2025届内蒙古鄂尔多斯市河南中学九上数学开学质量检测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)若的整数部分为x,小数部分为y,则的值是( )
A.B.C.1D.3
2、(4分)随机抽取10名八年级同学调查每天使用零花钱的情况,结果如下表,则这10名同学每天使用零花钱的中位数是( )
A.2元B.3元C.4元D.5元
3、(4分)如果关于x的一次函数y=(a+1)x+(a﹣4)的图象不经过第二象限,且关于x的分式方程有整数解,那么整数a值不可能是( )
A.0B.1C.3D.4
4、(4分)一根蜡烛长30cm,点燃后每小时燃烧5cm,燃烧时蜡烛剩余的长度h(cm)和燃烧时间t(小时)之间的函数关系用图像可以表示为中的( )
A.B.C.D.
5、(4分)小明3分钟共投篮80次,进了50个球,则小明进球的频率是( ).
A.80 B.50 C.1.6 D.0.625
6、(4分)如图,在菱形ABCD中,AC、BD相交于点O,AC=8,BD=6,则菱形的边长等于( )
A.10B.20C.D.5
7、(4分)如图,在矩形纸片ABCD中,BC=a,将矩形纸片翻折,使点C恰好落在对角线交点O处,折痕为BE,点E在边CD上,则CE的长为( )
A.B.C.D.
8、(4分)已知直线y=-x+4与y=x+2如图所示,则方程组的解为( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在平面直角坐标系中,函数y=2x和y=-x的图象分别为直线l1,l2,过点(1,0)作x轴的垂线交l1于点A1,过A1点作y轴的垂线交l2于点A2,过点A2作x轴的垂线交l1于点A3,过点A3作y轴的垂线交l2于点A4,…依次进行下去,则点A2019的坐标为______.
10、(4分)在函数y=中,自变量x的取值范围是
11、(4分)学校门口的栏杆如图所示,栏杆从水平位置BD绕O点旋转到AC位置,已知AB⊥BD,CD⊥BD,垂足分别为B,D,AO=4m,AB=1.6m,CO=1m,则栏杆C端应下降的垂直距离CD为__________.
12、(4分)若一次函数y=kx+b的图象经过点P(﹣2,3),则2k﹣b的值为_____.
13、(4分)如图,过正五边形ABCDE的顶点A作直线l∥BE,则∠1的度数为____________.
三、解答题(本大题共5个小题,共48分)
14、(12分)定义:对于给定的两个函数,任取自变量x的一个值,当x<0时,它们对应的函数值互为相反数;当x⩾0时,它们对应的函数值相等,我们称这样的两个函数互为相关函数。例如:一次函数y=x−1,它们的相关函数为y= .
(1)已知点A(−5,8)在一次函数y=ax−3的相关函数的图象上,求a的值;
(2)已知二次函数y=−x+4x− .
①当点B(m, )在这个函数的相关函数的图象上时,求m的值;
②当−3⩽x⩽3时,求函数y=−x+4x−的相关函数的最大值和最小值.
15、(8分)先化简,再求值:,其中是中的一个正整数解.
16、(8分)在平面直角坐标系中,一次函数的图象与反比例函数(k≠0)图象交于A、B两点,与y轴交于点C,与x轴交于点D,其中A点坐标为(﹣2,3).
(1)求一次函数和反比例函数解析式.
(2)若将点C沿y轴向下平移4个单位长度至点F,连接AF、BF,求△ABF的面积.
(3)根据图象,直接写出不等式的解集.
17、(10分)如图,直线与x轴相交于点A,与直线相交于点P.
(1)求点P的坐标.
(2)请判断△OPA的形状并说明理由.
(3)动点E从原点O出发,以每秒1个单位的速度沿着O→P→A的路线向点A匀速运动(E不与点O、A重合),过点E分别作EF⊥x轴于F,EB⊥y轴于B.设运动t秒时,矩形EBOF与△OPA重叠部分的面积为S.求S与t之间的函数关系式.
18、(10分)将两个全等的直角三角形ABC和DBE按图①方式摆放,其中∠ACB=∠DEB=90°,∠A=∠D=30°,点E落在AB上,DE所在直线交AC所在直线于点F.
(1)连接BF,求证:CF=EF.
(2)若将图①中的△DBE绕点B按顺时针方向旋转角α,且0°<α<60°,其他条件不变,如图②,求证:AF+EF=DE.
(3)若将图①中的△DBE绕点B按顺时针方向旋转角β,且60°<β<180°,其他条件不变,如图③,你认为(2)中的结论还成立吗?若成立,写出证明过程;若不成立,请直接写出AF、EF与DE之间的数量关系.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)有一种细菌的直径约为0.000000054米,将0.000000054这个数用科学记数法表示为____.
20、(4分)在△ABC中,AB=10,CA=8,BC=6,∠BAC的平分线与∠BCA的平分线交于点I,且DI∥BC交AB于点D,则DI的长为____.
21、(4分)一水塘里有鲤鱼、鲢鱼共10000尾,一渔民通过多次捕捞试验后发现,鲤鱼出现的频率为0.36,则水塘有鲢鱼________ 尾.
22、(4分)若ab=﹣2,a+b=1,则代数式a2b+ab2的值等于_____.
23、(4分)当x=2018时,的值为____.
二、解答题(本大题共3个小题,共30分)
24、(8分)计算
(1)计算:
(2)分解因式:
25、(10分)如图,在四边形是边长为4的正方形点P为OA边上任意一点(与点不重合),连接CP,过点P作,且,过点M作,交于点联结,设.
(1)当时,点的坐标为( , )
(2)设,求出与的函数关系式,写出函数的自变量的取值范围.
(3)在轴正半轴上存在点,使得是等腰三角形,请直接写出不少于4个符合条件的点的坐标(用的式子表示)
26、(12分)某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.
(1)求每台A型电脑和B型电脑的销售利润;
(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.
①求y关于x的函数关系式;
②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?最大利润是多少?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
因为,所以的整数部分为1,小数部分为,即x=1,,所以.
2、B
【解析】
将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.
【详解】
解:共10名同学,中位数是第5和第6的平均数,故中位数为3,
故选B.
本题考查中位数,正确理解中位数的意义是解题的关键.
3、B
【解析】
依据关于x的一次函数y=(a+2)x+(a-2)的图象不经过第二象限的数,求得a的取值范围,依据关于x的分式方程有整数解,即可得到整数a的取值.
【详解】
解:∵关于x的一次函数y=(a+2)x+(a-2)的图象不经过第二象限,
∴a+2>0,a-2≤0,
解得-2<a≤2.
∵+2=,
∴x=,
∵关于x的分式方程+2=有整数解,
∴整数a=0,2,3,2,
∵a=2时,x=2是增根,
∴a=0,3,2
综上,可得,满足题意的a的值有3个:0,3,2,
∴整数a值不可能是2.
故选B.
本题考查了一次函数的图象与系数的关系以及分式方程的解.注意根据题意求得使得关于x的分式方程有整数解,且关于x的一次函数y=(a+2)x+(a-2)的图象不经过第二象限的a的值是关键.
4、B
【解析】
根据蜡烛剩余的长度=总长度-燃烧的长度就可以得出函数的解析式,由题意求出自变量的取值范围就可以得出函数图象.
【详解】
解:由题意,得
y=30-5t,
∵y≥0,t≥0,
∴30-5t≥0,
∴t≤6,
∴0≤t≤6,
∴y=30-5t是降函数且图象是一条线段.
故选B.
本题考查一次函数的解析式的运用,一次函数的与实际问题的关系的运用,一次函数的图象的运用,自变量的取值范围的运用,解答时求出函数解析式及自变量的范围是关键.
5、D
【解析】
试题分析:频率等于频数除以数据总和,∵小明共投篮81次,进了51个球,∴小明进球的频率=51÷81=1.625,故选D.
考点:频数与频率.
6、D
【解析】
根据菱形的对角线互相垂直平分求出OA、OB,再利用勾股定理列式进行计算即可得解.
【详解】
解:∵四边形ABCD是菱形,
∵AC=8,BD=6,
∴OA=4,OB=3,
即菱形ABCD的边长是1.
故选:D.
本题主要考查了菱形的对角线互相垂直平分的性质,勾股定理的应用,熟记性质是解题的关键.
7、C
【解析】
根据折叠的性质得到BC=BO,∠BCD=∠BOE=90°,根据等腰三角形的性质得到BE=DE,再利用勾股定理得到结论.
【详解】
∵由折叠可得, BC=BO,∠BCD=∠BOE=90°, ∴BC=BO,BE=DE,∵BD=2BO, BC=a
∴BD=2a,
∵在矩形纸片ABCD中,BC=a,BD=2a,,
由勾股定理求得: DC=a,
设CE=x,则DE=DC-CE=a-x,
在Rt△BCE中,,
解得:x=,
即AE的长为.故选C.
本题考查了翻折变换的性质,矩形的性质,熟练掌握折叠的性质是解题的关键.
8、B
【解析】
二元一次方程组的解就是组成二元一次方程组的两个方程的公共解,即两条直线y=-x+4与y=x+2的交点坐标.
故选B
点睛:本题考查了一次函数与二元一次方程组.二元一次方程组的解就是组成该方程组的两条直线的图象的交点.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(-21009,-21010)
【解析】
根据一次函数图象上点的坐标特征可得出点A1、A2、A3、A4、A5、A6、A7、A8等的坐标,根据坐标的变化找出变化规律“A4n+1(22n,22n+1),A4n+2(-22n+1,22n+1),A4n+3(-22n+1,-22n+2),A4n+4(22n+2,-22n+2)(n为自然数)”,依此规律结合2019=504×4+3即可找出点A2019的坐标.
【详解】
当x=1时,y=2,
∴点A1的坐标为(1,2);
当y=-x=2时,x=-2,
∴点A2的坐标为(-2,2);
同理可得:A3(-2,-4),A4(4,-4),A5(4,8),A6(-8,8),A7(-8,-16),A8(16,-16),A9(16,32),…,
∴A4n+1(22n,22n+1),A4n+2(-22n+1,22n+1),
A4n+3(-22n+1,-22n+2),A4n+4(22n+2,-22n+2)(n为自然数).
∵2019=504×4+3,
∴点A2019的坐标为(-2504×2+1,-2504×2+2),即(-21009,-21010).
故答案为(-21009,-21010).
本题考查了一次函数图象上点的坐标特征、正比例函数的图象以及规律型中点的坐标,根据坐标的变化找出变化规律“A4n+1(22n,22n+1),A4n+2(-22n+1,22n+1),A4n+3(-22n+1,-22n+2),A4n+4(22n+2,-22n+2)(n为自然数)”是解题的关键.
10、.
【解析】
求函数自变量的取值范围,就是求函数解析式有意义的条件,根据分式分母不为0的条件,要使在实数范围内有意义,必须.
11、0.4m
【解析】
先证明△OAB∽△OCD,再根据相似三角形的对应边成比例列方程求解即可.
【详解】
∵AB⊥BD,CD⊥BD,
∴∠ABO=∠CDO.
∵∠AOB=∠COD,
∴△OAB∽△OCD,
∴AO:CO=AB:CD,
∴4:1=1.6:CD,
∴CD=0.4.
故答案为:0.4.
本题主要考查了相似三角形的应用,正确地把实际问题转化为相似三角形问题,利用相似三角形的判定与性质解决是解题的关键.
12、-3
【解析】
把坐标带入解析式即可求出.
【详解】
y=kx+b的图象经过点P(﹣2,3),
∴3=﹣2k+b,
∴2k﹣b=﹣3,
故答案为﹣3;
此题主要考查一次函数的性质,解题的关键是熟知一次函数的图像.
13、36°
【解析】
∵多边形ABCDE是正五边形,
∴∠BAE==108°,
∴∠1=∠2=(180°-∠BAE),
即2∠1=180°-108°,
∴∠1=36°.
三、解答题(本大题共5个小题,共48分)
14、(1)1;(2)①m=2− 或m=2+或m=2− ;②最大值为 ,最小值为−.
【解析】
(1)写出y=ax-3的相关函数,代入计算;
(2)①写出二次函数y=−x+4x−的相关函数,代入计算;
②根据二次根式的最大值和最小值的求法解答.
【详解】
(1)y=ax−3的相关函数y= ,
将A(−5,8)代入y=−ax+3得:5a+3=8,
解得a=1;
(2)二次函数y=−x+4x−的相关函数为y= ,
①当m<0时,将B(m, )代入y=x-4x+
得m-4m+,
解得:m=2+ (舍去),或m=2−,
当m⩾0时,将B(m, )代入y=−x+4x−得:
−m +4m− ,
解得:m=2+或m=2−.
综上所述:m=2− 或m=2+或m=2− ;
②当−3⩽x<0时, y=−x+4x−,抛物线的对称轴为x=2,
此时y随x的增大而减小,
∴此时y的最大值为,
当0⩽x⩽3时,函数y=−x+4x−,抛物线的对称轴为x=2,
当x=0有最小值,最小值为−,当x=2时,有最大值,最大值y= ,
综上所述,当−3⩽x⩽3时,函数y=−x+4x−的相关函数的最大值为 ,最小值为−.
此题考查二次函数图象上点的坐标特征,一次函数图象上点的坐标特征,解题关键在于将已知点代入解析式.
15、化简为,当x=3时,此时的值为-10.
【解析】
先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可,
【详解】
解:原式=
=
=
=,
当x=3时,代入原式=;
本题主要考查了分式的化简求值,掌握分式的化简求值是解题的关键.
16、(1)y=﹣x+,y=;(2)12;(3) x<﹣2或0<x<4.
【解析】
(1)将点A坐标代入解析式,可求解析式;(2)一次函数和反比例函数解析式组成方程组,求出点B坐标,即可求△ABF的面积;(3)直接根据图象可得.
【详解】
(1)∵一次函数y=﹣x+b的图象与反比例函数y= (k≠0)图象交于A(﹣3,2)、B两点,
∴3=﹣×(﹣2)+b,k=﹣2×3=﹣6
∴b=,k=﹣6
∴一次函数解析式y=﹣,反比例函数解析式y=.
(2)根据题意得: ,
解得: ,
∴S△ABF=×4×(4+2)=12
(3)由图象可得:x<﹣2或0<x<4
本题考查了反比例函数图象与一次函数图象的交点问题,待定系数法求解析式,熟练运用函数图象解决问题是本题的关键.
17、(1);(2)△POA是等边三角形,理由见解析;(3)当0<t≤4时,,当4<t<8时,
【解析】
(1)将两直线的解析式联立组成方程组,解得x、y的值即为两直线的交点坐标的横纵坐标;
(2)求得直线AP与x轴的交点坐标(4,0),利用OP=4PA=4得到OA=OP=PA从而判定△POA是等边三角形;
(3)分别求得OF和EF的值,利用三角形的面积计算方法表示出三角形的面积即可.
【详解】
解:(1)解方程组,
解得:.
∴点P的坐标为:;
(2)当y=0时,x=4,
∴点A的坐标为(4,0).
∵,
∴OA=OP=PA,
∴△POA是等边三角形;
(3)①当0<t≤4时,如图,在Rt△EOF中,
∵∠EOF=60°,OE=t,
∴EF=,OF=,
∴.
当4<t<8时,如图,设EB与OP相交于点C,
∵CE=PE=t-4,AE=8-t,
∴AF=4-,EF=,
∴OF=OA-AF=4-(4-)=,
∴
=;
综合上述,可得:当0<t≤4时,;当4<t<8时,.
本题主要考查了一次函数的综合知识,解题的关键是正确的利用一次函数的性质求与坐标轴的交点坐标并转化为线段的长.
18、(1)详见解析;(2)详见解析;(3)详见解析.
【解析】
(1)连接BF,证明Rt△BCF≌Rt△BEF,根据全等三角形的性质即可证得CF=EF;(2)连接BF,证明Rt△BCF≌Rt△BEF,根据全等三角形的性质可得CF=EF,由此即可证得结论;(3)连接BF,证明Rt△BCF≌Rt△BEF,根据全等三角形的性质可得CF=EF,由此即可证得结论.
【详解】
(1)证明:如图1,连接BF,
∵△ABC≌△DBE,
∴BC=BE,
∵∠ACB=∠DEB=90°,
在Rt△BCF和Rt△BEF中,
,
∴Rt△BCF≌Rt△BEF(HL),
∴CF=EF;
(2)如图2,连接BF,
∵△ABC≌△DBE,
∴BC=BE, AC=DE,
∵∠ACB=∠DEB=90°,
在Rt△BCF和Rt△BEF中,
,
∴Rt△BCF≌Rt△BEF(HL),
∴EF=CF,
∴AF+EF=AF+CF=AC=DE;
(3)如图3,连接BF,
∵△ABC≌△DBE,
∴BC=BE,AC=DE,
∵∠ACB=∠DEB=90°,
∴△BCF和△BEF是直角三角形,
在Rt△BCF和Rt△BEF中,
,
∴Rt△BCF≌Rt△BEF(HL),
∴CF=EF,
∵AC=DE,
∴AF=AC+FC=DE+EF.
本题考查了全等三角形的性质与判定,证明Rt△BCF≌Rt△BEF是解决问题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
绝对值<1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【详解】
0.000000054这个数用科学记数法表示为.
故答案为:
考查科学记数法,掌握绝对值小于1的数的表示方法是解题的关键.
20、2.5
【解析】
根据题意,△ABC是直角三角形,延长DI交AC于点E,过I作IF⊥AB,IG⊥BC,由点I是内心,则,利用等面积的方法求得,然后利用平行线分线段成比例,得,又由BD=DI,把数据代入计算,即可得到DI的长度.
【详解】
解:如图,延长DI交AC于点E,过I作IF⊥AB,IG⊥BC,
在△ABC中,AB=10,CA=8,BC=6,
∴,
∴△ABC是直角三角形,即AC⊥BC,
∵DI∥BC,
∴DE⊥AC,
∵∠BAC的平分线与∠BCA的平分线交于点I,
∴点I是三角形的内心,则,
在△ABC中,根据等面积的方法,有
,设
即,
解得:,
∵DI∥BC,
∴,∠DIB=∠CBI=∠DBI,
∴DI=BD,
∴,
解得:BD=2.5,
∴DI=2.5;
故答案为:2.5.
本题考查了三角形的角平分线性质,平行线分线段成比例,以及等面积法计算高,解题的关键是利用等面积法求得内心到各边的距离,以及掌握平行线分线段成比例的性质.
21、1
【解析】
由于水塘里有鲤鱼、鲢鱼共10000尾,而鲤鱼出现的频率为0.36,由此得到水塘有鲢鱼的频率,然后乘以总数即可得到水塘有鲢鱼又多少尾.
【详解】
∵水塘里有鲤鱼、鲢鱼共10000尾,
一渔民通过多次捕捞实验后发现,鲤鱼出现的频率为0.36,
∴鲢鱼出现的频率为64%,
∴水塘有鲢鱼有10000×64%=1尾.
故答案是:1.
考查了利用频率估计概率的思想,首先通过实验得到事件的频率,然后即可估计事件的概率.
22、﹣1
【解析】
直接将要求值的代数式提取公因式ab,进而把已知数据代入求出答案.
【详解】
∵ab=-1,a+b=1,
∴a1b+ab1=ab(a+b)
=-1×1
=-1.
故答案为-1.
此题主要考查了提取公因式法分解因式,正确分解因式是解题关键.
23、1.
【解析】
先通分,再化简,最后代值即可得出结论.
【详解】
∵x=2018,
∴
=
=
=
=x﹣1
=2018﹣1
=1,
故答案为:1.
此题主要考查了分式的加减,找出最简公分母是解本题的关键.
二、解答题(本大题共3个小题,共30分)
24、 (1) ;(2).
【解析】
(1)原式第一项利用多项式乘以多项式法则计算,第二项利用多项式除以单项式法则计算即可得到结果;
(2)原式提取公因式,再利用完全平方公式分解即可.
【详解】
(1)原式=2a2−2ab+ab−b2−2a2+ab=−b2;
(2)原式=-xy(x2-4xy+4y2)=−xy(x−2y)2.
本题考查的知识点是整式的混合运算, 提公因式法与公式法的综合运用,解题的关键是熟练的掌握整式的混合运算, 提公因式法与公式法的综合运用.
25、(1)点的坐标为;(2);(3),
,,
【解析】
(1)过点作,由“”可证,可得,,即可求点坐标;
(2)由(1)可知,设OP=x,则可得M点坐标为(4+x,x),由直线OB解析式可得N(x,x),即可知MN=4,由一组对边平行而且相等的四边形是平行四边形即可证明四边形是平行四边形,进而可求与的函数关系式;
(3)首先画出符合要求的点的图形,共分三种情况,第一种情况:当为底边时,第二种情况:当M为顶点为腰时,第三种情况:当N为顶点为腰时,然后根据图形特征结合勾股定理求出各种情况点的坐标即可解答.
【详解】
解:(1)如图,过点作,
,且
,且,
,
点坐标为
故答案为
(2)由(1)可知
,
点坐标为
四边形是边长为4的正方形,
点
直线的解析式为:
,交于点,
点坐标为
,且
四边形是平行四边形
(3)在轴正半轴上存在点,使得是等腰三角形,
此时点的坐标为:,,,,,,其中,
理由:当(2)可知,,,轴,所以共分为以下几种请:
第一种情况:当为底边时,作的垂直平分线,与轴的交点为,如图2所示
,
,
第二种情况:如图3所示,
当M为顶点为腰时,以为圆心,的长为半径画弧交轴于点、,连接、,
则,
,
,
,,
,
,
,;
第三种情况,当以N为顶点、为腰时,以为圆心,长为半径画圆弧交轴正半轴于点,
当时,如图4所示,
则,
,
即,.
当时,
则,此时点与点重合,舍去;
当时,如图5,以为圆心,为半径画弧,与轴的交点为,.
的坐标为:,.
,
,
所以,综上所述,,,,,,,使是等腰三角形.
本题考查四边形综合题,解题的关键是明确题意,画出相应的图象,找出所求问题需要的条件,利用数形结合的思想解答问题.
26、(1)A型:100元,B型:150元;(2)①y=-50x+15000;②34台A型电脑和66台B型,利润最大,最大利润是1元
【解析】
(1)设每台A型电脑销售利润为a元,每台B型电脑的销售利润为b元;然后根据销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元列出方程组,然后求解即可;
(2)①根据总利润等于两种电脑的利润之和列式整理即可得解;
②根据B型电脑的进货量不超过A型电脑的2倍列不等式求出x的取值范围,然后根据一次函数的增减性求出利润的最大值即可.
【详解】
解:(1)设每台A型电脑销售利润为a元,每台B型电脑的销售利润为b元;
根据题意得,
解得.
答:每台A型电脑销售利润为100元,每台B型电脑的销售利润为150元;
(2)①根据题意得,y=100x+150(100-x),
即y=-50x+15000;
②据题意得,100-x≤2x,
解得x≥33,
∵y=-50x+15000,
∴y随x的增大而减小,
∵x为正整数,
∴当x=34时,y取最大值,则100-x=66,
此时最大利润是y=-50×34+15000=1.
即商店购进34台A型电脑和66台B型电脑的销售利润最大,最大利润是1元.
本题考查了一次函数的应用,二元一次方程组的应用,一元一次不等式的应用,读懂题目信息,准确找出等量关系列出方程组是解题的关键,利用一次函数的增减性求最值是常用的方法,需熟练掌握.
题号
一
二
三
四
五
总分
得分
每天使用零花钱的情况
单位(元)
2
3
4
5
人数
1
5
2
2
2025届内蒙古自治区鄂尔多斯市准格尔旗数学九上开学质量跟踪监视试题【含答案】: 这是一份2025届内蒙古自治区鄂尔多斯市准格尔旗数学九上开学质量跟踪监视试题【含答案】,共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届内蒙古鄂尔多斯市名校数学九上开学联考试题【含答案】: 这是一份2025届内蒙古鄂尔多斯市名校数学九上开学联考试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届内蒙古鄂尔多斯市达拉特旗第十二中学九上数学开学达标检测模拟试题【含答案】: 这是一份2025届内蒙古鄂尔多斯市达拉特旗第十二中学九上数学开学达标检测模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。