2025届辽宁省沈阳七中学九上数学开学联考模拟试题【含答案】
展开这是一份2025届辽宁省沈阳七中学九上数学开学联考模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,在矩形中,边的长为,点分别在上,连结,若四边形是菱形,且,则边的长为( )
A.B.C.D.
2、(4分)下列关系式中:y=﹣3x+1、、y=x2+1、y=,y是x的一次函数的有( )
A.1个B.2个C.3个D.4个
3、(4分)下列事件:①上海明天是晴天,②铅球浮在水面上,③平面中,多边形的外角和都等于360度,属于确定事件的个数有( )
A.0个B.1个C.2个D.3个
4、(4分)对于抛物线y=﹣(x+2)2﹣1,下列说法错误的是( )
A.开口向下
B.对称轴是直线x=﹣2
C.x>﹣2时,y随x的增大而增大
D.x=﹣2,函数有最大值y=﹣1
5、(4分)若方程有增根,则m的值为( )
A.2B.4C.3D.-3
6、(4分)已知一次函数与的图象如图所示,则关于的不等式的解集为( )
A.B.C.D.
7、(4分)函数中,自变量的取值范围是( )
A.B.C.D.
8、(4分)下列调查中,适宜采用抽样调查方式的是( )
A.调查八年级某班学生的视力情况
B.调查乘坐飞机的旅客是否携带违禁物品
C.调查某品牌LED灯的使用寿命
D.学校在给学生订制校服前尺寸大小的调查
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,把R1,R2,R3三个电阻串联起来,线路AB上的电流为I,电压为U,则U=IR1+IR2+IR3,当R1=18.3,R2=17.6,R3=19.1,U=220时,I的值为___________.
10、(4分)如图,在平面直角坐标系xOy中,已知正比例函数y= -2x和反比例函数的图象交于A(a,-4),B两点。过原点O的另一条直线l与双曲线交于点P,Q两点(P点在第二象限),若以点A,B,P,Q为顶点的四边形面积为24,则点P的坐标是_______
11、(4分)如图,已知在△ABC中,BC边上的高AD与AC边上的高BE交于点F,且∠BAC=45°,BD=6,CD=4,则△ABC的面积为_____.
12、(4分)如图,双曲线y=(x>0)经过四边形OABC的顶点A、C,∠ABC=90°,OC平分OA与x轴正半轴的夹角,AB∥x轴.将△ABC沿AC翻折后得△AB′C,B′点落在OA上,则四边形OABC的面积是 .
13、(4分)若点A(2,m)在平面直角坐标系的x轴上,则点P(m-1,m+3)到原点O的距离为_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)计算:(1);(2)+(3﹣2)(3+2)
15、(8分)如图,在一次数学课外活动中,小明同学在点P处测得教学楼A位于北偏东60°方向,办公楼B位于南偏东45°方向.小明沿正东方向前进60米到达C处,此时测得教学楼A恰好位于正北方向,办公楼B正好位于正南方向.求教学楼A与办公楼B之间的距离(结果精确到0.1米).
16、(8分)如图,已知四边形为正方形,点为对角线上的一动点,连接,过点作,交于点,以为邻边作矩形,连接.
(1)求证:矩形是正方形;
(2)判断与之间的数量关系,并给出证明.
17、(10分)在平面直角坐标系xOy中,对于与坐标轴不平行的直线l和点P,给出如下定义:过点P作x轴,y轴的垂线,分别交直线l于点M,N,若PM+PN≤4,则称P为直线l的近距点,特别地,直线上l所有的点都是直线l的近距点.已知点A(-,0),B(0,2),C(-2,2).
(1)当直线l的表达式为y=x时,
①在点A,B,C中,直线l的近距点是 ;
②若以OA为边的矩形OAEF上所有的点都是直线l的近距点,求点E的纵坐标n的取值范围;
(2)当直线l的表达式为y=kx时,若点C是直线l的近距点,直接写出k的取值范围.
18、(10分)在平面直角坐标系xOy中,点P和图形W的“中点形”的定义如下:对于图形W上的任意一点Q,连结PQ,取PQ的中点,由所以这些中点所组成的图形,叫做点P和图形W的“中点形”.
已知C(-2,2),D(1,2),E(1,0),F(-2,0).
(1)若点O和线段CD的“中点形”为图形G,则在点,,中,在图形G上的点是 ;
(2)已知点A(2,0),请通过画图说明点A和四边形CDEF的“中点形”是否为四边形?若是,写出四边形各顶点的坐标,若不是,说明理由;
(3)点B为直线y=2x上一点,记点B和四边形CDEF的中点形为图形M,若图形M与四边形CDEF有公共点,直接写出点B的横坐标b的取值范围.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)分解因式=____________.
20、(4分)如果一组数据:5,,9,4的平均数为6,那么的值是_________
21、(4分)如图,四边形 ABCD 中,E、F、G、H 分别为各边的中点,顺次连 结 E、F、G、H,把四边形 EFGH 称为中点四边形.连结 AC、BD,容易证明:中点 四边形 EFGH 一定是平行四边形.
(1)如果改变原四边形 ABCD 的形状,那么中点四边形的形状也随之改变,通过探索 可以发现:当四边形 AB CD 的对角线满足 AC=BD 时,四边形 EFGH 为菱形;当四边形ABCD 的对角线满足 时,四边形 EFGH 为矩形;当四边形 ABCD 的对角线满足 时,四边形 EFGH 为正方形.
(2)试证明:S△AEH+S△CFG= S□ ABCD
(3)利用(2)的结论计算:如果四边形 ABCD 的面积为 2012, 那么中点四边形 EFGH 的面积是 (直接将结果填在 横线上)
22、(4分)在平面直角坐标系中有一点,则点P到原点O的距离是________.
23、(4分)如图,在菱形ABCD中,AB=4,线段AD的垂直平分线交AC于点N,△CND的周长是10,则AC的长为__________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图所示,正方形ABCD的边长为4,AD∥y轴,D(1,-1).
(1)写出A,B,C三个顶点的坐标;
(2)写出BC的中点P的坐标.
25、(10分)如图,在△ABC中,D、E分别是AB、AC的中点,过点E作EF∥AB,交BC于点F.
(1)求证:四边形DBFE是平行四边形;
(2)当△ABC满足什么条件时,四边形DBEF是菱形;为什么.
26、(12分)若,求的值.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据菱形的性质得出,,,再根据矩形的性质以及全等三角形的性质得出,,继而推出答案.
【详解】
解:四边形为菱形
,,
四边形为矩形
又
.
故选:C.
本题考查的知识点有菱形的性质、矩形的性质、全等三角形的判定及性质、含30度角的直角三角形的性质,利用已知条件推出是解此题的关键.
2、B
【解析】
形如y=kx+b(k≠0,k、b是常数)的函数,叫做一次函数,进而判断得出答案.
【详解】
解:函数y=﹣3x+1,,y=x2+1,y=中,y是x的一次函数的是:y=﹣3x+1、y=,共2个.
故选:B.
本题主要考查了一次函数的定义,正确把握一次函数的定义是解题关键.
3、C
【解析】
确定事件就是一定发生或一定不发生的事件,根据定义即可作出判断
【详解】
解:①上海明天是晴天,是随机事件;
②铅球浮在水面上,是不可能事件,属于确定事件;
③平面中,多边形的外角和都等于360度,是必然事件,属于确定事件;
故选:C.
此题考查随机事件,解题关键在于根据定义进行判断
4、C
【解析】
根据二次函数的性质依次判断各个选项后即可解答.
【详解】
∵y=﹣(x+2)2﹣1,
∴该抛物线的开口向下,顶点坐标是(﹣2,﹣1),对称轴为直线x=﹣2,
当x=﹣2时,函数有最大值y=﹣1,当x>﹣2时,y随x的增大而减小,故选项C的说法错误.
故选C.
本题考查了二次函数的性质,熟练运用二次函数的性质是解决问题的关键.
5、D
【解析】
增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母(x−1)=0,得到x=1,然后代入化为整式方程的方程算出m的值.
【详解】
方程两边都乘(x−1),
得x=2(x−1)-m,
∵原方程有增根,
∴最简公分母(x−1)=0,
解得x=1,
当x=1时,1=2(1−1)-m
m=-1.
故选:D.
本题考查了分式方程的增根,增根问题可按如下步骤进行:
①让最简公分母为0确定增根;
②化分式方程为整式方程;
③把增根代入整式方程即可求得相关字母的值.
6、A
【解析】
由图象可以知道,当x=1时,两个函数的函数值是相等的,再根据函数的增减性可以判断出不等式解集.
【详解】
两条直线的交点坐标为(1,2),且当x<1时,直线y2在直线y1的上方,故不等式的解集为x<1.
故选A.
本题是借助一次函数的图象解一元一次不等式,两个图象的“交点”是两个函数值大小关系的“分界点”,在“分界点”处函数值的大小发生了改变.
7、A
【解析】
根据二次根式的性质的意义,被开方数大于或等于0,可以求出x的范围.
【详解】
解:由有意义得,解得:
故选A
本题考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:当函数表达式是整式时,自变量可取全体实数;当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数非负.
8、C
【解析】
由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.
【详解】
A、调查八年级某班学生的视力情况适合全面调查,故A选项错误;
B、调查乘坐飞机的旅客是否携带违禁物品,适合全面调查,故B选项错误;
C、调查某品牌LED灯的使用寿命适合抽样调查,故C选项正确;
D、学校在给学生订制校服前尺寸大小的调查,适于全面调查,故D选项错误.
故选C.
对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
直接把已知数据代入进而求出答案.
【详解】
解:由题意可得:U=IR1+IR2+IR3=I(R1+R2+R3),
当R1=18.3,R2=17.6,R3=19.1,U=220时,
I(18.3+17.6+19.1)=220
解得:I=1
故答案为:1.
此题主要考查了代数式求值,正确代入相关数据是解题关键.
10、P(﹣4,2)或P(﹣1,8).
【解析】
根据题意先求出点A(2,﹣4),利用原点对称求出B(﹣2,4),再把A代入代入反比例函数得出解析式,利用原点对称得出四边形AQBP是平行四边形,S△POB=S平行四边形AQBP×=×24=1,设点P的横坐标为m(m<0且m≠﹣2),得到P的坐标,根据双曲线的性质得到S△POM=S△BON=4,接着再分情况讨论:若m<﹣2时,可得P的坐标为(﹣4,2);若﹣2<m<0时,可得P的坐标为(﹣1,8).
【详解】
解:∵点A在正比例函数y=﹣2x上,
∴把y=﹣4代入正比例函数y=﹣2x,
解得x=2,∴点A(2,﹣4),
∵点A与B关于原点对称,
∴B点坐标为(﹣2,4),
把点A(2,﹣4)代入反比例函数 ,得k=﹣8,
∴反比例函数为y=﹣,
∵反比例函数图象是关于原点O的中心对称图形,
∴OP=OQ,OA=OB,
∴四边形AQBP是平行四边形,
∴S△POB=S平行四边形AQBP×=×24=1,
设点P的横坐标为m(m<0且m≠﹣2),
得P(m,﹣),
过点P、B分别做x轴的垂线,垂足为M、N,
∵点P、B在双曲线上,
∴S△POM=S△BON=4,
若m<﹣2,如图1,
∵S△POM+S梯形PMNB=S△POB+S△POM,
∴S梯形PMNB=S△POB=1.
∴(4﹣)•(﹣2﹣m)=1.
∴m1=﹣4,m2=1(舍去),
∴P(﹣4,2);
若﹣2<m<0,如图2,
∵S△POM+S梯形BNMP=S△BOP+S△BON,
∴S梯形BNMP=S△POB=1.
∴(4﹣)•(m+2)=1,
解得m1=﹣1,m2=4(舍去),
∴P(﹣1,8).
∴点P的坐标是P(﹣4,2)或P(﹣1,8),
故答案为P(﹣4,2)或P(﹣1,8).
此题考查一次函数和反比例函数的综合,解题关键在于做出辅助线,运用分类讨论的思想解决问题.
11、1
【解析】
分析:首先证明△AEF≌△BEC,推出AF=BC=10,设DF=x.由△ADC∽△BDF,推出,构建方程求出x即可解决问题;
详解:∵AD⊥BC,BE⊥AC,
∴∠AEF=∠BEC=∠BDF=90°,
∵∠BAC=45°,
∴AE=EB,
∵∠EAF+∠C=90°,∠CBE+∠C=90°,
∴∠EAF=∠CBE,
∴△AEF≌△BEC,
∴AF=BC=10,设DF=x.
∵△ADC∽△BDF,
∴,
∴,
整理得x2+10x﹣24=0,
解得x=2或﹣12(舍弃),
∴AD=AF+DF=12,
∴S△ABC=•BC•AD=×10×12=1.
故答案为1.
点睛:本题考查勾股定理、等腰三角形的判定和性质等知识,解题的关键是正确寻找全等三角形或相似三角形解决问题,学会利用参数构建方程解决问题,属于中考常考题型.
12、1.
【解析】
延长BC,交x轴于点D,设点C(x,y),AB=a,由角平分线的性质得,CD=CB′,则△OCD≌△OCB′,再由翻折的性质得,BC=B′C,根据反比例函数的性质,可得出S△OCD=xy,则S△OCB′=xy,由AB∥x轴,得点A(x-a,1y),由题意得1y(x-a)=1,从而得出三角形ABC的面积等于ay,即可得出答案.
【详解】
延长BC,交x轴于点D,
设点C(x,y),AB=a,
∵OC平分OA与x轴正半轴的夹角,
∴CD=CB′,△OCD≌△OCB′,
再由翻折的性质得,BC=B′C,
∵双曲线 (x>0)经过四边形OABC的顶点A. C,
∴S△OCD=xy=1,
∴S△OCB′=xy=1,
由翻折变换的性质和角平分线上的点到角的两边的距离相等可得BC=B′C=CD,
∴点A. B的纵坐标都是1y,
∵AB∥x轴,
∴点A(x−a,1y),
∴1y(x−a)=1,
∴xy−ay=1,
∵xy=1
∴ay=1,
∴S△ABC=ay=,
∴SOABC=S△OCB′+S△AB′C+S△ABC=1++=1.
故答案为:1.
13、
【解析】
首先根据x轴上的点纵坐标为0得出m的值,再根据勾股定理即可求解.
【详解】
解:∵点A(2,m)在直角坐标系的x轴上,
∴m=0,
∴点P(m-1,m+3),即(-1,3)到原点O的距离为.
故答案为:.
本题考查了勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.求出m的值是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)﹣;(2)1.
【解析】
(1)先把二次根式化为最简二次根式,然后合并即可;
(2)利用二次根式的性质和平方差公式计算.
【详解】
解:(1)原式=1﹣9+
=﹣;
(2)原式=7+9﹣12
=1.
本题考查了二次根式的运算,正确掌握二次根式的性质是解题的关键.
15、教学楼A与办公楼B之间的距离大约为94.6米.
【解析】
由已知可得△ABP中∠A=60°∠B=45°且PC=60m,要求AB的长,可以先求出AC和BC的长就可转化为运用三角函数解直角三角形.
【详解】
由题意可知
∠ACP=∠BCP= 90°,∠APC=30°,∠BPC=45°
在Rt△BPC中,∵∠BCP=90°,∠BPC=45°,∴
在Rt△ACP中,∵∠ACP=90°,∠APC=30°,
∴
∴
≈60+20×1.732 =94.64≈94.6(米)
答:教学楼A与办公楼B之间的距离大约为94.6米.
本题考查了解直角三角形的应用--方向角问题.解一般三角形的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.
16、(1)详见解析;(2),理由详见解析.
【解析】
作出辅助线,得到EN=EM,然后判断∠DEN=∠FEM,得到△DEM≌△FEM,则有DE=EF即可;
根据四边形的性质即全等三角形的性质即可证明,即可得在中,则
【详解】
证明:(1)过作于点,过作于点,如图所示:
正方形,,
,且,
四边形为正方形
四边形是矩形,,.,
又,
在和中,
,,
矩形为正方形,
(2)矩形为正方形,,
四边形是正方形,,,
,
在和中,,
,,
在中,,
本题考查正方形的判定与性质,解题关键在于证明.
17、(1)①A,B;②n的取值范围是,且;(2) .
【解析】
【分析】(1)①根据PM+PN≤4,进行判断;②当PM+PN=4时,可知点P在直线l1:,直线l2:上.所以直线l的近距点为在这两条平行线上和在这两条平行线间的所有点.分两种情况分析:EF在OA上方,当点E在直线l1上时,n的值最大;EF在OA下方,当点F在直线l2上时,n的值最小,当时,EF与AO重合,矩形不存在,所以可以分析出n的取值范围;
(2)根据定义,结合图形可推出:.
【详解】解:(1)①A,B;
②当PM+PN=4时,可知点P在直线l1:,直线l2:上.所以直线l的近距点为在这两条平行线上和在这两条平行线间的所有点.
如图1,EF在OA上方,当点E在直线l1上时,n的值最大,为.
如图2,EF在OA下方,当点F在直线l2上时,n的值最小,为.
当时,EF与AO重合,矩形不存在.
综上所述,n的取值范围是,且.
(2).
【点睛】本题考核知识点:一次函数和矩形综合,新定义知识.解题关键点:理解新定义.
18、(1),;(1)点A和四边形CDEF的“中点形”是四边形,各顶点的坐标为:(0,0)、(0,1)、(,0)、(,1);(3)-1≤b≤0或 1≤b≤1.
【解析】
(1)依照题意画出图形,观察图形可知点O和线段CD的中间点所组成的图形是线段C′D′,根据点A,C,D的坐标,利用中点坐标公式可求出点C′,D′的坐标,进而可得出结论;
(1)画出图形,观察图形可得出结论;
(3)利用一次函数图象上点的坐标特征可得出点B的坐标为(n,1n),依照题意画出图形,观察图形可知:点B和四边形CDEF的中间点只能在边EF和DE上,当点B和四边形CDEF的中间点在边EF上时,利用四边形CDEF的纵坐标的范围,可得出关于n的一元一次不等式组,解之即可得出n的取值范围;当点B和四边形CDEF的中间点在边DE上时,由四边形CDEF的横、纵坐标的范围,可得出关于n的一元一次不等式组,解之即可得出n的取值范围.综上,此题得解.
【详解】
解:(1)如图:点O和线段CD的中间点所组成的图形G是线段C′D′,
由题意可知:点C′为线段OC的中点,点D′为线段OD的中点.
∵点C的坐标为(-1,1),点D的坐标为(1,1),
∴点C′的坐标为(-1,1),点D′的坐标为( ,1),
∴点O和线段CD的中间点所组成的图形G即线段C′D′的纵坐标是1,横坐标-1≤x≤,
∴点,,中,在图形G上的点是,;
(1)点A和四边形CDEF的“中点形”是四边形.
各顶点的坐标为:(0,0)、(0,1)、(,0)、(,1).
(3)∵点B的横坐标为b,
∴点B的坐标为(b,1b).
当点B和四边形CDEF的中间点在边EF上时,有 ,
解得:-1≤b≤0;
当点B和四边形CDEF的中间点在边DE上时,有 ,
解得:1≤b≤1,
综上所述:点B的横坐标b的取值范围为-1≤b≤0 或 1≤b≤1.
故答案为(1),;(1)点A和四边形CDEF的“中点形”是四边形,各顶点的坐标为:(0,0)、(0,1)、(,0)、(,1);(3)-1≤b≤0或 1≤b≤1.
本题考查中点坐标公式、一次函数图象上点的坐标特征以及解一元一次不等式组,解题的关键是:(1)通过画图找出点O和线段CD的中间点所组成的图形是线段C′D′;(1)画出图形,观察图形;(3)分点B和四边形CDEF的中间点在边EF上及点B和四边形CDEF的中间点在边DE上两种情况,找出关于b的一元一次不等式组.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、.
【解析】
多项式有两项,两项都含有相同的因式x,所以提取提取公因式x即可.
【详解】
= x(2x-1).
故答案为x(2x-1).
本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法. 因式分解必须分解到每个因式都不能再分解为止.
20、6
【解析】
根据平均数的定义,即可求解.
【详解】
根据题意,得
解得
故答案为6.
此题主要考查平均数的求解,熟练掌握,即可解题.
21、;(2)详见解析;(3)1
【解析】
(1)若四边形EFGH为矩形,则应有EF∥HG∥AC,EH∥FG∥BD,EF⊥EH,故应有AC⊥BD;若四边形EFGH为正方形,同上应有AC⊥BD,又应有EH=EF,而EF=AC,EH=BD,故应有AC=BD.
(2)由相似三角形的面积比等于相似比的平方求解.
(3)由(2)可得S▱EFGH=S四边形ABCD=1
【详解】
(1)解:若四边形EFGH为矩形,则应有EF∥HG∥AC,EH∥FG∥BD,EF⊥EH,故应有AC⊥BD;
若四边形EFGH为正方形,同上应有AC⊥BD,又应有EH=EF,而EF= AC,EH=BD,故应有AC=BD;
(2)S△AEH+S△CFG=S四边形ABCD
证明:在△ABD中,
∵EH=BD,
∴△AEH∽△ABD.
∴=()2=
即S△AEH=S△ABD
同理可证:S△CFG=S△CBD
∴S△AEH+S△CFG=(S△ABD+S△CBD)=S四边形ABCD;
(3)解:由(2)可知S△AEH+S△CFG=(S△ABD+S△CBD)=S四边形ABCD,
同理可得S△BEF+S△DHG=(S△ABC+S△CDA)=S四边形ABCD,
故S▱EFGH=S四边形ABCD=1.
本题考查了三角形的中位线的性质及特殊四边形的判定和性质,相似三角形的性质.
22、13
【解析】
根据点的坐标利用勾股定理,即可求出点P到原点的距离
【详解】
解:在平面直角坐标系中,点P到原点O的距离为:,
故答案为:13.
本题主要考查学生对勾股定理和点的坐标的理解和掌握,此题难度不大,属于基础题.
23、6
【解析】
∵菱形ABCD中,AB=4,AD的垂直平分线交AC于点N,
∴CD=AB=4,AN=DN,
∵△CDN的周长=CN+CD+DN=10,
∴CN+4+AN=10,
∴CN+AN=AC=6.
故答案为6.
二、解答题(本大题共3个小题,共30分)
24、(1)A(1,3),B(-3,3),C(-3,-1);(2)P的坐标(-3,1).
【解析】
(1)利用正方形的性质即可解决问题;
(2)根据中点坐标公式计算即可.
【详解】
解:(1)∵正方形ABCD的边长为4,AD∥y轴,D(1,-1).
∴A(1,3),B(-3,3),C(-3,-1),
(2)∵BP=BC=2,B(-3,3),C(-3,-1),
∴BC中点P的坐标(-3,1).
点睛:本题考查正方形的性质、坐标与图形的性质、中点坐标公式等知识,解题的关键是熟练掌握点的位置与坐标的关系,记住中点坐标公式,属于基础题.
25、(1)证明见解析;(2)当AB=BC时,四边形DBEF是菱形,理由见解析.
【解析】
(1)根据三角形的中位线平行于第三边并且等于第三边的一半可得DE∥BC,然后根据两组对边分别平行的四边形是平行四边形证明.
(2)根据邻边相等的平行四边形是菱形证明.
【详解】
解:(1)∵D、E分别是AB、AC的中点,
∴DE是△ABC的中位线.
∴DE∥BC.
又∵EF∥AB,
∴四边形DBFE是平行四边形.
(2)当AB=BC时,四边形DBEF是菱形.
理由如下:
∵D是AB的中点,
∴BD= AB.
∵DE是△ABC的中位线,
∴DE= BC.
∵AB=BC,
∴BD=DE.
又∵四边形DBFE是平行四边形,
∴四边形DBFE是菱形.
本题考查了三角形的中位线平行于第三边并且等于第三边的一半,平行四边形的判定,菱形的判定以及菱形与平行四边形的关系,熟记性质与判定方法是解题的关键.
26、
【解析】
先根据非负数的性质求出a和b的值,然后代入计算即可.
【详解】
∵,
∴,,
∴a=-,b=24,
∴=.
本题考查了非负数的性质,以及二次根式的除法运算,正确求出a和b的值是解答本题的关键.
题号
一
二
三
四
五
总分
得分
相关试卷
这是一份2025届辽宁省九上数学开学监测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年辽宁省营口市大石桥市金桥中学九上数学开学联考模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年辽宁省沈阳市沈河区数学九上开学统考模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。