2025届山东省利津县九年级数学第一学期开学学业质量监测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,矩形中,,,点是边上一点,连接,把沿折叠,使点落在点处,当为直角三角形时,的长为( )
A.3B.C.2或3D.3或
2、(4分)将一个边长为4cn的正方形与一个长,宽分別为8cm,2cm的矩形重叠放在一起,在下列四个图形中,重叠部分的面积最大的是( )
A. B.C.D.
3、(4分)如图是小明在物理实验课上用量筒和水测量铁块A的体积实验,小明在匀速向上将铁块提起,直至铁块完全露出水面一定高度的过程中,则下图能反映液面高度h与铁块被提起的时间t之间的函数关系的大致图象是( )
A.B.C.D.
4、(4分)如图,□ABCD中,E为BC边上一点,且AE交DC延长线于F,连接BF,下列关于面积的结论中错误的是( )
A.S△ABF =S△ADEB.S△ABF =S△ADF
C.S△ABF=S□ABCDD.S△ADE=S□ABCD
5、(4分)下列不等式的变形中,不正确的是( )
A.若,则B.若,则
C.若,则D.若,则
6、(4分)下列命题中,是假命题的是( )
A.过边形一个顶点的所有对角线,将这个多边形分成个三角形
B.三角形中,到三个顶点距离相等的点是三条边垂直平分线的交点
C.三角形的中线将三角形分成面积相等的两部分
D.一组对边平行另一组对边相等的四边形是平行四边形
7、(4分)▱ABCD中,如果,那么、的值分别是
A.,B.,
C.,D.,
8、(4分)在矩形中,,,点是上一点,翻折,得,点落在上,则的值是( )
A.1B.
C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)对分式,,进行通分时,最简公分母是_____
10、(4分)如图,在正方形中,对角线与相交于点,为上一点,,为的中点.若的周长为18,则的长为________.
11、(4分)关于的方程有实数根,则的取值范围是_________.
12、(4分)如图,平行四边形中,点为边上一点, 和交于点,已知的面积等于6, 的面积等于4,则四边形的面积等于__________.
13、(4分)直线上有一点则点关于原点的对称点为________________(不含字母).
三、解答题(本大题共5个小题,共48分)
14、(12分)(1)分解因式:;
(2)解方程:
15、(8分)如图,在△ABC中,∠ACB=90°,点D,E,F分别为AB,AC,BC的中点.求证:CD=EF.
16、(8分)在某段限速公路BC上(公路视为直线),交通管理部门规定汽车的最高行驶速度不能超过60 km/h(即),并在离该公路100 m处设置了一个监测点A.在如图的平面直角坐标系中,点A位于y轴上,测速路段BC在x轴上,点B在点A的北偏西60°方向上,点C在点A的北偏东45°方向上.另外一条公路在y轴上,AO为其中的一段.
(1)求点B和点C的坐标;
(2)一辆汽车从点B匀速行驶到点C所用的时间是15 s,通过计算,判断该汽车在这段限速路上是否超速.(参考数据:≈1.7)
17、(10分)某文具店第一次用400元购进胶皮笔记本若干个,第二次又用400元购进该种型号的笔记本,但这次每个的进价是第一次进价的1.25倍,购进数量比第一次少了20个.
(1)求第一次每个笔记本的进价是多少?
(2)若要求这两次购进的笔记本按同一价格全部销售完毕后后获利不低于460元,问每个笔记本至少是多少元?
18、(10分)如图,在中,于点E点,延长BC至F点使,连接AF,DE,DF.
(1)求证:四边形AEFD是矩形;
(2)若,,,求AE的长.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,直线y=x+4与x轴、y轴分别交于点A和点B,点C、D分别为线段AB、OB的中点,点P为OA上一动点,PC+PD值最小时点P的坐标为_____.
20、(4分)在一只不透明的袋子中装有2个红球、3个绿球和5个白球,这些球除颜色外都相同,摇匀后,从袋子中任意摸出1个球,摸出白球可能性_________摸出红球可能性.(填“等于”、“小于”或“大于”)
21、(4分)把直线向上平移2个单位得到的直线解析式为:_______.
22、(4分)4是_____的算术平方根.
23、(4分)将直线向上平移个单位后,可得到直线_______.
二、解答题(本大题共3个小题,共30分)
24、(8分)古运河是扬州的母亲河,为打造古运河风光带,现有一段长为180米的河道整治任务由两工程队先后接力完成.工作队每天整治12米,工程队每天整治8米,共用时20天.
(1)根据题意,甲、乙两名同学分别列出尚不完整的方程组如下:
甲: 乙:
根据甲、乙两名同学所列的方程组,请你分别指出未知数表示的意义,然后在方框中补全甲、乙两名同学所列的方程组:
甲:x表示________________,y表示_______________;
乙:x表示________________,y表示_______________.
(2)求两工程队分别整治河道多少米.(写出完整的解答过程)
25、(10分)如图,直线y=3﹣2x与x轴,y轴分别相交于点A,B,点P(x,y)是线段AB上的任意一点,并设△OAP的面积为S.
(1)S与x的函数解析式,求自变量x的取值范围.
(2)如果△OAP的面积大于1,求自变量x的取值范围.
26、(12分)如图,以矩形的顶点为坐标原点,所在直线为轴,所在直线为轴,建立平面直角坐标系.已知,,,点为轴上一动点,以为一边在右侧作正方形.
(1)若点与点重合,请直接写出点的坐标.
(2)若点在的延长线上,且,求点的坐标.
(3)若,求点的坐标.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,先利用勾股定理计算出AC=5,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=3,可计算出CB′=2,设BE=x,则EB′=x,CE=4-x,然后在Rt△CEB′中运用勾股定理可计算出x.
②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形.
【详解】
当△CEB′为直角三角形时,有两种情况:
①当点B′落在矩形内部时,如答图1所示。
连结AC,
在Rt△ABC中,AB=3,BC=4,
∴AC=
∵∠B沿AE折叠,使点B落在点B′处,
∴∠AB′E=∠B=90°,
当△CEB′为直角三角形时,只能得到∠EB′C=90°,
∴点A. B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,
∴EB=EB′,AB=AB′=3,
∴CB′=5−3=2,
设BE=x,则EB′=x,CE=4−x,
在Rt△CEB′中,
∵EB′2+CB′2=CE2,
∴x2+22=(4−x)2,解得x=,
∴BE=;
②当点B′落在AD边上时,如答图2所示。
此时ABEB′为正方形,
∴BE=AB=3.
综上所述,BE的长为或3.
故选:D.
此题主要考查矩形的折叠问题,解题的关键是根据题意分情况讨论.
2、B
【解析】
分别计算出各个图形的重叠部分面积即可求解.
【详解】
A.重叠部分为矩形,长是4宽是2,,所以面积为4×2=8;
B.重叠部分是平行四边形,与正方形边重合部分的长大于2,高是4,所以面积大于8;
C. 图C与图B对比,因为图C的倾斜度比图B的倾斜度小,所以,图C的底比图B的底小,两图为等高不等底,所以图C阴影部分的面积小于图B阴影部分的面积;
D.如图,BD=,GE=DE=2,HF=BF=2,
∴GH=,
∴S重叠部分=,小于8;
故选B.
本题主要考查平行四边形的、矩形及梯形的面积的运算,分别对选项进行计算判断即可.
3、B
【解析】
根据题意,在实验中有3个阶段,
①、铁块在液面以下,液面得高度不变;
②、铁块的一部分露出液面,但未完全露出时,液面高度降低;
③、铁块在液面以上,完全露出时,液面高度又维持不变;
分析可得,B符合描述;
故选B.
4、B
【解析】
根据△ABF与△ABC等底同高,△ADE与△ADC等底同高,结合平行四边形的性质可得S△ABF=S△ABC=S▱ABCD,S△ADE=S△ADC=S▱ABCD,问题得解.
【详解】
解:∵AB∥CD,AD∥BC,
∴△ABF与△ABC等底同高,△ADE与△ADC等底同高
∴S△ABF=S△ABC=S▱ABCD,S△ADE=S△ADC=S▱ABCD,
∴S△ABF =S△ADE,
∴A,C,D正确;
∵S△ADF=S△ADE+S△DEF,S△ABF=S△ADE,
∴S△ADF>S△ABF,
∴B不正确;
故选B.
本题考查了平行四边形的性质、三角形面积的计算等知识,熟练掌握同底等高的三角形面积相等是解决问题的关键.
5、D
【解析】
根据不等式的基本性质进行判断。
【详解】
A. ∴,故A正确;
B. ,在不等式两边同时乘以(-1)则不等号改变,∴,故B正确;
C. ,在不等式两边同时乘以(-3)则不等号改变,∴,故C正确;
D. ,在不等式两边同时除以(-3)则不等号改变,∴,故D错误
所以,选项D不正确。
主要考查了不等式的基本性质:
1、不等式两边同时加(或减去)同一个数(或式子),不等号方向不变;
2、不等式两边同时乘以(或除以)同一个正数,不等号方向不变;
3、不等式两边同时乘以(或除以)同一个负数,不等号方向改变。
6、D
【解析】
根据多边形对角线的定义对A进行判断;根据三角形外心的性质对B进行判断;根据三角形中线定义和三角形面积公式对C进行判断;根据平行四边形的判定方法对D进行判断.
【详解】
解:A、过n边形一个顶点的所有对角线,将这个多边形分成(n-2)个三角形,所以A选项为真命题;
B、三角形中,到三个顶点距离相等的点是三条边垂直平分线的交点,所以B选项为真命题;
C、三角形的中线将三角形分成面积相等的两部分,所以C选项为真命题;
D、一组对边平行且相等的四边形是平行四边形,而一组对边平行另一组对边相等的四边形可以是梯形,所以D选项为假命题.
故选:D.
本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.
7、B
【解析】
根据平行四边形的对角相等,邻角互补,已知∠B,即可求出∠D,∠A的值.
【详解】
解:∵四边形ABCD是平行四边形,
∴∠D=∠B=100°,AD//BC,
∴∠A=180°-∠B=180°-100°=80°,
故选B.
本题考查了平行四边形的性质,熟练掌握平行四边形的性质是解题的关键.
平行四边形的基本性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.
8、D
【解析】
设CE=x,由矩形的性质得出AD=BC=5,CD=AB=3,∠A=∠D=90°.由折叠的性质得出BC`=BC=5,EC`=CE=x,DE=CD-CE=3-x.在Rt△ABC`中利用勾股定理求出AC`的长度,进而求出DC`的长度;然后在Rt△DEC`中根据勾股定理列出关于x的方程,即可解决问题.
【详解】
设CE=x.
∵四边形ABCD是矩形,
∴AD=BC=5,CD=AB=3,∠A=∠D=90°.
∵将△BCE沿BE折叠,使点C恰好落在AD边上的点C`处,
∴B C`=BC=5,E C`=CE=x,DE=CD−CE=3−x.
在Rt△AB C`中,由勾股定理得:
A C`=5−3=16,
∴A C`=4,D C`=5−4=1.
在Rt△DE C`中,由勾股定理得:
E C`=DE+D C`,
即x=(3−x) +1,
解得:x=.
故选D
此题考查翻折变换(折叠问题),解题关键在于利用勾股定理进行计算
二、填空题(本大题共5个小题,每小题4分,共20分)
9、8xy1
【解析】
由于几个分式的分母分别是1x、4y、8xy1,首先确定1、4、8的最小公倍数,然后确定各个字母的最高指数,由此即可确定它们的最简公分母.
【详解】
根据最简公分母的求法得:
分式,,的最简公分母是8xy1,
故答案为8xy1.
此题主要考查了几个分式的最简公分母的确定,确定公分母的系数找最小公倍数,确定公分母的字母找最高指数.
10、
【解析】
先根据直角三角形的性质求出DE的长,再由勾股定理得出CD的长,进而可得出BE的长,由三角形中位线定理即可得出结论.
【详解】
解:∵四边形是正方形,
∴,,.
在中,为的中点,
∴.
∵的周长为18,,
∴,
∴.
在中,根据勾股定理,得,
∴,
∴.
在中,∵,为的中点,
又∵为的中位线,
∴.
故答案为:.
本题考查的是正方形的性质,涉及到直角三角形的性质、三角形中位线定理等知识,难度适中.
11、k≤2
【解析】
当k-1=0时,解一元一次方程可得出方程有解;当k-1≠0时,利用根的判别式△=16-2k≥0,即可求出k的取值范围.综上即可得出结论.
【详解】
当k-1=0,即k=1时,方程为2x+1=0,
解得x=-,符合题意;
②当k-1≠0,即k≠1时,△=22-2(k-1)=16-2k≥0,
解得:k≤2且k≠1.
综上即可得出k的取值范围为k≤2.
故答案为k≤2.
本题考查了根的判别式,分二次项系数为零和非零两种情况考虑是解题的关键.
12、11
【解析】
由△ABF的面积等于6, △BEF的面积等于4,可得EF:AF=2:3,进而证明△ADF∽△EBF,根据相似三角形的性质可得,继而求出S△ABD=15,再证明△BCD≌△DAB,从而得S△BCD=S△DAB=15,进而利用S四边形CDFE=S△BCD-S△BEF即可求得答案.
【详解】
∵△ABF的面积等于6, △BEF的面积等于4,
∴EF:AF=4:6=2:3,
∵四边形ABCD是平行四边形,
∴AD//BC,
∴△ADF∽△EBF,
∴,
∵S△BEF=4,
∴S△ADF=9,
∴S△ABD=S△ABF+S△AFD=6+9=15,
∵四边形ABCD是平行四边形,
∴AB=CD,AD=BC,
∵BD是公共边,
∴△BCD≌△DAB,
∴S△BCD=S△DAB=15,
∴S四边形CDFE=S△BCD-S△BEF=15-4=11,
故答案为11.
本题考查了平行四边形的性质,相似三角形的判定与性质等,熟练掌握并灵活运用相关知识是解题的关键.
13、(-1,-3).
【解析】
根据一次函数图象上点的坐标性质得出P点坐标,再利用关于原点的对称点的性质得出答案.
【详解】
解:∵直线y=x+2上有一点P(1,m),
∴x=1,y=1+2=3,
∴P(1,3),
∴P点关于原点的对称点P′的坐标为:(-1,-3).
故答案为:(-1,-3).
此题主要考查了一次函数图象上点的坐标性质以及关于原点的对称点的性质,正确把握相关定义是解题关键.
三、解答题(本大题共5个小题,共48分)
14、(1);(2)原方程无解.
【解析】
(1)首先利用平方差公式进行分解因式,再利用完全平方公式继续分解即可;
(2)观察可得最简公分母是2(2x-1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.
【详解】
(1)解:原式
(2)解:
经检验:是原方程的增根.
∴原方程无解.
此题主要考查了解分式方程以及分解因式,正确掌握解方式方程的方法和因式分解的方法是解题关键.
15、根据直角三角形的性质可得,再根据中位线定理可得,问题得证.
【解析】
根据直角三角形斜边中中线等于斜边的一半可得,再根据中位线定理可得,从而可以得到
16、见解析
【解析】
试题分析:根据方位角的概念,得出∠BAO=60°,∠CAO=45°,由∠BAO=60°可得∠ABO=30°,进而可得AB的值,然后在Rt△ABO中由勾股定理可求出OB的值,(2)判断是否超速就是求BC的长,然后比较即可.
解:(1)在Rt△AOB中,
∵∠BAO=60°,∴∠ABO=30°,∴OA=AB.
∵OA=100 m,∴AB=200 m.
由勾股定理,得OB==100(m).
在Rt△AOC中,∵∠CAO=45°,∴∠OCA=∠OAC=45°.
∴OC=OA=100 m.∴B(-100,0),C(100,0).
(2)∵BC=BO+CO=(100+100)m,≈18>,
∴这辆汽车超速了.
17、(1)1元(2)2元
【解析】
(1)设第一次每个笔记本的进价为x元,然后根据第二次又用100元购进该种型号的笔记本数量比第一次少20个列方程求解即可;
(2)设每个笔记本售价为y元,然后根据全部销售完毕后后获利不低于160元列不等式求解即可.
【详解】
解:(1)设第一次每个笔记本的进价为x元.
依据题可得,
解这个方程得:x=1.
经检验,x=1是原方程的解.
故第一次每个笔记本的进价为1元.
(2)设每个笔记本售价为y元.
根据题意得:,
解得:y≥2.
所以每个笔记本得最低售价是2元.
本题主要考查的是分式方程和一元一次不等式的应用,找出题目的相等关系和不等关系是解题的关键.
18、(1)见解析;(2)
【解析】
试题分析:(1)先证明四边形AEFD是平行四边形,再证明∠AEF=90°即可.
(2)证明△ABF是直角三角形,由三角形的面积即可得出AE的长.
试题解析:(1)证明:∵CF=BE,
∴CF+EC=BE+EC.
即 EF=BC.
∵在▱ABCD中,AD∥BC且AD=BC,
∴AD∥EF且AD=EF.
∴四边形AEFD是平行四边形.
∵AE⊥BC,
∴∠AEF=90°.
∴四边形AEFD是矩形;
(2)∵四边形AEFD是矩形,DE=1,
∴AF=DE=1.
∵AB=6,BF=10,
∴AB2+AF2=62+12=100=BF2.
∴∠BAF=90°.
∵AE⊥BF,
∴△ABF的面积=AB•AF=BF•AE.
∴AE=.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(,0)
【解析】
【分析】根据一次函数解析式求出点A、点B的坐标,再由中点坐标公式求出点C、点D的坐标,根据对称的性质找出点D关于x轴的对称点D′的坐标,结合C、D′的坐标求出直线CD′的解析式,令y=0求出x的值,从而得到点P的坐标.
【详解】作点D关于x轴的对称点D′,连接CD′交x轴于点P,此时PC+PD值最小,
如图,
令y=x+4中x=0,则y=4,
∴点B的坐标为(0,4),
令y=x+4中y=0,则x+4=0,解得:x=-6,
∴点A的坐标为(-6,0),
∵点C、D分别为线段AB、OB的中点,
∴点C(-3,2),点D(0,2),
∵点D′和点D关于x轴对称,
∴点D′的坐标为(0,-2),
设直线CD′的解析式为y=kx+b,
∵直线CD′过点C(-3,2),D′(0,-2),
∴有,解得:,
∴直线CD′的解析式为y=-x-2,
令y=0,则0=-x-2,解得:x=-,
∴点P的坐标为(-,0),
故答案为(-,0).
【点睛】本题考查了待定系数法、一次函数以及轴对称中最短路径问题,解题的关键是求出直线CD′的解析式,解决此类问题时找点的坐标,常利用待定系数法求出函数解析式.
20、大于
【解析】
分别求出摸到白球与摸到红球的概率,比较这两个概率即可得答案.
【详解】
∵共有球:2+3+5=10个,
∴P白球==,P红球==,
∵>,
∴摸出白球可能性大于摸出红球可能性.
故答案为:大于
本题考查概率的求法,概率=所求情况数与总情况数之比;熟练掌握概率公式是解题关键.
21、
【解析】
直接根据一次函数图象与几何变换的有关结论求解.
【详解】
直线y=2x向上平移2个单位后得到的直线解析式为y=2x+2.
故答案为y=2x+2.
此题考查一次函数图象与几何变换,解题关键在于掌握平移的性质
22、16.
【解析】
试题解析:∵42=16,
∴4是16的算术平方根.
考点:算术平方根.
23、
【解析】
根据“上加下减”原则进行解答即可.
【详解】
由“上加下减”原则可知,将直线向上平移个单位,得到直线的解析式为:,即
故答案为:
本题考查一次函数平移问题,根据“上加下减”原则进行解答即可.
二、解答题(本大题共3个小题,共30分)
24、(1)甲:表示工程队工作的天数,表示工程队工作的天数;
乙:表示工程队整治河道的米数,表示工程队整治河道的米数.
(2)两工程队分别整治了60米和120米.
【解析】
此题主要考查利用基本数量关系:A工程队用的时间+B工程队用的时间=20天,A工程队整治河道的米数+B工程队整治河道的米数=180,运用不同设法列出不同的方程组解决实际问题.
(1)此题蕴含两个基本数量关系:A工程队用的时间+B工程队用的时间=20天,A工程队整治河道的米数+B工程队整治河道的米数=180,由此进行解答即可;
(2)选择其中一个方程组解答解决问题.
【详解】
试题解析:(1)甲同学:设A工程队用的时间为x天,B工程队用的时间为y天,由此列出的方程组为
;
乙同学:A工程队整治河道的米数为x,B工程队整治河道的米数为y,由此列出的方程组为
;
故答案为: A工程队用的时间,B工程队用的时间,A工程队整治河道的米数,B工程队整治河道的米数;
(2)选甲同学所列方程组解答如下:
,
②-①×8得4x=20,
解得x=5,
把x=5代入①得y=15,
所以方程组的解为,
A工程队整治河道的米数为:12x=60,
B工程队整治河道的米数为:8y=120;
答:A工程队整治河道60米,B工程队整治河道120米.
考点:二元一次方程组的应用.
25、(1)S=;(2).
【解析】
(1)先求出点A的坐标,从而可得OA的长,继而根据三角形的面积公式列式进行计算即可得;
(2)根据△OAP的面积大于1,可得关于x的不等式,解不等式即可得答案.
【详解】
(1)y=3﹣2x,当y=0时,0=3-2x,解得:x=,
所以A(,0),所以OA=,
∴S==,
∵点P(x,y)是线段AB上的任意一点,点P与点A重合时不存在三角形,
∴0≤x<,
∴S=(0≤x<);
(2)由题意得:,
解得x<,
∴0≤x<.
本题考查了一次函数与坐标轴的交点,三角形的面积,不等式的运用等,正确理解题意是解题的关键.
26、(1);(2);(3),.
【解析】
(1)与点重合则点E为(6,3)
(2)作轴,证明:即则点E为(8,3)
(3)分情况解答,在点右侧,过点作轴,证明:;在点左侧,点作轴,证明:
【详解】
解:(1) 与点重合则点E再x轴的位置为2+4=6
.
(2)过点作轴,
∵∠BAD=∠EMD=∠BDE=90°,
∴∠BDA+∠ABD=∠BDA+∠MDE,
∴∠ABD=∠MDE,
∵BD=DE,
,点在线段的中垂线上,.
,.
.
(3)①点在点右侧,如图,
过点作轴,同(2)
设,可得:,
求得:,(舍去)
②点在点左侧,如图,
过点作轴,同上得
设,可得:,
,
求得:,(舍去)
综上所述:,
本题考查正方形的性质,解题关键在于分情况作出垂直线.
题号
一
二
三
四
五
总分
得分
批阅人
2025届山东省东营邹平县联考数学九年级第一学期开学学业质量监测模拟试题【含答案】: 这是一份2025届山东省东营邹平县联考数学九年级第一学期开学学业质量监测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届山东省滨州沾化区六校联考九年级数学第一学期开学学业质量监测模拟试题【含答案】: 这是一份2025届山东省滨州沾化区六校联考九年级数学第一学期开学学业质量监测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年山东省烟台龙口市数学九年级第一学期开学学业质量监测模拟试题【含答案】: 这是一份2024年山东省烟台龙口市数学九年级第一学期开学学业质量监测模拟试题【含答案】,共25页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。