2025届内蒙古通辽市科尔沁区第七中学九年级数学第一学期开学联考试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,A、B两点被一座山隔开,M、N分别是AC、BC中点,测量MN的长度为40m,那么AB的长度为( )
A.40mB.80mC.160mD.不能确定
2、(4分)如图,梯子靠在墙上,梯子的底端到墙根的距离为米,梯子的顶端到地面距离为米.现将梯子的底端向外移动到,使梯子的底端到墙根的距离等于米,同时梯子的顶端下降至,那么的值( )
A.小于米B.大于米C.等于米D.无法确定
3、(4分)已知,则的大小关系是( )
A.B.C.D.
4、(4分)用反证法证明:“直角三角形至少有一个锐角不小于45°”时,应先假设( )
A.直角三角形的每个锐角都小于45°
B.直角三角形有一个锐角大于45°
C.直角三角形的每个锐角都大于45°
D.直角三角形有一个锐角小于45°
5、(4分)如图所示,在中,,、是斜边上的两点,且,将绕点按顺时针方向旋转后得到,连接.有下列结论:①;②;③;④其中正确的有( )
A.①②③④B.②③C.②③④D.②④
6、(4分)下列条件中,不能判定四边形ABCD是平行四边形的是( )
A.AB∥CD,AD=BCB.AB∥CD,∠B=∠D
C.AB=CD,AD=BCD.AB∥CD,AB=CD
7、(4分)把代数式2x2﹣18分解因式,结果正确的是( )
A.2(x2﹣9)B.2(x﹣3)2
C.2(x+3)(x﹣3)D.2(x+9)(x﹣9)
8、(4分)如图,在△ABC中,∠C=90°,点E是斜边AB的中点,ED⊥AB,且∠CAD:∠BAD=5:2,则∠BAC=( )
A.60°B.70°C.80°D.90°
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)若一直角三角形的两边长为4、5,则第三边的长为________ .
10、(4分)已知点关于轴的对称点为,且在直线上,则____.
11、(4分)一次函数图象经过一、三、四象限,则反比例函数的函数值随的增大而__________.(填增大或减小)
12、(4分)若关于若关于x的分式方程的解为正数,那么字母a的取值范围是___.
13、(4分)化简:+=___.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在平面直角坐标系中,直线y=x+与反比例函数y=(x<0)的图象交于A(-4,a)、B(-1,b)两点,AC⊥x轴于C,BD⊥y轴于D.
(1)求a 、b及k的值;
(2)连接OA,OB,求△AOB的面积.
15、(8分)计算:(1)÷-×+ ;(2)(-1)101+(π-3)0+-.
16、(8分)解下列不等式组,并把它的解集表示在数轴上:
17、(10分)点D是等边三角形ABC外一点,且DB=DC,∠BDC=120°,将一个三角尺60°角的顶点放在点D上,三角尺的两边DP,DQ分别与射线AB,CA相交于E,F两点.
(1)当EF∥BC时,如图①所示,求证:EF=BE+CF.
(2)当三角尺绕点D旋转到如图②所示的位置时,线段EF,BE,CF之间的上述数量关系是否成立?如果成立,请说明理由;如果不成立,写出EF,BE,CF之间的数量关系,并说明理由.
(3)当三角尺绕点D继续旋转到如图③所示的位置时,(1)中的结论是否发生变化?如果不变化,直接写出结论;如果变化,请直接写出EF,BE,CF之间的数量关系.
18、(10分)如图,正比例函数的图象与反比例函数的图象交于,两点,其中点的横坐标为.
(1)求的值.
(2)若点是轴上一点,且,求点的坐标.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)分解因式:______.
20、(4分)请你写出一个有一根为0的一元二次方程:______.
21、(4分)如图,在矩形中,,点和点分别从点和点同时出发,按逆时针方向沿矩形的边运动,点和点的速度分别为和,当四边形初次为矩形时,点和点运动的时间为__________.
22、(4分)如图,一束光线从y轴上的点A(0,1)出发,经过x轴上的点C反射后经过点B(6,2),则光线从A点到B点经过的路线长度为 .
23、(4分)抛掷一枚质地均匀的骰子1次,朝上一面的点数不小于3的概率是_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)在平面直角坐标系中,的位置如图所示(每个小方格都是边长为个单位长度的正方形).
(1)将沿轴方向向左平移个单位,画出平移后得到的;
(2)将绕着点顺时针旋转,画出旋转后得到的.
25、(10分)计算
(1)
(2)
26、(12分)如图,已知△ABC是等边三角形,点D、B、C、E在同一条直线上,且∠DAE=120°,求证:BC2=CE•DB.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
根据三角形中位线定理计算即可
【详解】
∵M、N分别是AC、BC中点,
∴NM是△ACB的中位线,
∴AB=2MN=80m,
故选:B.
此题考查三角形中位线定理,解题关键在于掌握运算法则
2、A
【解析】
由题意可知OA=2,OB=7,先利用勾股定理求出AB,梯子移动过程中长短不变,所以AB=A′B′,又由题意可知OA′=3,利用勾股定理分别求OB′长,把其相减得解.
【详解】
解:在直角三角形AOB中,因为OA=2,OB=7
由勾股定理得:AB=,
由题意可知AB=A′B′=,
又OA′=3,根据勾股定理得:OB′=2,
∴BB′=7-2<1.
故选A.
本题考查了勾股定理的应用,解题时注意勾股定理应用的环境是在直角三角形中.
3、B
【解析】
先根据幂的运算法则进行计算,再比较实数的大小即可.
【详解】
,
,
,
.
故选:.
此题主要考查幂的运算,准确进行计算是解题的关键.
4、A
【解析】
分析:找出原命题的方面即可得出假设的条件.
详解:有一个锐角不小于45°的反面就是:每个锐角都小于45°,故选A.
点睛:本题主要考查的是反证法,属于基础题型.找到原命题的反面是解决这个问题的关键.
5、C
【解析】
利用旋转性质可得∠DAF=90°,△AFB≌△ADC.再根据全等三角形的性质对②④判断即可,根据可求,即可判断③正确.
【详解】
解:∵△ADC绕A顺时针旋转90°后得到△AFB,
∴△AFB≌△ADC,
∴∠BAF=∠CAD,BF=CD,故②④正确;
由旋转旋转可知∠DAF=90°,又∵,∴∠EAF=∠DAF-∠DAE=90°-45°=45°=∠DAE 故③正确;
无法判断BE=CD,故①错误.
故选:C.
本题考查了旋转的性质:旋转前后两图形全等,解题的关键是熟练掌握旋转的基本性质,找出图形对应关系.属于中考常考题型.
6、A
【解析】
根据平行四边形的判定定理分别进行分析即可.
【详解】
解:A.不能判定四边形ABCD是平行四边形,四边形可能是等腰梯形,故此选项符合题意;
B.AB∥CD,可得∠A+∠D=180°,因为∠B=∠D,∠A+∠B=180°,所以AD∥BC,根据两组对边分别平行的四边形是平行四边形,可判定四边形ABCD是平行四边形,故此选项不合题意;
C.根据两组对边分别相等的四边形是平行四边形,可判定四边形ABCD是平行四边形,故此选项不合题意;
D.根据一组对边平行且相等的四边形是平行四边形,可判定四边形ABCD是平行四边形,故此选项不合题意;
故选:A.
此题主要考查了平行四边形的判定,关键是掌握(1)两组对边分别平行的四边形是平行四边形.(2)两组对边分别相等的四边形是平行四边形.(3)一组对边平行且相等的四边形是平行四边形.(4)两组对角分别相等的四边形是平行四边形.(5)对角线互相平分的四边形是平行四边形.
7、C
【解析】
试题分析:首先提取公因式2,进而利用平方差公式分解因式得出即可.
解:2x2﹣18=2(x2﹣9)=2(x+3)(x﹣3).
故选C.
考点:提公因式法与公式法的综合运用.
8、B
【解析】
点E是斜边AB的中点,ED⊥AB,∠B=∠DAB, ∠DAB=2x,
故2x+2x+5x=90°,故 x=10°,∠BAC=70°.
故选B.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、 或1
【解析】
解:当4和5都是直角边时,则第三边是 ;
当5是斜边时,则第三边是 ;
故答案是:和1.
10、
【解析】
根据点P的坐标可求出点P′的坐标,再利用一次函数图象上点的坐标特征可得到关于k的一元一次方程,解之即可求出k值.
【详解】
解:∵点关于轴的对称点为
∴点P'的坐标为(1,-2)
∵点P'在直线上,
∴-2=k+3
解得:k=-5 ,
故答案为:-5.
本题考查了一次函数图象上点的坐标特征,关于x轴、y轴对称的点的坐标,掌握待定系数法求一次函数解析式是解题的关键.
11、增大
【解析】
根据一次函数图象经过一、三、四象限,可以得出>0,b<0,则反比例函数的系数,结合x>0即可得到结论.
【详解】
∵一次函数图象经过一、三、四象限,
∴>0,b<0,
∴,
∴又x>0,
∴反比例函数图象在第四象限,且y随着x的增大而增大,
故答案为:增大.
本题考查了一次函数的图象和性质,反比例函数的图象和性质,掌握一次函数,反比例函数的图象和性质是解题的关键.
12、a>1且a≠2
【解析】
分式方程去分母得:2x﹣a=x﹣1,解得:x=a﹣1,
根据题意得:a﹣1>0,解得:a>1.
又当x=1时,分式方程无意义,∴把x=1代入x=a﹣1得a=2.
∴要使分式方程有意义,a≠2.
∴a的取值范围是a>1且a≠2.
13、1
【解析】
分式的加减运算中,如果是同分母分式,那么分母不变,把分子直接相加减即可.
解答:解:原式==1.
点评:本题考查了分式的加减运算.最后要注意将结果化为最简分式.
三、解答题(本大题共5个小题,共48分)
14、(1)a=,b=2,k= -2 ;(2)S△AOB =
【解析】
(1)把A、B两点坐标代入直线解析式求出a,b的值,从而确定A、B两点坐标,再把A(或B)点坐标代入双曲线解析式求出k的值即可;
(2)设直线AB分别交x轴、y轴于点E,F,根据S△AOB=S△EOF-S△AEO-S△BFO求解即可.
【详解】
(1)将点A(-4,a)、B(-1,b)分别代入表达式中,得:
;,
∴A(-4,)、B(-1,2)
将B(-1,2)代入y=中,得k=-2
所以a=,b=2,k= -2
(2)设直线AB分别交x轴、y轴于点E,F,如图,
对于直线,分别令y=0,x=0,解得:
X=-5,y=,
∴E(-5,0),F(0,)
由图可知:
S△AEO=×OE×AC=,S△BFO=×OF×BD=,
S△EOF=×OE×OF=
∴S△AOB= S△EOF- S△AEO -S△BFO=
本题主要考查了反比例函数与一次函数的交点问题,需要掌握根据待定系数法求函数解析式的方法.解答此类试题的依据是:①求一次函数解析式需要知道直线上两点的坐标;②根据三角形的面积及一边的长,可以求得该边上的高.
15、(1) (2)
【解析】
根据二次根式的性质化简,再合并同类二次根式即可.
根据乘方、0指数幂、负整数指数幂及二次根式的性质化简后,再合并即可.
【详解】
(1)÷-×+=
(2)(-1)101+(π-3)0+-=
本题考查的是二次根式的性质及实数的运算,掌握二次根式的性质及乘方、0指数幂、负整数指数幂是关键.
16、原不等式组的解集为2≤x<1,表示见解析.
【解析】
先求出每个不等式的解集,再根据找不等式组解集的规律找出不等式组的解集即可.
【详解】
解:解不等式1x+1>5(x﹣1),得:x<1,解不等式x﹣6≥,得:x≥2,在同一条数轴上表示不等式的解集为:
所以原不等式组的解集为2≤x<1.
本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
17、(1)见解析;(2)结论仍然成立.理由见解析;(3)结论发生变化.EF=CF-BE.
【解析】
(1)根据△ABC是等边三角形知道AB=AC,∠ABC=∠ACB=60°,而DB=DC,∠BDC=120°,这样可以得到△DCF和△BED是直角三角形,由于EF∥BC,可以证明△AEF是等边三角形,也可以证明△BDE≌△CDF,可以得到DE=DF,由此进一步得到
DE=DF∠BDE=∠CDF=30°,这样可以得到BE=DE=DF=CF,而△DEF是等边三角形,所以题目的结论就可以证明出来了;(2)结论仍然成立.如图,在AB的延长线上取点F’,使BF’=CF,连接DF’,根据(1)的结论可以证明△DCF≌△DBF’,根据全等三角形的性质可以得到DF=DF’,∠BDF’=∠CDF,又∠BDC=120°,∠EDF=60°,可以得到:∠EDF’=∠CDF=60°,由此可以证明△EDF’≌△EDF,从而证明题目的结论;(3)结论发生变化. EF=BE-CF.如图,在射线AB上取点F′,使BF′=CF,连接DF′.由(1)得△DCF≌△DBF′(SAS).根据全等三角形的性质可以得到DF=DF′,∠BDF′=∠CDF.又因为∠BDC=120°,∠EDF=60°,可以得到∠FDB+∠CDF=60°,∠FDB+∠BDF′=∠FDF′=120°,所以∠EDF′=∠EDF=60°,由此可得△EDF′≌△EDF(SAS),从而证明题目的结论EF=EF′=BF′- BE=CF- BE。
【详解】
(1)证明:∵△ABC是等边三角形,
∴AB=AC,∠ABC=∠ACB=60°.
∵DB=DC,∠BDC=120°,
∴∠DBC=∠DCB=30°.
∴∠DBE=∠DBC+∠ABC=90°,
∠DCF=∠DCB+∠ACB=90°.
∵EF∥BC,∴∠AEF=∠ABC=60°,
∠AFE=∠ACB=60°.∴AE=AF.
∴BE=AB-AE=AC-AF=CF.
又∵DB=DC,∠DBE=∠DCF=90°,
∴△BDE≌△CDF.
∴DE=DF,∠BDE=∠CDF=(120°-60°)=30°.
∴BE=DE=DF=CF.
∵∠EDF=60°,∴△DEF是等边三角形,
即DE=DF=EF.
∴BE+CF=DE+DF=EF,
即EF=BE+CF.
(2)解:结论仍然成立.
理由如下:如图,在射线AB上取点F′,
使BF′=CF,连接DF′.
由(1)得∠DBE=∠DCF=90°,
则∠DBF′=∠DCF=90°.
又∵BD=CD,
∴△DCF≌△DBF′(SAS).
∴DF=DF′,∠BDF′=∠CDF.
又∵∠BDC=120°,∠EDF=60°,
∴∠EDB+∠CDF=60°.
∴∠EDB+∠BDF′=∠EDF′=60°.
∴∠EDF′=∠EDF.
又∵DE=DE,
∴△EDF′≌△EDF(SAS).
∴EF=EF′=BE+BF′=BE+CF.
(3)解:结论发生变化.EF=CF-BE.
理由:在射线AB上取点F′,
使BF′=CF,连接DF′.
由(1)得∠DBA=∠DCF=90°,
则∠DBF′=∠DCF=90°.
又∵BD=CD,
∴△DCF≌△DBF′(SAS).
∴DF=DF′,∠BDF′=∠CDF.
又∵∠BDC=120°,∠EDF=60°,
∴∠FDB+∠CDF=60°.
∴∠FDB+∠BDF′=∠FDF′=120°.
∴∠EDF′=∠EDF=60°.
又∵DE=DE,DF=DF′,
∴△EDF′≌△EDF(SAS).
∴EF=EF′=BF′- BE=CF- BE。
此题考查等边三角形的性质及全等三角形的判定及性质;利用等边三角形的性质去探究全等三角形,利用全等三角形的性质解决题目的图形变换规律是非常重要的,要注意掌握.
18、(1)k=2;(2)P点的坐标为或.
【解析】
(1)把代入正比例函数的图象求得纵坐标,然后把的坐标代入反比例函数,即可求出的值;
(2)因为、关于点对称,所以,即可求得,然后根据三角形面积公式列出关于的方程,解方程即可求得.
【详解】
解:(1)正比例函数的图象经过点,点的横坐标为.
,
点,
∵反比例函数的图象经过点,
;
(2),
,
设,则,
,即,
点的坐标为或.
本题考查的是反比例函数的图象与一次函数图象的交点问题,三角形的面积等知识点,利用数形结合是解答此题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
根据因式分解的定义:将多项式和的形式转化为整式乘积的形式;先提公因式,再套用完全平方公式即可求解.
【详解】
,
=,
=,
故答案为:.
本题主要考查因式分解,解决本题的关键是要熟练掌握因式分解的定义和方法.
20、
【解析】
根据一元二次方程定义,只要是一元二次方程,且有一根为0即可.
【详解】
可以是,=0等.
故答案为:
本题考核知识点:一元二次方程的根. 解题关键点:理解一元二次方程的意义.
21、1
【解析】
根据矩形的性质,可得BC与AD的关系,根据矩形的判定定理,可得BP=AQ,构建一元一次方程,可得答案.
【详解】
解;设最快x秒,四边形ABPQ成为矩形,由BP=AQ得
3x=20−2x.
解得x=1,
故答案为:1.
本题考查了一元一次方程的应用,能根据矩形的性质得出方程是解此题的关键.
22、3
【解析】
解:如图,过点B作BD⊥x轴于点D,根据已知条件易得△AOC∽△BDC,
根据相似三角形对应边的比相等可得,
又因点A(0,1),点B(6,2),
可得0A=1,BD=2,OD=6,
代入即可求得OC=2,CD=4,
由勾股定理求得AC=,BD=2,
即可得光线从A点到B点经过的路线长度为3.
考点:相似三角形的应用;坐标与图形性质.
23、
【解析】
由题意知共有6种等可能结果,朝上一面的点数不小于3的有4种结果,利用概率公式计算可得.
【详解】
解:∵抛掷一枚质地均匀的骰子1次共有6种等可能结果,朝上一面的点数不小于3的有4种结果,
所以朝上一面的点数不小于3的概率是=,
故答案为:.
此题考查了概率公式的应用.解题时注意:概率=所求情况数与总情况数之比.
二、解答题(本大题共3个小题,共30分)
24、(1)见解析;(1)见解析。
【解析】
(1)利用点平移的规律写出点A、B、C的对应点A1、B1、C1的坐标,然后描点即可得到△A1B1C1;
(1)利用网格特点和旋转的性质画出点B、C的对应点B1、C1,从而得到△AB1C1.
【详解】
解:(1)如图,△A1B1C1即为所求;
(1)如图,△AB1C1即为所求.
本题考查了作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了平移变换.
25、.(1) ; (2)
【解析】
(1)首先将二次根式化为最简二次根式,然后根据二次根式的乘除运算法则计算即可;
(2)首先将二次根式化为最简二次根式,然后根据二次根式的乘除运算法则计算即可.
【详解】
解:(1)原式=;
(2)原式=..
本题考查二次根式的乘除运算,解题的关键是熟练运用二次根式的性质和运算法则.
26、见解析
【解析】
根据等边三角形的性质得到∠ABC=∠ACB=∠BAC=60°.推出∠D=∠CAE,∠E=∠DAB,根据相似三角形的判定和性质即可得到结论.
【详解】
解:∵是等边三角形
∴
∴,
∵
∴
∴,
∴
∴
∵
∴
本题重点考查了相似三角形的判定和性质,充分利用已知条件并结合图形找到两组对应角相等是解题的关键.
题号
一
二
三
四
五
总分
得分
2025届内蒙古通辽市库伦旗数学九年级第一学期开学联考模拟试题【含答案】: 这是一份2025届内蒙古通辽市库伦旗数学九年级第一学期开学联考模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
内蒙古通辽市科尔沁区第七中学2023-2024学年九年级数学第一学期期末检测模拟试题含答案: 这是一份内蒙古通辽市科尔沁区第七中学2023-2024学年九年级数学第一学期期末检测模拟试题含答案,共7页。试卷主要包含了考生要认真填写考场号和座位序号,一元二次方程等内容,欢迎下载使用。
内蒙古通辽市科尔沁区第七中学2023-2024学年八上数学期末学业水平测试试题含答案: 这是一份内蒙古通辽市科尔沁区第七中学2023-2024学年八上数学期末学业水平测试试题含答案,共7页。试卷主要包含了下列计算正确的是,下列整式的运算中,正确的是等内容,欢迎下载使用。