取值范围是______________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)有红、白、蓝三种颜色的小球各一个,它们除颜色外没有其他任何区别.现将3个小球放入编号为①②③的三个盘子里,规定每个盒子里放一个,且只能放一个小球
    (1)请用树状图或其他适当的形式列举出3个小球放入盒子的所有可能情况;
    (2)求红球恰好被放入②号盒子的概率.
    15、(8分)如图,在平面直角坐标系中,直线y=﹣x+3与x轴交于点C与直线AD交于点A(1,2),点D的坐标为(0,1)
    (1)求直线AD的解析式;
    (2)直线AD与x轴交于点B,请判断△ABC的形状;
    (3)在直线AD上是否存在一点E,使得4S△BOD=S△ACE,若存在求出点E的坐标,若不存在说明理由.
    16、(8分)已知:△AOB和△COD均为等腰直角三角形,∠AOB=∠COD=90°.连接AD,BC,点H为BC中点,连接OH.
    (1)如图1所示,求证: 且
    (2)将△COD绕点O旋转到图2、图3所示位置时,线段OH与AD又有怎样的关系,并选择一个图形证明你的结论
    17、(10分)某商店在销售中发现:某品牌童装平均每天可售出20件,每件盈利40元.商场决定采取适当的降价措施,扩大销售量,增加盈利,尽量减少库存.经市场调查发现:如果每件童装每降价4元,那么平均每天就可多售出8件.如果要盈利1 200元,那每件降价多少元?
    18、(10分)某办公用品销售商店推出两种优惠方法:①购1个书包,赠送1支水性笔;②购书包和水性
    笔一律按9折优惠.书包每个定价20元,水性笔每支定价5元.小丽和同学需买4个书包,
    水性笔若干支(不少于4支).
    (1)分别写出两种优惠方法购买费用y(元)与所买水性笔支数x(支)之间的函数关系式;
    (2)对的取值情况进行分析,说明按哪种优惠方法购买比较便宜;
    (3)小丽和同学需买这种书包4个和水性笔12支,请你设计怎样购买最经济.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,在菱形ABCD中,AC、BD交于点O,AC=4,菱形ABCD的面积为4,E为AD的中点,则OE的长为___.
    20、(4分)李明同学进行射击练习,两发子弹各打中5环,四发子弹各打中8环,三发子弹各打中9环.一发子弹打中10环,则他射击的平均成绩是________环.
    21、(4分)如图,点D是Rt△ABC斜边AB的中点,AC=1,CD=1.5,那么BC=_____.
    22、(4分)某校四个绿化小组一天植树棵数分别是10、10、x、8,已知这组数据的众数与平均数相等,则这组数据的中位数是_____.
    23、(4分)直角三角形的两边为3和4,则该三角形的第三边为__________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)已知:如图,在中,,cm,cm.直线 从点出发,以2 cm/s的速度向点方向运动,并始终与平行,与线段交于点.同时,点从点出发,以1cm/s的速度沿向点运动,设运动时间为(s) () .
    (1)当为何值时,四边形是矩形?
    (2)当面积是的面积的5倍时,求出的值;
    25、(10分)如图,在中,,平分,垂直平分于点,若,求的长.
    26、(12分)小红同学经常要测量学校旗杆的高度,她发现旗杆的绳子刚好垂到地面上,当她把绳子下端拉开5m后,发现这时绳子的下端正好距地面1m,学校旗杆的高度是( )
    A.21mB.13mC.10mD.8m
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
    【详解】
    ﹣0.000 001 4=﹣1.4×10﹣1.
    故选B.
    本题考查了用科学记数法表示较小的数.一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
    2、B
    【解析】
    根据分式的值为0的条件,列式求解即可.分式的值为0的条件是:(1)分子等于0;(2)分母不为0.两个条件需同时具备,缺一不可.据此可以解答本题.
    【详解】
    解:由题意得:
    解得:x=1
    故答案为B
    本题考查了分式的值为0的条件,即:(1)分子等于0;(2)分母不为0.两个条件需同时具备,缺一不可.据此可以解答本题.
    3、B
    【解析】
    绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
    【详解】
    0.00000032=3.2×10-1.
    故选:B.
    本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
    4、D
    【解析】
    根据矩形性质得出AB=CD,AD=BC,AD∥BC,由平行线的性质,以及角平分线的定义,即可证得∠ABE=∠AEB,利用等边对等角可以证得AB=AE,然后分AE=1cm,DE=3cm和AE=3cm,DE=1cm两种情况即可求得矩形的边长,从而求解.
    【详解】
    解:∵四边形ABCD是矩形,
    ∴AB=CD,AD=BC,AD∥BC,
    ∴∠AEB=∠CBE,
    ∵BE平分∠ABC,
    ∴∠ABE=∠CBE,
    ∴∠AEB=∠ABE,
    ∴AB=AE,
    当AE=1cm,DE=3cm时,AD=BC=5cm,AB=CD=AE=1cm.
    ∴矩形ABCD的面积是:1×5=10cm1;
    当AE=3cm,DE=1cm时,AD=BC=5cm,AB=CD=AE=3cm,
    ∴矩形ABCD的面积是:5×3=15cm1.
    故矩形的面积是:10cm1或15cm1.
    故选:D.
    本题考查矩形的性质以及等腰三角形的判定与性质.注意掌握数形结合思想与分类讨论思想的应用.
    5、C
    【解析】
    一次函数y=kx+b(k≠0)的性质,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小,根据此性质进行求解即可得.
    【详解】
    ∵函数y=-2x+1中,k=-1<0,
    ∴y随x的增大而减小,
    又∵1<2,
    ∴m>n,
    故选C.
    本题考查了一次函数的性质,熟练掌握一次函数的性质是解题的关键.
    6、D
    【解析】
    根据分式有意义的条件可得x+1≠0求解即可.
    【详解】
    解:当x+1≠0时分式有意义
    解得:
    故选D.
    此题主要考查了分式有意义的条件,关键是掌握分式有意义的条件是分母不等于零.
    7、B
    【解析】
    总的来说,用不等号(<,>,≥,≤,≠)连接的式子叫做不等式.根据不等式的定义即可判定A错误,其余选型根据不等式的性质判定即可.
    【详解】
    A: a>b,则a-5>b-5,故A错误;
    B:a>b, -a<-b,则-2a<-2b, B选项正确.
    C:a>b, a+3>b+3,则>,则C选项错误.
    D:若0>a>b时,a2<b2,则D选项错误.
    故选B
    本题主要考查不等式的定义及性质.熟练掌握不等式的性质才能避免出错.
    8、A
    【解析】
    由众数的定义,求出其中出现次数最多的数即可.
    【详解】
    ∵数据1,1,6,1,3,4,3,1,6,5,4,5,4中,1出现了4次,出现的次数最多,
    ∴众数是1.
    故选:A.
    考查了众数,用到的知识点是众数的定义,关键是找出出现次数最多的数.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、对应角相等的三角形是全等三角形 假
    【解析】
    把原命题的题设和结论作为新命题的结论和题设就得逆命题.
    【详解】
    命题“全等三角形的对应角相等”的逆命题是“对应角相等的三角形是全等三角形”;对应角相等的三角形不一定是全等三角形,这个逆命题是假命题.
    故答案为(1). 对应角相等的三角形是全等三角形 (2). 假
    本题考核知识点:互逆命题.解题关键点:注意命题的形式.
    10、(-2,-3).
    【解析】
    根据在平面直角坐标系中,关于x轴对称的两个点的横坐标相同,纵坐标相反即可得出答案.
    解:点A(-2,3)关于x轴对称的点B的坐标是(-2,-3).
    故答案为(-2,-3).
    11、±1.
    【解析】
    试题分析:当x=0时,y=k;当y=0时,,∴直线与两坐标轴的交点坐标为A(0,k),B(,0),∴S△AOB=,∴k=±1.故答案为±1.
    考点:一次函数综合题.
    12、8或
    【解析】
    分CE:BE=1:3和BE:CE=1:3两种情况分别讨论.
    【详解】
    解:(1)当CE:BE=1:3时,如图:
    ∵四边形ABCD是矩形,
    ∴∠BAD=∠B=90º,
    ∴∠BAE=∠BEA=45º,
    ∴BE=AB=2,
    ∵CE:BE=1:3,
    ∴CE=,
    ∴BC=2+=;
    (2)当BE:CE=1:3时,如图:
    同(1)可求出BE=2,
    ∵BE:CE=1:3,
    ∴CE=6,
    ∴BC=2+6=8.
    故答案为8或.
    本题考查了矩形的性质.
    13、或
    【解析】
    分析:分别把点A、B代入函数的解析式,求出a、b、c的关系,然后根据抛物线的对称轴x=,然后结合图像判断即可.
    详解:∵y  ax2 bx  c(a0)经过点 A(1,−1)和点 B(−1,1)
    ∴a+b+c=-1,a-b+c=1
    ∴a+c=0,b=-1
    则抛物线为:y  ax2 bx –a
    ∴对称轴为x=
    ①当a<0时,抛物线开口向下,且x=<0,如图可知,当≤-1时符合题意,所以;当-1<<0时,图像不符合-1≤y≤1的要求,舍去;
    ②当a>0时,抛物线的开口向上,且x=>0,由图可知≥1时符合题意,∴0<a≤;当0<<1时,图像不符合-1≤y≤1的要求,舍去.
    综上所述,a的取值范围是:或.
    故答案为或.
    点睛:本题考查的是二次函数的性质,在解答此题时要注意进行分类讨论,不要漏解.
    三、解答题(本大题共5个小题,共48分)
    14、(1)详见解析;(2)
    【解析】
    列举出符合题意的各种情况的个数,再根据概率公式解答即可.
    【详解】
    (1)
    (2)P(红球恰好被放入②号盒子)=
    本题考查列表法与树状图法,列举出符合题意的各种情况的个数是解题关键.
    15、 (1)y=x+1;(2)△ABC是等腰直角三角形;(3)存在,点E的坐标为(2,3)或(0,1)时,4S△BOD=S△ACE.
    【解析】
    (1)利用待定系数法,即可得到直线AD的解析式;
    (2)依据点的坐标求得AB=2,AC=2,BC=4,即可得到AB2+AC2=16=BC2,进而得出△ABC是等腰直角三角形;
    (3)依据4S△BOD=S△ACE,即可得到AE=,分两种情况进行讨论:①点E在直线AC的右侧,②点E在直线AC的左侧,分别依据AD=AE=,即可得到点E的坐标.
    【详解】
    解:(1)直线AD的解析式为y=kx+b,
    ∵直线AD经过点A(1,2),点D(0,1),
    ∴,
    解得,
    ∴直线AD的解析式为y=x+1;
    (2)∵y=x+1中,当y=0时,x=﹣1;y=﹣x+3中,当y=0时,x=3,
    ∴直线AD与x轴交于B(﹣1,0),直线AC与x轴交于C(3,0),
    ∵点A(1,2),
    ∴AB=2,AC=2,BC=4,
    ∵AB2+AC2=16=BC2,
    ∴∠BAC=90°,
    ∴△ABC是等腰直角三角形;
    (3)存在,
    AC=2,S△BOD=×1×1=,
    ∵△ABC是等腰直角三角形,
    ∴∠CAE=90°,
    ∵S△ACE=AE×AC,4S△BOD=S△ACE,
    ∴4×=×AE×2,
    解得AE=,
    ①如图,当点E在直线AC的右侧时,过E作EF⊥y轴于F,
    ∵AD=AE=,∠EDF=45°,
    ∴EF=DF=2,OF=2+1=3,
    ∴E(2,3);
    ②当点E在直线AC的左侧时,
    ∵AD=AE=,
    ∴点E与点D重合,即E(0,1),
    综上所述,当点E的坐标为(2,3)或(0,1)时,4S△BOD=S△ACE.
    本题主要考查了两直线相交问题,待定系数法求一次函数解析式的运用,解题时注意:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解.
    16、(1)详见解析;(2)详见解析.
    【解析】
    (1)首先证明△AOD≌△BOC(SAS),利用全等三角形的性质得到BC=AD,再利用直角三角形斜边中线的性质即可得到OH=BC=AD,然后通过全等三角形对应角相等以及直角三角形两锐角互余证明OH⊥AD;
    (2)如图2中,延长OH到E,使得HE=OH,连接BE,通过证明△BEO≌△ODA,可得OH=OE=AD以及∠DAO+∠AOH=∠EOB+∠AOH=90°,问题得证;如图3中,延长OH到E,使得HE=OH,连接BE,延长EO交AD于G,同理可证OH=OE=AD,∠DAO+∠AOG=∠EOB+∠AOG=90°.
    【详解】
    (1)证明:如图1中,∵△OAB与△OCD为等腰直角三角形,∠AOB=∠COD=90°,
    ∴OC=OD,OA=OB,
    在△AOD与△BOC中,
    ∵OA=OB,∠AOD=∠BOC,OD=OC,
    ∴△AOD≌△BOC(SAS),
    ∴BC=AD
    ∵H是BC中点,
    ∴OH=BC=AD.
    ∵△AOD≌△BOC
    ∴∠ADO=∠BCO,∠OAD=∠OBC,
    ∵点H为线段BC的中点,
    ∴∠OBH=∠HOB=∠OAD,
    又∵∠OAD+∠ADO=90°,
    ∴∠ADO+∠BOH=90°,
    ∴OH⊥AD;
    (2)解:结论:OH⊥AD,OH=AD
    证明:如图2中,延长OH到E,使得HE=OH,连接BE,
    易证△BEO≌△ODA,
    ∴OE=AD,∴OH=OE=AD.
    由△BEO≌△ODA,知∠EOB=∠DAO,
    ∴∠DAO+∠AOH=∠EOB+∠AOH=90°,
    ∴OH⊥AD.
    如图3中,结论不变.延长OH到E,使得HE=OH,连接BE,延长EO交AD于G.
    易证△BEO≌△ODA,
    ∴OE=AD,∴OH=OE=AD.
    由△BEO≌△ODA,知∠EOB=∠DAO,
    ∴∠DAO+∠AOG=∠EOB+∠AOG=90°,
    ∴∠AGO=90°,
    ∴OH⊥AD.
    本题考查了旋转变换,等腰直角三角形的性质,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.
    17、每件童装应降价1元.
    【解析】
    设每件童装应降价x元,原来平均每天可售出1件,每件盈利40元,后来每件童装降价4元,那么平均每天就可多售出8件.要想平均每天销售这种童装上盈利110元,由此即可列出方程(40-x)(1+2x)=110,解方程就可以求出应降价多少元.
    【详解】
    如果每件童装降价4元,那么平均每天就可多售出8件,则每降价1元,多售2件,设降价x元,则多售2x件.
    设每件童装应降价x元,
    依题意得(40-x)(1+2x)=110,
    整理得x2-30x+10=0,
    解之得x1=10,x2=1,
    因要减少库存,故x=1.
    答:每件童装应降价1元.
    首先找到关键描述语,找到等量关系,然后准确的列出方程是解决问题的关键.最后要判断所求的解是否符合题意,舍去不合题意的解.
    18、(1)见解析;(2)见解析;(3)见解析
    【解析】
    解:
    (1)设按优惠方法①购买需用y1元,按优惠方法②购买需用y2元
    y1=(x−4)×5+20×4=5x+60,
    y2=(5x+20×4)×0.9=4.5x+72.
    (2)分为三种情况:①∵设y1=y2,
    5x+60=4.5x+72,
    解得:x=24,
    ∴当x=24时,选择优惠方法①,②均可;
    ②∵设y1>y2,即5x+60>4.5x+72,
    ∴x>24.当x>24整数时,选择优惠方法②;
    ③当设y1∴x<24
    ∴当4⩽x<24时,选择优惠方法①.
    (3) 因为需要购买4个书包和12支水性笔,而12<24,
    购买方案一:用优惠方法①购买,需5x+60=5×12+60=1元;
    购买方案二:采用两种购买方式,用优惠方法①购买4个书包,
    需要4×20=80元,同时获赠4支水性笔;
    用优惠方法②购买8支水性笔,需要元.
    共需80+36=116元.显然116<1.
    最佳购买方案是:
    用优惠方法①购买4个书包,获赠4支水性笔;再用优惠方法②购买8支水性笔.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、
    【解析】
    由菱形的对角线互相平分且垂直可知菱形的面积等于小三角形面积的四倍可求出DO,根据勾股定理可求出AD,然后再根据直角三角形中斜边的中线等于斜边的一半,求解即可.
    【详解】
    解:∵菱形ABCD的对角线AC、BD相交于点O,且AC=4,菱形ABCD的面积为4 ,
    ∴AO=2,DO=,∠AOD=90°,
    ∴AD=3,
    ∵E为AD的中点,
    ∴OE的长为:AD=.
    故答案为: .
    菱形的对角线的性质、勾股定理、直角三角形的性质都是本题的考点,根据题意求出DO和AD的长是解题的关键.
    20、7.9
    【解析】
    分析:根据平均数的定义进行求解即可得.
    详解:由题意得:
    故答案为
    点睛:本题考查了算术平均数,熟练掌握算术平均数的定义是解题的关键.
    21、2
    【解析】
    首先根据直角三角形斜边中线定理得出AB,然后利用勾股定理即可得出BC.
    【详解】
    ∵在Rt△ABC中,∠ACB=90°,D是AB的中点,
    ∴AB=2CD=17,
    ∴BC===2,
    故答案为:2.
    此题主要考查直角三角形斜边中线定理以及勾股定理的运用,熟练掌握,即可解题.
    22、1
    【解析】
    根据这组数据的众数与平均数相等确定x的值,再根据中位数的定义求解即可.
    【详解】
    解:当x=8时,有两个众数,而平均数只有一个,不合题意舍去.
    当众数为1时,根据题意得(1+1+x+8)÷4=1,
    解得x=12,
    将这组数据从小到大的顺序排列8,1,1,12,
    处于中间位置的是1,1,
    所以这组数据的中位数是(1+1)÷2=1.
    故答案为1
    本题为统计题,考查平均数、众数与中位数的意义,解题时需要理解题意,分类讨论.
    23、5或
    【解析】
    本题已知直角三角形的两边长,但未明确这两条边是直角边还是斜边,因此两条边中的较长边4既可以是直角边,也可以是斜边,所以求第三边的长必须分类讨论,即4是斜边或直角边的两种情况,然后利用勾股定理求解.
    【详解】
    解:设第三边为,
    (1)若4是直角边,则第三边是斜边,由勾股定理得:
    ,所以;
    (2)若4是斜边,则第三边为直角边,由勾股定理得:
    ,所以;
    所以第三边的长为5或.
    故答案为:5或.
    本题考查勾股定理,解题的关键是熟练掌握勾股定理,并且分情况讨论.
    二、解答题(本大题共3个小题,共30分)
    24、(1);(2)。
    【解析】
    (1)首先根据勾股定理计算AB的长,再根据相似比例表示PE的长度,再结合矩形的性质即可求得t的值.
    (2)根据面积相等列出方程,求解即可.
    【详解】
    解:(1)在中,,

    ,当时,四边形PECF是矩形,
    解得
    (2)由题意
    整理得,解得
    ,面积是的面积的5倍。
    本题主要考查矩形的动点问题,这是近几年的考试热点,必须熟练掌握.
    25、的长为.
    【解析】
    根据角平分线的性质可得DE=CE,根据垂直平分线可得AE=BE,进而得到,设,则,根据直角三角形30°角所对直角边为斜边的一半得到关于x的方程,然后求解方程即可.
    【详解】
    解:设,则,
    平分,,,

    又垂直平分,


    在中,,

    ,即,
    解得.
    即的长为.
    本题主要考查角平分线的性质,垂直平分线的性质,直角三角形30°角所对直角边为斜边的一半等,解此题的关键在于熟练掌握其知识点.
    26、B
    【解析】
    根据题意设旗杆的高AB为x米,则绳子AC的长为x米,在Rt△ACH利用勾股定理构建方程即可解决问题.
    【详解】
    如图,已知AB=AC,CD⊥BD,CH⊥AB,CD=BH=1米,CH=5米,设AB=AC=x米.
    在Rt△ACH中,∵AC2=AH2+CH2,
    ∴x2=52+(x-1)2,
    ∴x=13,
    ∴AB=13(米),
    故选B.
    此题考查了勾股定理在实际问题中的应用,能够正确理解题意继而构造直角三角形是解决本题的关键,难度一般.
    题号





    总分
    得分
    相关试卷

    2025届江苏铜山县数学九年级第一学期开学复习检测模拟试题【含答案】: 这是一份2025届江苏铜山县数学九年级第一学期开学复习检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年辽宁省沈阳市皇姑区五校数学九年级第一学期开学质量检测模拟试题【含答案】: 这是一份2024年辽宁省沈阳市皇姑区五校数学九年级第一学期开学质量检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年辽宁省大连市新民间联盟九年级数学第一学期开学达标检测模拟试题【含答案】: 这是一份2024年辽宁省大连市新民间联盟九年级数学第一学期开学达标检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map