2025届内蒙古自治区呼和浩特市回民区数学九年级第一学期开学质量检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如果一组数据,,0,1,x,6,9,12的平均数为3,则x为
A.2B.3C.D.1
2、(4分)下列关于x的方程是一元二次方程的是
A.B.
C.D.
3、(4分)温州某企业车间有50名工人,某一天他们生产的机器零件个数统计如下表:
表中表示零件个数的数据中,众数是( )
A.5个B.6个C.7个D.8个
4、(4分)不等式的解集为( )
A.B.C.D.
5、(4分)若一组数据3、4、5、x、6、7的平均数是5,则x的值是( )
A.4B.5C.6D.7
6、(4分)如图,在中,点、分别是、的中点,如果,那么的长为( ).
A.4B.5C.6D.7
7、(4分)点P的坐标为(﹣3,2),把点P向右平移2个单位后再向下平移5个单位得到点P1,则点P1的坐标为( )
A.(﹣1,2)B.(﹣5,﹣3)C.(﹣1,﹣3)D.(﹣1,7)
8、(4分)如图,在中,D是BC边的中点,AE是的角平分线,于点E,连接DE,若,,则AC的长度是( )
A.5B.4C.3D.2
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)命题“全等三角形的对应角相等”的逆命题是____________________________这个逆命题是______(填“真”或“假”)
10、(4分)如图,AF是△ABC的高,点D.E分别在AB、AC上,且DE||BC,DE交AF于点G,AD=5,AB=15,AC=12,GF=6.求AE=____;
11、(4分)因式分解:____.
12、(4分)一个有进水管与出水管的容器,从某时刻开始,2min内只进水不出水,在随后的4min内既进水又出水,每分钟的进水量和出水量是两个常数,容器内的水量y(单位:L)与时间x(单位:min)之间的关系如图所示,则每分钟出水____________升.
13、(4分)已知一次函数与反比例函数中,函数、与自变量x的部分对应值分别如表1.表2所示:
则关于x的不等式的解集是__________。
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在中,,平分,交于点,交的延长线于点,交于点.
(1)求证:四边形为菱形;
(2)若,,求的长.
15、(8分)如图,在平面直角坐标系中,矩形的顶点在轴的正半轴上,顶点在轴的正半轴上,是边上的一点,,.反比例函数在第一象限内的图像经过点,交于点,.
(1)求这个反比例函数的表达式,
(2)动点在矩形内,且满足.
①若点在这个反比例函数的图像上,求点的坐标,
②若点是平面内一点,使得以、、、为顶点的四边形是菱形,求点的坐标.
16、(8分)已知如图,O为平行四边形ABCD的对角线AC的中点,EF经过点O,且与AB交于E,与CD 交于F.
求证:四边形AECF是平行四边形.
17、(10分)如图1,以矩形的顶点为原点,所在直线为轴,所在直线为轴,建立平面直角坐标系,顶点为点的抛物线经过点,点.
(1)写出抛物线的对称轴及点的坐标,
(2)将矩形绕点顺时针旋转得到矩形.
①当点恰好落在的延长线上时,如图2,求点的坐标.
②在旋转过程中,直线与直线分别与抛物线的对称轴相交于点,点.若,求点的坐标.
18、(10分)如图,在Rt△ABC中,∠C=90°,AC=5,AB=13,求BC.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,把放在平面直角坐标系中,,,点A、B的坐标分别为、,将沿x轴向右平移,当点C落在直线上时,线段BC扫过的面积为______.
20、(4分)如图,在平行四边形ABCD中,AD=5,AB=3,BE平分∠ABC,则DE=_____.
21、(4分)在平面直角坐标系xOy中,第三象限内有一点A,点A的横坐标为﹣2,过A分别作x轴、y轴的垂线,垂足为M、N,矩形OMAN的面积为6,则直线MN的解析式为_____.
22、(4分)已知点M(m,3)在直线上,则m=______.
23、(4分)如图,AO=OC,BD=16cm,则当OB=___cm时,四边形ABCD是平行四边形.
二、解答题(本大题共3个小题,共30分)
24、(8分)已知一次函数y=kx+b的图象经过点A(-3,-2)及点B(0,4).
(1)求此一次函数的解析式;
(2)当y=-5时求x的值;
(3)求此函数图象与两坐标轴所围成的三角形的面积.
25、(10分)已知一次函数y=kx-4,当x=2时,y=-3.
(1)求一次函数的表达式;
(2)将该函数的图像向上平移6个单位长度,求平移后的图像与x轴交点的坐标.
26、(12分)消费者在网店购物后,将从“好评、中评、差评”中选择一种作为对卖家的评价,假设这三种评价是等可能的,若小明、小亮在某网店购买了同一商品,且都给出了评价,则两人中至少有一个给“好评”的概率为( )
A.B.C.D.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
根据算术平均数的公式:可得:,进而可得:,解得:x=1.
【详解】
因为一组数据,,0,1,x,6,9,12的平均数为3,
所以,
所以,
所以x=1.
故选D.
本题主要考查算术平均数的计算公式,解决本题的关键是要熟练掌握算术平均数的计算公式.
2、C
【解析】
只含有一个未知数,且未知数的最高次数是2的整式方程叫做一元二次方程一元二次方程有三个特点:只含有一个未知数;未知数的最高次数是2;是整式方程.
【详解】
A、是一元一次方程,故A不符合题意;
B、时是一元一次方程,故B不符合题意;
C、是一元二次方程,故C符合题意;
D、是二元二次方程,故D不符合题意;
故选:C.
此题主要考查了一元二次方程的定义,要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理如果能整理为的形式,则这个方程就为一元二次方程.
3、C
【解析】
解:数字7出现了22次,为出现次数最多的数,故众数为7个,
故选C.
本题考查众数.
4、B
【解析】
先去括号,再移项,然后合并同类项,最后系数化为1,即可得出答案.
【详解】
解:
6x+15>8x+6
6x-8x>6-15
-2x>-9
x<4.5
因此答案选择B.
本题主要考查了一元一次不等式的解法:去分母,去括号,移项,合并同类项,系数化为1.
5、B
【解析】
分析:根据平均数的定义计算即可;
详解:由题意(3+4+5+x+6+7)=5,
解得x=5,
故选B.
点睛:本题考查平均数的定义,解题的关键是根据平均数的定义构建方程解决问题
6、C
【解析】
根据三角形的中位线平行于第三边并且等于第三边的一半解答即可.
【详解】
解:∵点D、E分别是AB、AC的中点,
∴DE是△ABC的中位线,
∴BC=2DE=2×3=1.
故选C.
本题考查了三角形的中位线平行于第三边并且等于第三边的一半的性质,熟记定理是解题的关键.
7、C
【解析】
点P的坐标为(﹣3,2),把点P向右平移2个单位得点(-3+2,2),再向下平移5个单位得到点(-3+2,2-5).
【详解】
解:点P的坐标为(﹣3,2),把点P向右平移2个单位得(-3+2,2),再向下平移5个单位得到点P1(-3+2,2-5),即(-1,-3).
故选C
本题考核知识点:平移和点的坐标. 解题关键点:理解平移和点的坐标关系.
8、A
【解析】
延长CE,交AB于点F,通过ASA证明△EAF≌△EAC,根据全等三角形的性质得到AF=AC,EF=EC,根据三角形中位线定理得出BF=1,即可得出结果.
【详解】
解:延长CE,交AB于点F.
∵AE平分∠BAC,AE⊥CE,
∴∠EAF=∠EAC,∠AEF=∠AEC,
在△EAF与△EAC中,
∴△EAF≌△EAC(ASA),
∴AF=AC,EF=EC,
又∵D是BC中点,
∴BD=CD,
∴DE是△BCF的中位线,
∴BF=1DE=1.
∴AC=AF=AB-BF=7-1=5;
故选A.
此题考查的是三角形中位线定理、全等三角形的判定与性质等知识;熟练掌握三角形中位线定理,证明三角形全等是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、对应角相等的三角形是全等三角形 假
【解析】
把原命题的题设和结论作为新命题的结论和题设就得逆命题.
【详解】
命题“全等三角形的对应角相等”的逆命题是“对应角相等的三角形是全等三角形”;对应角相等的三角形不一定是全等三角形,这个逆命题是假命题.
故答案为(1). 对应角相等的三角形是全等三角形 (2). 假
本题考核知识点:互逆命题.解题关键点:注意命题的形式.
10、4
【解析】
证明△ADE∽△ABC,利用相似三角形的对应边的比相等即可求解;
【详解】
∵DE∥BC,
∴△ADE∽△ABC,
∴ ,即 ,
解得AE=4;
故答案为:4
此题考查相似三角形的判定与性质,难度不大
11、
【解析】
先提取4,然后利用平方差公式计算.
【详解】
原式=4(m2-9)=4(m+3)(m-3),
故答案是:4(m+3)(m-3)
考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键,一般有公因式会先提取公因式.
12、7.1
【解析】
出水量根据后4分钟的水量变化求解.
【详解】
解:根据图象,每分钟进水20÷2=10升,
设每分钟出水m升,则 10×(6-2)-(6-2)m=30-20,
解得:m=7.1.
故答案为:7.1
本题主要考查了函数图象的读图能力.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.
13、或
【解析】
根据表格中的数据可以求得一次函数与反比例函数的解析式,从而可以得到不等式的解集,本题得以解决.
【详解】
解:∵点(-4,-1)和点(2,3)在一次函数y1=k1x+b的图象上,
∴,得,
即一次函数y1=x+3,
∵点(1,4)在反比例函数的图象上,
,得k2=4,
即反比例函数,
令x+3=,得x1=1,x2=-4,
∴不等式的解集是x>1或-4<x<2,
故答案为:x>1或-4<x<2.
本题考查反比例函数的性质、一次函数的性质,解答本题的关键是明确题意,利用反比例函数的性质和一次函数的性质解答.
三、解答题(本大题共5个小题,共48分)
14、(1)详见解析;(2)
【解析】
1)先证出四边形AEGD是平行四边形,再由平行线的性质和角平分线证出∠ADE=∠AED,得出AD=AE,即可得出结论;
(2)连接AG交DF于H,由菱形的性质得出AD=DG,AG⊥DE,证出△ADG是等边三角形,AG=AD=2,得出∠ADH=30°,,由直角三角形的性质得出,得出,证出DG=BE,由平行线的性质得出∠EDG=∠FEB,∠DGE=∠C=∠EBF,证明△DGE≌△EBF得出DE=EF,即可得出结果.
【详解】
(1)证明:四边形是平行四边形,
,
,
,,
四边形是平行四边形,
平分,
,
,
,
四边形为菱形;
(2)解:连接交于,如图所示:
四边形为菱形,
,,
,,
是等边三角形,,
,,
,
,
,,,,
,,,
在和中,,
,
,
.
本题考查了菱形的判定与性质、平行四边形的性质、全等三角形的判定与性质、等腰三角形的判定、等边三角形的判定与性质、直角三角形的性质等知识;熟练掌握菱形的判定与性质是解题的关键.
15、(1);(2)① ;②
【解析】
(1)设点B的坐标为(m,n),则点E的坐标为(m,n),点D的坐标为(m−6,n),利用反比例函数图象上点的坐标特征可求出m的值,结合OC:CD=5:3可求出n值,再将m,n的值代入k=mn中即可求出反比例函数的表达式;
(2)由三角形的面积公式、矩形的面积公式结合S△PAO=S四边形OABC可求出点P的纵坐标.
①若点P在这个反比例函数的图象上,利用反比例函数图象上点的坐标特征可求出点P的坐标;
②由点A,B的坐标及点P的纵坐标可得出AP≠BP,进而可得出AB不能为对角线,设点P的坐标为(t,2),分AP=AB和BP=AB两种情况考虑:(i)当AB=AP时,利用勾股定理可求出t值,进而可得出点P1的坐标,结合P1Q1的长可求出点Q1的坐标;(ii)当BP=AB时,利用勾股定理可求出t值,进而可得出点P2的坐标,结合P2Q2的长可求出点Q2的坐标.综上,此题得解.
【详解】
解:(1)设点B的坐标为(m,n),则点E的坐标为(m,n),点D的坐标为(m−6,n).
∵点D,E在反比例函数的图象上,
∴k=mn=(m−6)n,
∴m=1.
∵OC:CD=5:3,
∴n:(m−6)=5:3,
∴n=5,
∴k=mn=×1×5=15,
∴反比例函数的表达式为y=;
(2)∵S△PAO=S四边形OABC,
∴OA•yP=OA•OC,
∴yP=OC=2.
①当y=2时,=2,
解得:x=,
∴若点P在这个反比例函数的图象上,点P的坐标为(,2).
②由(1)可知:点A的坐标为(1,0),点B的坐标为(1,5),
∵yP=2,yA+yB=5,
∴y P≠,
∴AP≠BP,
∴AB不能为对角线.
设点P的坐标为(t,2).
分AP=AB和BP=AB两种情况考虑(如图所示):
(i)当AB=AP时,(1−t)2+(2−0)2=52,
解得:t1=6,t2=12(舍去),
∴点P1的坐标为(6,2),
又∵P1Q1=AB=5,
∴点Q1的坐标为(6,1);
(ii)当BP=AB时,(1−t)2+(5−1)2=52,
解得:t3=1−2,t2=1+2(舍去),
∴点P2的坐标为(1−2,2).
又∵P2Q2=AB=5,
∴点Q2的坐标为(1−2,−1).
综上所述:点Q的坐标为(6,1)或(1−2,−1).
本题考查了反比例函数图象上点的坐标特征、三角形的面积、矩形的面积、菱形的性质以及勾股定理,解题的关键是:(1)利用反比例函数图象上点的坐标特征,求出点B的横纵坐标;(2)①由点P的纵坐标,利用反比例函数图象上点的坐标特征求出点P的坐标;②分AP=AB和BP=AB两种情况,利用勾股定理及菱形的性质求出点Q的坐标.
16、证明见解析.
【解析】
求证四边形AECF是平行四边形,只要求证OE=OF,根据对角线互相平分的四边形是平行四边形即可求证,依据△AOE≌△COF即可证明OE=OF.
【详解】
证明:∵平行四边形ABCD中AB∥CD,
∴∠OAE=∠OCF,
又∵OA=OC,∠COF=∠AOE,
∴△AOE≌△COF(ASA),
∴OE=OF,又∵OA=OC
∴四边形AECF是平行四边形.
本题考查平行四边形的判定与性质,熟练掌握性质是解题的关键.
17、(1)对称轴:直线,;(2)①;②,.
【解析】
(1)首先根据矩形的性质以及A、C点的坐标确定点B的坐标,再利用待定系数法确定该抛物线的解析式.
(2) ①连结证明即可解答
②用全等或面积法证得,再分情况解得即可
【详解】
解:(1)将y=0代入得C点的坐标为(0,1)则OC为1,则AB=1及B点的坐标为(2,1),再代入即可得对称轴:直线
(2)①连结,易知,
在和中,
②可用全等或面积法证得.(两张等宽纸条重叠部分为菱形)
情况1:,如图.
设,,
在中,
(舍去),
情况2:,如图.
此时点与点重合,
综上所述:,.
本题考查二次函数,熟练掌握计算法则是解题关键.
18、12
【解析】
在Rt△ABC中,∠C=90°,AC=5,AB=13,根据勾股定理,即可求出BC.
【详解】
解:∵在Rt△ABC中,∠C=90°,
∴
∴
∴
又∵AC=5,AB=13,
∴
=
=12
此题主要考查勾股定理的运用.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、14
【解析】
先求AC的长,即求C的坐标,由平移性质得,平移的距离,因此可求线段BC扫过的面积.
【详解】
点A、B的坐标分别为、,
,
在中,,,
,
,
由于沿x轴平移,点纵坐标不变,且点C落在直线上时,,
,
平移的距离为,
扫过面积,
故答案为:14
本题考查了一次函数图象上点的坐标特征,平移的性质,关键是找到平移的距离.
20、1
【解析】
根据平行四边形性质求出AD∥BC,由平行线的性质可得∠AEB=∠CBE,然后由角平分线的定义知∠ABE=∠AEB,所以∠ABE=∠AEB,即可得AB=AE,由此即可求出DE的长.
【详解】
∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠AEB=∠CBE.
∵BE平分∠ABC,
∴∠ABE=∠CBE,
∴∠ABE=∠AEB,
∴AB=AE=3,
∴DE=AD-AE=5-3=1.
故答案是:1.
本题考查了平行四边形性质、三角形的角平分线的定义,平行线的性质的应用,证得AB=AE是解题的关键.
21、y=﹣x﹣1
【解析】
确定M、N点的坐标,再利用待定系数法求直线MN的关系式即可.
【详解】
由题意得:OM=2,∴M(-2,0)
∵矩形OMAN的面积为6,
∴ON=6÷2=1,
∵点A在第三象限,
∴N(0,-1)
设直线MN的关系式为y=kx+b,(k≠0)将M、N的坐标代入得:
b=-1,-2k+b=0,
解得:k=-,b=-1,
∴直线MN的关系式为:y=-x-1
故答案为:y=-x-1.
考查待定系数法求一次函数的关系式,确定点的坐标是解决问题的关键.
22、2
【解析】
把点M代入即可求解.
【详解】
把点M代入,
即3=2m-1,解得m=2,
故填:2.
此题主要考查一次函数,解题的关键是熟知坐标与函数的关系.
23、1
【解析】
根据对角线互相平分的四边形是平行四边形可得OB=1cm时,四边形ABCD是平行四边形.
【详解】
当OB=1cm时,四边形ABCD是平行四边形,
∵BD=16cm,OB=1cm,
∴BO=DO,
又∵AO=OC,
∴四边形ABCD是平行四边形,
故答案为1.
本题考查了平行四边形的判定,熟练掌握平行四边形的判定方法是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、 (1) y=2x+4;(2);(3)4.
【解析】
试题分析:
(1)把点A、B的坐标代入列方程组求得的值即可求得一次函数的解析式;
(2)把代入(1)中所求得的解析式中,解方程可求得对应的的值;
(3)由解析式求得直线与轴的交点坐标,结合点B和原点就可求得直线与坐标轴围成的三角形的面积.
试题解析:
(1)将A(-3,-2),B(0,4)分别代入y=kx+b得 ,解得: ,
∴一次函数的解析式为:y=2x+4.
(2)在y=2x+4中,当y=-5时,2x+4=-5,解得x=-4.5;
(3)设直线和x轴交于点C,
∵在y=2x+4中,当y=0时,2x+4=0,解得x=-2,
∴点C(-2,0),
∴OC=2,
又∵OB=4,
∴S△OBC=OBOC=.
点睛:一次函数图象与坐标轴围成的三角形就是以图象与两坐标轴的交点和原点为顶点的直角三角形,因此只需由解析式求出图象与两坐标轴的交点坐标即可求此三角形的面积.
25、(1)y=x-4.(2)(-4,0).
【解析】
(1)把点(2,-3)代入解析式即可求出k;
(2)先得出函数图像向上平移6单位的函数关系式,再令y=0,即可求出与x轴交点的坐标.
【详解】
解:(1)将x=2,y=-3代入y=kx-4,得-3=2k-4.∴k=.
∴一次函数的表达式为y=x-4.
(2)将y=x-4的图像向上平移6个单位长度得y=x+2.
当y=0时,x=-4.
∴平移后的图像与x轴交点的坐标为(-4,0).
此题主要考察一次函数的解析式的求法与在坐标轴方向上的平移.
26、C
【解析】
画树状图展示所有9种等可能的结果数,找出两人中至少有一个给“好评”的结果数,然后根据概率公式求解.
【详解】
画树状图为:
共有9种等可能的结果数,两人中至少有一个给“好评”的结果数为5,
所以两人中至少有一个给“好评”的概率=.
故选C.
本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率.
题号
一
二
三
四
五
总分
得分
批阅人
零件个数(个)
5
6
7
8
人数(人)
3
15
22
10
2025届内蒙古自治区呼和浩特市赛罕区数学九年级第一学期开学学业水平测试模拟试题【含答案】: 这是一份2025届内蒙古自治区呼和浩特市赛罕区数学九年级第一学期开学学业水平测试模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
07,2024年内蒙古自治区呼和浩特市回民区中考二模数学试题: 这是一份07,2024年内蒙古自治区呼和浩特市回民区中考二模数学试题,共5页。试卷主要包含了1)等内容,欢迎下载使用。
2023-2024学年内蒙古自治区呼和浩特市回民区数学九上期末考试模拟试题含答案: 这是一份2023-2024学年内蒙古自治区呼和浩特市回民区数学九上期末考试模拟试题含答案,共8页。试卷主要包含了用配方法解方程时,应将其变形为等内容,欢迎下载使用。