![2025届辽宁省新宾县数学九年级第一学期开学预测试题【含答案】第1页](http://www.enxinlong.com/img-preview/2/3/16239776/0-1728628830079/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2025届辽宁省新宾县数学九年级第一学期开学预测试题【含答案】第2页](http://www.enxinlong.com/img-preview/2/3/16239776/0-1728628830165/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2025届辽宁省新宾县数学九年级第一学期开学预测试题【含答案】第3页](http://www.enxinlong.com/img-preview/2/3/16239776/0-1728628830194/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2025届辽宁省新宾县数学九年级第一学期开学预测试题【含答案】
展开这是一份2025届辽宁省新宾县数学九年级第一学期开学预测试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,边长为1的正方形ABCD绕点A逆时针旋转30°到正方形AB’C’D’,图中阴影部分的面积为( ).
A.B.C.D.
2、(4分)若正多边形的内角和是1080°,则该正多边形的一个外角为( )
A.B.C.D.
3、(4分)若二次根式有意义,则x的取值范围是( )
A.B.C.D.
4、(4分)如果ab>0,a+b<0,那么下面各式:① ; ②=1;③=-b.其中正确的是( )
A.①②B.①③C.①②③D.②③
5、(4分)如图,小贤为了体验四边形的不稳定性,将四根木条用钉子钉成一个矩形框架ABCD,B与D两点之间用一根橡皮筋拉直固定,然后向右扭动框架,观察所得四边形的变化,下列判断错误的是( )
A.四边形ABCD由矩形变为平行四边形 B.BD的长度增大
C.四边形ABCD的面积不变D.四边形ABCD的周长不变
6、(4分)一个寻宝游戏的寻宝通道由正方形ABCD的边组成,如图1所示.为记录寻宝者的行进路线,在AB的中点M处放置了一台定位仪器,设寻宝者行进的时间为x,寻宝者与定位仪器之间的距离为y,若寻宝者匀速行进,且表示y与x的函数关系的图象大致如图2所示,则寻宝者的行进路线可能为( )
A.A→BB.B→CC.C→DD.D→A
7、(4分)如图所示,四边形ABCD为⊙O的内接四边形,∠BCD=120°,则∠BOD的大小是( )
A.80°B.120°C.100°D.90°
8、(4分)如图,点E是菱形ABCD对角线BD上任一点,点F是CD上任一点,连接CE,EF,当,时,的最小值是( )
A.B.10C.D.5
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)一水塘里有鲤鱼、鲢鱼共10000尾,一渔民通过多次捕捞试验后发现,鲤鱼出现的频率为0.36,则水塘有鲢鱼________ 尾.
10、(4分)如图,四边形ABCD是平行四边形,添加一个条件:________,可使它成为矩形.
11、(4分)如图,将平行四边形ABCD沿EF对折,使点A落在点C处,若∠A=60°,AD=6,AB=12,则AE的长为_______.
12、(4分)命题“若,则.”的逆命题是_____命题.(填“真”或“假”)
13、(4分)在Rt△ABC中,∠B=90°,∠C=30°,AB=2,则BC的长为______.
三、解答题(本大题共5个小题,共48分)
14、(12分)射阳县实验初中为了解全校学生上学期参加社区活动的情况,学校随机调查了本校50名学生参加社区活动的次数,并将调查所得的数据整理如下:
参加社区活动次数的频数、频率分布表
根据以上图表信息,解答下列问题:
(1)表中a= ,b= ;
(2)请把频数分布直方图补充完整(画图后请标注相应的数据);
(3)若该校共有1200名学生,请估计该校在上学期参加社区活动超过6次的学生有多少人?
15、(8分)(1)计算:;
(2)简化:
16、(8分)如图,矩形的两条边、分别在轴和轴上,已知点 坐标为(4,–3).把矩形沿直线折叠,使点落在点处,直线与、、的交点分别为、、.
(1)线段 ;
(2)求点坐标及折痕的长;
(3)若点在轴上,在平面内是否存在点,使以、、、为顶点的四边形是菱形?若存在,则请求出点的坐标;若不存在,请说明理由;
17、(10分)学校准备购买纪念笔和记事本奖励同学,纪念笔的单价比记事本的单价多4元,且用30元买记事本的数量与用50元买纪念笔的数量相同.求纪念笔和记事本的单价.
18、(10分)在学校组织的“学习强国”知识竞赛中,每班参加比赛的人数相同,成绩分为,,,四个等级其中相应等级的得分依次记为分,分,分和分.年级组长张老师将班和班的成绩进行整理并绘制成如下的统计图:
(1)在本次竞赛中,班级的人数有多少。
(2)请你将下面的表格补充完整:
(3)结合以上统计量,请你从不同角度对这次竞赛成绩的结果进行分析(写出两条)
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知:,则_______.
20、(4分)如图,在中,,垂足为,是中线,将沿直线BD翻折后,点C落在点E,那么AE为_________.
21、(4分)如图,四边形ABCD中,若去掉一个60°的角得到一个五边形,则∠1+∠2=_______度.
22、(4分)单位举行歌咏比赛,分两场举行,第一场8名参赛选手的平均成绩为88分,第二场4名参赛选手的平均成绩为94分,那么这12名选手的平均成绩是____分.
23、(4分)如图,,请你再添加一个条件______,使得(填一个即可).
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,等腰△ABC中,已知AC=BC=2, AB=4,作∠ACB的外角平分线CF,点E从点B沿着射线BA以每秒2个单位的速度运动,过点E作BC的平行线交CF于点F.
(1)求证:四边形BCFE是平行四边形;
(2)当点E是边AB的中点时,连接AF,试判断四边形AECF的形状,并说明理由;
(3)设运动时间为t秒,是否存在t的值,使得以△EFC的其中两边为邻边所构造的平行四边形恰好是菱形?不存在的,试说明理由;存在的,请直接写出t的值.答:t=________.
25、(10分)计算:
(1);
(2).
26、(12分)如图,边长为3正方形的顶点与原点重合,点在轴,轴上。反比例函数的图象交于点,连接,.
(1)求反比例函数的解析式;
(2)过点作轴的平行线,点在直线上运动,点在轴上运动.
①若是以为直角顶点的等腰直角三角形,求的面积;
②将“①”中的“以为直角顶点的”去掉,将问题改为“若是等腰直角三角形”,的面积除了“①”中求得的结果外,还可以是______.(直接写答案,不用写步骤)
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
设B′C′与CD的交点为E,连接AE,利用“HL”证明Rt△AB′E和Rt△ADE全等,根据全等三角形对应角相等∠DAE=∠B′AE,再根据旋转角求出∠DAB′=60°,然后求出∠DAE=30°,再解直角三角形求出DE,然后根据阴影部分的面积=正方形ABCD的面积﹣四边形ADEB′的面积,列式计算即可得解.
【详解】
如图,设B′C′与CD的交点为E,连接AE,
在Rt△AB′E和Rt△ADE中,
,
∴Rt△AB′E≌Rt△ADE(HL),
∴∠DAE=∠B′AE,
∵旋转角为30°,
∴∠DAB′=60°,
∴∠DAE=×60°=30°,
∴DE=1×=,
∴阴影部分的面积=1×1﹣2×(×1×)=1﹣.
故选C.
本题考查了旋转的性质,正方形的性质,全等三角形判定与性质,解直角三角形,利用全等三角形求出∠DAE=∠B′AE,从而求出∠DAE=30°是解题的关键,也是本题的难点.
2、A
【解析】
首先设这个正多边形的边数为n,根据多边形的内角和公式可得180(n-2)=1080,继而可求得答案.
【详解】
设这个正多边形的边数为n,
∵一个正多边形的内角和为1080°,
∴180(n-2)=1080,
解得:n=8,
∴这个正多边形的每一个外角是:360°÷8=45°.
故选:A..
此题考查了多边形的内角和与外角和的知识.此题难度不大,注意掌握方程思想的应用,注意熟记公式是关键.
3、C
【解析】
根据二次根式有意义的条件“被开方数大于或等于0”进行求解即可.
【详解】
∵二次根式有意义,
∴,
∴,
故选:C.
本题主要考查了二次根式的性质,熟练掌握相关概念是解题关键.
4、D
【解析】
先根据ab>0,a+b<0,判断出a、b的符号,再逐个式子分析即可.
【详解】
∵ab>0,a+b<0,
∴a<0,b<0,
∴无意义,故①不正确;
,故②正确
,故③正确.
故选D.
本题考查了二次根式的性质,熟练掌握性质是解答本题的关键. ,, (a≥0,b>0).
5、C
【解析】
试题分析:由题意可知,当向右扭动框架时,BD可伸长,故BD的长度变大,四边形ABCD由矩形变为平行四边形 ,因为四条边的长度不变,所以四边形ABCD的周长不变.原来矩形ABCD的面积等于BC乘以AB,变化后平行四边形ABCD的面积等于底乘以高,即BC乘以BC边上的高,BC边上的高小于AB,所以四边形ABCD的面积变小了,故A,B,D说法正确,C说法错误.故正确的选项是C.
考点:1.四边形面积计算;2.四边形的不稳定性.
6、A
【解析】
观察图2得:寻宝者与定位仪器之间的距离先越来越近,到达M后再越来越远,结合图1得:寻宝者的行进路线可能为A→B,故选A.
点睛:本题主要考查了动点函数图像,根据图像获取信息是解决本题的关键.
7、B
【解析】
【分析】根据圆内接四边形的性质求出∠A,再根据圆周角定理进行解答即可.
【详解】∵四边形ABCD为⊙O的内接四边形,
∴∠A=180°﹣∠BCD=180°-120°=60°,
由圆周角定理得,∠BOD=2∠A=120°,
故选B.
【点睛】本题考查的是圆内接四边形的性质、圆周角定理,掌握圆内接四边形的对角互补是解题的关键.
8、C
【解析】
过A作AF⊥CD交BD于E,则此时,CE+EF的值最小,CE+EF的最小值=AF,根据已知条件得到△ADF是等腰直角三角形,于是得到结论.
【详解】
解:如图,
∵四边形ABCD是菱形,
∴点A与点C关于BD对称,
过A作AF⊥CD交BD于E,则此时,CE+EF的值最小,
∴CE+EF的最小值为AF,
∵∠ABC=45°,
∴∠ADC=∠ABC=45°,
∴△ADF是等腰直角三角形,
∵AD=BC=10,
∴AF=AD=,
故选C.
本题考查了轴对称-最短路线问题,菱形的性质,等腰直角三角形的判定和性质,正确的作出图形是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
由于水塘里有鲤鱼、鲢鱼共10000尾,而鲤鱼出现的频率为0.36,由此得到水塘有鲢鱼的频率,然后乘以总数即可得到水塘有鲢鱼又多少尾.
【详解】
∵水塘里有鲤鱼、鲢鱼共10000尾,
一渔民通过多次捕捞实验后发现,鲤鱼出现的频率为0.36,
∴鲢鱼出现的频率为64%,
∴水塘有鲢鱼有10000×64%=1尾.
故答案是:1.
考查了利用频率估计概率的思想,首先通过实验得到事件的频率,然后即可估计事件的概率.
10、∠ABC=90°(或AC=BD等)
【解析】
本题是一道开放题,只要掌握矩形的判定方法即可.由有一个角是直角的平行四边形是矩形.想到添加∠ABC=90°;由对角线相等的平行四边形是矩形.想到添加AC=BD.
11、8.4.
【解析】
过点C作CG⊥AB的延长线于点G,设AE=x,由于▱ABCD沿EF对折可得出AE=CE=x, 再求出∠BCG=30°,BG=BC=3, 由勾股定理得到,则EG=EB+BG=12-x+3=15-x,在△CEG中,利用勾股定理列出方程即可求出x的值.
【详解】
解:过点C作CG⊥AB的延长线于点G,
∵▱ABCD沿EF对折,
∴AE=CE
设AE=x,则CE=x,EB=12-x,
∵AD=6,∠A=60°,
∴BC=6, ∠CBG=60°,
∴∠BCG=30°,
∴BG=BC=3,
在△BCG中,由勾股定理可得:
∴EG=EB+BG=12-x+3=15-x
在△CEG中,由勾股定理可得:
解得:
故答案为:8.4
本题考查平行四边形的综合问题,解题的关键是证明△D′CF≌△ECB,然后利用勾股定理列出方程,本题属于中等题型.
12、假
【解析】
写出该命题的逆命题后判断正误即可.
【详解】
解:命题“若,则.”的逆命题是若a>b,则,
例如:当a=3,b=-2时错误,为假命题,
故答案为:假.
本题考查了命题与定理的知识,解题的关键是交换命题的题设写出该命题的逆命题.
13、
【解析】
由在直角三角形中,30°角所对的边是斜边的一半得AC=2AB,再用运用勾股定理,易得BC的值.或直接用三角函数的定义计算.
【详解】
解:∵∠B=90°,∠C=30°,AB=2,
∴AC=2AB=4,
由勾股定理得:
故答案为:.
本题考查了解直角三角形,要熟练掌握好边角之间的关系、勾股定理及三角函数的定义.
三、解答题(本大题共5个小题,共48分)
14、(1)12;0.08 (2)12(3)672
【解析】
试题分析:(1)直接利用已知表格中3
(3)直接利用参加社区活动超过6次的学生所占频率乘以总人数进而求出答案.
解:(1)a=50×0.24=12(人);
∵m=50−10−12−16−6−2=4,
∴b=4÷50=0.08;
(2)如图所示:
;
(3)由题意可得,该校在上学期参加社区活动超过6次的学生有:1200×(1−0.20−0.24)=672(人),
15、(1)1;(2)
【解析】
(1)直接利用二次根式乘法运算法则进行化简,利用绝对值的性质化简,再合并二次根式即可求出答案;
(2)根据二次根式的乘除法,先除化乘,再约分即可求出答案.
【详解】
解:(1)原式
(2)原式
本题主要考查二次根式的乘除法运算,熟练掌握二次根式的乘除法的运算法则以及运算顺序是解决本题的关键.
16、(1);(2);拆痕DE的长为; (3)点Q坐标为
【解析】
(1)根据B点的坐标即可求得AC的长度.
(2)首先根据已知条件证明,再根据相似比例计算DF、CD的长度
即可计算出D点的坐标,再证明,根据EF=DF,即可计算的DE的长度.
(3)根据等腰三角形的性质,分类讨论第一种情况当时;第二种情况当时;第三种情况当时,分别计算即可.
【详解】
解:(1)
(2),由折叠可得:
,.
∵四边形OABC是矩形,
∴拆痕DE的长为
(3)由(2)可知,,
若以P、D、E、Q为顶点的四边形是菱形,则必为等腰三角形。
当时,可知,
此时PE为对角线,可得
当时,可知,此时DP为对角线,可得;
当时,P与C重合,Q与A重合,
综上所述,满足条件的点Q坐标为
本题主要考查菱形的基本性质,难点在于第三问中的等腰三角形的分类讨论,根据等腰三角形的腰进行分类,再根据腰相等进行计算.
17、纪念笔和记事本的单价分别为1元,6元.
【解析】
首先设纪念笔单价为x元,则记事本单价为(x-4)元,根据题意可得等量关系:30元买记事本的数量与用50元买纪念笔的数量相同,由等量关系可得方程,进而解答即可.
【详解】
解:设纪念笔单价为x元,则记事本的单价为(x-4)元.
由题意,得:.
解得:x=1.
经检验x=1是原方程的解,且符合题意.
∴纪念笔的单价为1元,
∴记事本的单价:1-4=6(元).
答:纪念笔和记事本的单价分别为1元,6元.
此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.
18、(1)9人;(2)见解析;(3)略.
【解析】
(1)根据一班的成绩统计可知一共有25人,因为每班参加比赛的人数相同,用总人数乘以C级以上的百分比即可得出答案,
(2)根据平均数、众数、中位数的概念,结合一共有25人,即可得出答案.
(3)分别从级及以上人数和众数的角度分析那个班成绩最好即可.
【详解】
解:(1)班有人,人.
所以班C级人数有9人
(2)请你将下面的表格补充完整:
(3)从级及以上人数条看,班的人数多于班人数,此时班的成绩好些
从众数的角度看,班的众数高于班众数,此时802班的成绩差一些.
本题考查条形统计图和扇形统计图,熟练掌握计算法则是解题关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
由题意设,再代入代数式求值即可.
【详解】
由题意设,,则
考查了代数式求值,本题属于基础应用题,只需学生熟练掌握代数式求值的方法,即可完成.
20、
【解析】
如图作AH⊥BC于H,AM⊥AH交BD的延长线于M,BN⊥MA于N,则四边形ANBH是矩形,先证明△ADM≌△CDB,在RT△BMN中利用勾股定理求出BM,再证明四边形BCDE是菱形,AE=2OD,即可解决问题.
【详解】
解:如图作AH⊥BC于H,AM⊥AH交BD的延长线于M,BN⊥MA于N,则四边形ANBH是矩形.
∵AB=AC=4,,
∴CH=1,AH=NB=
,BC=2,
∵AM∥BC,
∴∠M=∠DBC,
在△ADM和△CDB中,
,
∴△ADM≌△CDB(AAS),
∴AM=BC=2,DM=BD,
在RT△BMN中,∵BN=,MN=3,
∴,
∴BD=DM=,
∵BC=CD=BE=DE=2,
∴四边形EBCD是菱形,
∴EC⊥BD,BO=OD=,EO=OC,
∵AD=DC,
∴AE∥OD,AE=2OD=.
故答案为.
本题考查翻折变换、全等三角形的判定和性质、菱形的判定和性质、三角形的中位线定理、勾股定理等知识,解题的关键是添加辅助线构造全等三角形,学会转化的数学数学,利用三角形中位线发现AE=2OD,求出OD即可解决问题,属于中考常考题型.
21、240°
【解析】
∵四边形的内角和为(4﹣2)×180°=360°,∴∠B+∠C+∠D=360°﹣60°=300°。
∵五边形的内角和为(5﹣2)×180°=540°,∴∠1+∠2=540°﹣300°=240°
22、90
【解析】
试题分析:平均数的计算方法是求出所有数据的和,然后除以数据的总个数.
该组数据的平均数=(8×88+4×94)÷(8+4)=90,
则这12名选手的平均成绩是90分.
考点:本题考查的是加权平均数的求法
点评:本题易出现的错误是求88,94这两个数的平均数,对平均数的理解不正确.
23、(答案不唯一)
【解析】
注意两个三角形有一个公共角∠A,再按照三角形全等的判定方法结合图形添加即可.
【详解】
解:∵∠ A=∠ A, AB=AC,
∴若按照SAS可添加条件AD=AE;
若按照AAS可添加条件∠ ADB=∠AEC;
若按照ASA可添加条件∠B=∠C;
故答案为AD=AE或∠ADB=∠AEC或∠B=∠C.
本题考查了全等三角形的判定方法,熟练掌握判定三角形全等的各种方法是解决此类问题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)见解析;(2)四边形AECF是矩形,理由见解析;(3)秒或5秒或2秒
【解析】
(1)已知EF∥BC,结合已知条件利用两组对边分别平行证明BCFE是平行四边形;因为AC=BC,等角对等边,得∠B=∠BAC,CF平分∠ACH,则∠ACF=∠FCH,结合∠ACH=∠B+∠BAC=∠ACF+∠FCH,等量代换得∠FCH=∠B,则同位角相等两直线平行,得BE∥CF,结合EF∥BC,证得四边形BCFE是平行四边形;
(2)先证∠AED=90°,再证四边形AECF是平行四边形,则四边形AECF是平行四边形是矩形; AC=BC,E是AB的中点,由等腰三角形三线合一定理知CE⊥AB,因为四边形BCFE是平行四边形,得CF=BE=AE,AE∥CF,一组对边平行且相等,且有一内角是直角,则四边形AECF是矩形;
(3)分三种情况进行①以EF和CF两边为邻边所构造的平行四边形恰好是菱形时,则邻边BE=BC,这时根据S=vt=2t=, 求出t即可;②以CE和CF两边为邻边所构造的平行四边形恰好是菱形时,过C作CD⊥AB于D,AC=BC,三线合一则BD的长可求,在Rt△BDC中运用勾股定理求出CD的长,把ED长用含t的代数式表示出来,现知EG=CF=EC=EB=2t,在Rt△EDC中,利用勾股定理列式即可求出t;③以CE和EF两边为邻边所构造的平行四边形恰好是菱形时,则CA=AF=BC,此时E与A重合,则2t=AB=4, 求得t值即可.
【详解】
(1)证明:如图1,∵AC=BC,
∴∠B=∠BAC,
∵CF平分∠ACH,
∴∠ACF=∠FCH,
∵∠ACH=∠B+∠BAC=∠ACF+∠FCH,
∴∠FCH=∠B,
∴BE∥CF,
∵EF∥BC,
∴四边形BCFE是平行四边形
(2)解:四边形AECF是矩形,理由是:
如图2,∵E是AB的中点,AC=BC,
∴CE⊥AB,
∴∠AEC=90°,
由(1)知:四边形BCFE是平行四边形,
∴CF=BE=AE,
∵AE∥CF,
∴四边形AECF是矩形
(3)秒或5秒或2秒
分三种情况:
①以EF和CF两边为邻边所构造的平行四边形恰好是菱形时,如图3,
∴BE=BC,即2t=2 ,
t= ;
②以CE和CF两边为邻边所构造的平行四边形恰好是菱形时,如图4,过C作CD⊥AB于D,
∵AC=BC,AB=4,
∴BD=2,
由勾股定理得:CD= = =6,
∵EG2=EC2 , 即(2t)2=62+(2t﹣2)2 ,
t=5;
③以CE和EF两边为邻边所构造的平行四边形恰好是菱形时,如图5,CA=AF=BC,此时E与A重合,
∴t=2,
综上,t的值为秒或5秒或2秒;
故答案为: 秒或5秒或2秒.
本题主要考查平行四边形,矩形,菱形等四边形的性质与证明,熟悉基本定理是解题基础,本题第三问的关键在于能够分情况讨论列出方程.
25、(1)4,(2)2.
【解析】
(1)分别计算二次根式的乘法、去绝对值符号以及零指数幂,然后再进行加减运算即可;
(2)先把括号里的二次根式进行化简合并后,再根据二次根式的除法法则进行计算即可得解.
【详解】
(1);
=,
=4;
(2)
=
=,
=2.
本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.
26、(1);(2)①或.②1或2.
【解析】
(1)设的坐标分别为,根据三角形的面积,构建方程即可解决问题.
(2)①分两种情形画出图形:当点P在线段BM上,当点P在线段BM的延长线上时,分别利用全等三角形的性质求解即可.
②当点Q是等腰三角形的直角顶点时,分两种情形分别求解即可.
【详解】
解:(1))∵四边形OACD是正方形,边长为3,
∴点B的纵坐标为3,点E的横坐标为3,
∵反比例函数的图象交AC,CD于点B,E,
设的坐标分别为.
∵S△OBE=4,
可得,.
解得,,(舍).
所以,反比例函数的解析式为.
(2))①如图1中,设直线m交OD于M.
由(1)可知B(1,3),AB=1,BC=2,
当PC=PQ,∠CPQ=90°时,
∵∠CBP=∠PMQ=∠CPQ=90°,
∴∠CPB+∠BCP=90°,∠CPB+∠PQM=90°,
∴∠PCB=∠MPQ,∵PC=PQ,
∴△CBP≌△PMQ(AAS),
∴BC=PM=2,PB=MQ=1,
∴PC=PQ=
∴S△PCQ=
如图2中,当PQ=PC,∠CPQ=90°,
同法可得△CBP≌△PMQ(AAS),
∴PM=BC=2,OM=PB=1,
∴PC=PQ=,
∴S△PCQ=.
所以,的面积为或.
②当点Q是等腰三角形的直角顶点时,同法可得CQ=PQ=,此时S△PCQ=1.
或CQ′=PQ′=,可得S△P′CQ′=2,
不存在点C为等腰三角形的直角顶点,
综上所述,△CPQ的面积除了“①”中求得的结果外,还可以是1或2.
故答案为1或2.
本题属于反比例函数综合题,考查了正方形的性质,反比例函数的性质,全等三角形的判定和性质,勾股定理等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.
题号
一
二
三
四
五
总分
得分
批阅人
活动次数x
频数
频率
0<x≤3
10
0.20
3<x≤6
a
0.24
6<x≤9
16
0.32
9<x≤12
6
0.12
12<x≤15
m
b
15<x≤18
2
n
成绩
班级
平均数(分)
中位数 (分)
众数 (分)
B级及以上人数
班
班
平均数(分)
中位数(分)
众数(分)
级及以上人数
班
87.6
90
18
班
87.6
100
相关试卷
这是一份2025届辽宁省大连市数学九年级第一学期开学预测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年辽宁省抚顺市新宾县数学九年级第一学期开学复习检测试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份辽宁省新宾县联考2023年数学八上期末检测模拟试题【含解析】,共21页。