2025届山东省临沂商城外国语学校数学九上开学经典试题【含答案】
展开
这是一份2025届山东省临沂商城外国语学校数学九上开学经典试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)已知平行四边形中,一个内角,那么它的邻角( ).
A.B.C.D.
2、(4分)已知2x=3y(y≠0),则下面结论成立的是( )
A.B.
C.D.
3、(4分)下列多项式中,能用平方差公式因式分解的是( )
A.B.C.D.
4、(4分)如图图中,不能用来证明勾股定理的是( )
A.B.C.D.
5、(4分)下列图形中,是轴对称图形,又是中心对称图形的是( )
A.B.
C.D.
6、(4分)如图,将长方形纸片ABCD折叠,使点B与点D重合,折痕为EF,已知AB=6cm,BC=18cm,则Rt△CDF的面积是( )
A.27cm2B.24cm2C.22cm2D.20cm2
7、(4分)下列二次根式中,是最简二次根式的是( ).
A.B.C.D.
8、(4分)若式子有意义,则实数a的取值范围是( )
A.a>﹣1B.a>﹣1且a≠2C.a≥﹣1D.a≥﹣1且a≠2
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,DE∥BC,,则=_______.
10、(4分)分解因式:1﹣x2= .
11、(4分)直线与直线平行,则__________.
12、(4分)在一个不透明的盒子中装有n个小球,它们除颜色不同外,其余都相同,其中有4个是白球,每次试验前,将盒子中的小球摇匀,随机摸出一个球记下颜色后再放回盒中,大量重复上述实验后发现,摸到白球的频率稳定在0.4,那么可以推算出n大约是___.
13、(4分)一次函数的图像在轴上的截距是__________.
三、解答题(本大题共5个小题,共48分)
14、(12分)在“母亲节”前期,某花店购进康乃馨和玫瑰两种鲜花,销售过程中发现康乃馨比玫瑰销售量大,店主决定将玫瑰每枝降价1元促销,降价后30元可购买玫瑰的数量是原来购买玫瑰数量的1.5倍.
(1)求降价后每枝玫瑰的售价是多少元?
(2)根据销售情况,店主用不多于900元的资金再次购进两种鲜花共500枝,康乃馨进价为2元/枝,玫瑰进价为1.5元/枝,问至少购进玫瑰多少枝?
15、(8分)解方程.
16、(8分)如图,为线段上一动点,分别过点作,,连接.已知,设.
(1)用含的代数式表示的值;
(2)探究:当点满足什么条件时,的值最小?最小值是多少?
(3)根据(2)中的结论,请构造图形求代数式的最小值.
17、(10分)如图,在正方形中,点、是正方形内两点,,,为探索这个图形的特殊性质,某数学兴趣小组经历了如下过程:
(1)在图1中,连接,且
①求证:与互相平分;
②求证:;
(2)在图2中,当,其它条件不变时,是否成立?若成立,请证明:若不成立,请说明理由.
(3)在图3中,当,,时,求之长.
18、(10分)如图,在平行四边形OABC中,已知点A、C两点的坐标为A (,),C (2,0).
(1)求点B的坐标.
(2)将平行四边形OABC向左平移个单位长度,求所得四边形A′B′C′O′四个顶点的坐标.
(3)求平行四边形OABC的面积.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知,则的值为_____.
20、(4分)在平面直角坐标系中,中,点,若随变化的一族平行直线与(包括边界)相交,则的取值范围是______.
21、(4分)若关于x的分式方程无解. 则常数n的值是______.
22、(4分)一个有进水管与出水管的容器,从某时刻开始的4分钟内只进水不出水,在随后的若干分内既进水又出水,之后只出水不进水.每分钟的进水量和出水量是两个常数,容器内的水量y(单位:升)与时间x(单位:分)之间的关系如图.则a= .
23、(4分)为选派诗词大会比赛选手,经过三轮初赛,甲、乙、丙、丁四位选手的平均成绩都是86分,方差分别是s甲2=1.5,s乙2=2.6,s丙2=3.5,s丁2=3.68,若要从中选一位发挥稳定的选手参加决赛你认为派__________________去参赛更合适(填“甲”或“乙”或“丙”或“丁”)
二、解答题(本大题共3个小题,共30分)
24、(8分)某学校组织了“热爱宪法,捍卫宪法”的知识竞赛,赛后发现所有学生的成绩(总分100分)均不低于50分,为了解本次竞赛的成绩分布情况,随机抽取若干名学生的成绩作为样本进行整理,并绘制了不完整的统计图表,请你根据统计图表解答下列问题.
(1)此次抽样调查的样本容量是_________;
(2)写出表中的a=_____,b=______,c=________;
(3)补全学生成绩分布直方图;
(4)比赛按照分数由高到低共设置一、二、三等奖,若有25%的参赛学生能获得一等奖,则一等奖的分数线是多少?
25、(10分)通常购买同一品种的西瓜时,西瓜的质量越大,花费的钱越多,因此人们希望西瓜瓤占整个西瓜的比例越大越好.假如我们把西瓜都看成球形,并把西瓜瓤的密度看成是均匀的,西瓜的皮厚都是d,已知球的体积公式为V=πR3(其中R为球的半径),求:
(1)西瓜瓤与整个西瓜的体积各是多少?
(2)西瓜瓤与整个西瓜的体积比是多少?
(3)买大西瓜合算还是买小西瓜合算.
26、(12分)已知一次函数y1=﹣1x﹣3与y1=x+1.
(1)在同一平面直角坐标系中,画出这两个函数的图象;
(1)根据图象,不等式﹣1x﹣3>x+1的解集为多少?
(3)求两图象和y轴围成的三角形的面积.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据平行四边形的性质:邻角互补,求解即可.
【详解】
∵四边形ABCD是平行四边形,
∴∠A+∠B=180°,
∵∠A=60°,
∴∠B=120°,
故选C.
本题考查了平行四边形的性质:邻角互补,属于基础性题目.
2、A
【解析】
试题解析:A、两边都除以2y,得,故A符合题意;
B、两边除以不同的整式,故B不符合题意;
C、两边都除以2y,得,故C不符合题意;
D、两边除以不同的整式,故D不符合题意;
故选A.
3、A
【解析】
根据平方差公式的特点,两平方项符号相反,对各选项分析判断后利用排除法求解.
【详解】
解:A、-m2与n2符号相反,能运用平方差公式,故本选项正确;
B、有三项,不能运用平方差公式,故本选项错误;
C、m2与n2符号相同,不能运用平方差公式,故本选项错误;
D、-a2与-b2符号相同,不能运用平方差公式,故本选项错误.
故选:A.
本题主要考查了平方差公式分解因式,熟记公式结构是解题的关键.
4、D
【解析】
根据图形的面积得出a,b,c的关系,即可证明勾股定理,分别分析得出即可.
【详解】
A,B,C都可以利用图形面积得出a,b,c的关系,即可证明勾股定理;故A,B,C选项不符合题意;
D、不能利用图形面积证明勾股定理,故此选项正确.
故选D.
此题主要考查了勾股定理的证明方法,根据图形面积得出是解题关键.
5、C
【解析】
根据轴对称图形与中心对称图形的概念求解.
【详解】
解:A.是轴对称图形,不是中心对称图形,故此选项错误;
B.是轴对称图形,不是中心对称图形,故此选项错误;
C.是轴对称图形,也是中心对称图形,故此选项正确;
D.不是轴对称图形,是中心对称图形,故此选项错误.
故选:C.
本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.
6、B
【解析】
求Rt△CDF的面积,CD边是直角边,有CD=AB=6cm,只要求出边FC即可.由于点B与点D重合,所以有FD=BF=BC-FC=18-FC,利用勾股定理可求出FC了.
【详解】
解:设FC=x,Rt△CDF中,CD=6cm,FC=x,又折痕为EF,
∴FD=BF=BC-FC=18-FC=18-x,
Rt△CDF中,DF2=FC2+CD2,
即(18-x)2=x2+62,
解得x=8,
∴面积为
故选:B.
解决本题的关键是根据折叠及矩形的性质利用勾股定理求得CF的长度;易错点是得到DF与CF的长度和为18的关系.
7、A
【解析】
检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.
【详解】
A、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故正确;
B、=0,故错误;
C、=1,故错误;
D、=3,故错误;
故选:A.
考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.
8、D
【解析】
直接利用分式有意义的条件分析得出答案.
【详解】
解:式子有意义,则且
解得:且
故选:D
本题考查了分式有意义的条件以及二次根式有意义的条件,能正确得到相关不等式是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
依题意可得△ADE∽△ABC,根据相似三角形的对应边的比相等即可得出比值.
【详解】
解:∵DE∥BC
∴△ADE∽△ABC
∴
∵
∴
∴,
故答案为:.
本题主要考查了相似三角形的性质和判定,熟练掌握相关的知识是解题的关键.
10、(1+x)(1﹣x).
【解析】
试题分析:直接应用平方差公式即可:1﹣x2=(1+x)(1﹣x).
11、
【解析】
根据平行直线的k相同可求解.
【详解】
解:因为直线与直线平行,所以
故答案为:
本题考查了一次函数的图像,当时,直线和直线平行.
12、10
【解析】
利用大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.
【详解】
∵通过大量重复试验后发现,摸到红球的频率稳定于0.4,
∴=0.4,
解得:n=10.
故答案为:10.
此题考查利用频率估计概率,掌握运算法则是解题关键
13、1
【解析】
求得一次函数与y轴的交点的纵坐标即为一次函数y=x+1的图象在y轴上的截距.
【详解】
解:令x=0,得y=1;
故答案为:1.
本题考查了一次函数的性质,掌握一次函数的性质是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)2元;(2)至少购进玫瑰200枝.
【解析】
试题分析:(1)设降价后每枝玫瑰的售价是x元,然后根据降价后30元可购买玫瑰的数量是原来购买玫瑰数量的1.5倍,列分式方程求解即可,注意检验结果;
(2)根据店主用不多于900元的资金再次购进两种鲜花共500枝,列不等式求解即可.
试题解析:(1)设降价后每枝玫瑰的售价是x元,依题意有
=×1.5.
解得x=2.
经检验,x=2是原方程的解,且符合题意.
答:降价后每枝玫瑰的售价是2元.
(2)设购进玫瑰y枝,依题意有
2(500-y)+1.5y≤900.
解得y≥200.
答:至少购进玫瑰200枝.
15、原分式方程无解.
【解析】
根据解分式方程的方法可以解答本方程,去分母将分式方程化为整式方程,解整式方程,验证.
【详解】
方程两边乘(x﹣1)(x+2),得x(x+2)﹣(x﹣1)(x+2)=3
即:x2+2x﹣x2﹣x+2=3
整理,得x=1
检验:当x=1时,(x﹣1)(x+2)=0,
∴原方程无解.
本题考查解分式方程,解题的关键是明确解放式方程的计算方法.
16、(1);(2)三点共线时;(3)2
【解析】
试题分析:(1)由于△ABC和△CDE都是直角三角形,故可由勾股定理表示;
(2)若点C不在AE的连线上,根据三角形中任意两边之和大于第三边知,AC+CE>AE,故当A、C、E三点共线时,AC+CE的值最小;
(3)由(1)(2)的结果可作BD=1,过点B作AB⊥BD,过点D作ED⊥BD,使AB=2,ED=3,连接AE交BD于点C,则AE的长即为代数式的最小值,然后构造矩形AFDB,Rt△AFE,利用矩形的直角三角形的性质可求得AE的值.
(1);
(2)当三点共线时,的值最小.
(3)如下图所示,作,过点作,过点作,使,.连结交于点,的长即为代数式的最小值.
过点作交的延长线于点,得矩形,
则,1.
所以,即的最小值为2.
考点:本题考查的是轴对称-最短路线问题
点评:本题利用了数形结合的思想,求形如的式子的最小值,可通过构造直角三角形,利用勾股定理求解.
17、(1)①详见解析;②详见解析;(1)当BE≠DF时,(BE+DF)1+EF1=1AB1仍然成立,理由详见解析;(3)
【解析】
(1)①连接ED、BF,证明四边形BEDF是平行四边形,根据平行四边形的性质证明;②根据正方形的性质、勾股定理证明;
(1)过D作DM⊥BE交BE的延长线于M,连接BD,证明四边形EFDM是矩形,得到EM=DF,DM=EF,∠BMD=90°,根据勾股定理计算;
(3)过P作PE⊥PD,过B作BELPE于E,根据(1)的结论求出PE,结合图形解答.
【详解】
(1)证明:①连接ED、BF,
∵BE∥DF,BE=DF,
∴四边形BEDF是平行四边形,
∴BD、EF互相平分;
②设BD交EF于点O,则OB=OD=BD,OE=OF=EF.
∵EF⊥BE,
∴∠BEF=90°.
在Rt△BEO中,BE1+OE1=OB1.
∴(BE+DF)1+EF1=(1BE)1+(1OE)1=4(BE1+OE1)=4OB1=(1OB)1=BD1.
在正方形ABCD中,AB=AD,BD1=AB1+AD1=1AB1.
∴(BE+DF)1+EF1=1AB1;
(1)解:当BE≠DF时,(BE+DF)1+EF1=1AB1仍然成立,
理由如下:如图1,过D作DM⊥BE交BE的延长线于M,连接BD.
∵BE∥DF,EF⊥BE,
∴EF⊥DF,
∴四边形EFDM是矩形,
∴EM=DF,DM=EF,∠BMD=90°,
在Rt△BDM中,BM1+DM1=BD1,
∴(BE+EM)1+DM1=BD1.
即(BE+DF)1+EF1=1AB1;
(3)解:过P作PE⊥PD,过B作BE⊥PE于E,
则由上述结论知,(BE+PD)1+PE1=1AB1.
∵∠DPB=135°,
∴∠BPE=45°,
∴∠PBE=45°,
∴BE=PE.
∴△PBE是等腰直角三角形,
∴BP=BE,
∵BP+1PD=4 ,
∴1BE+1PD=4,即BE+PD=1,
∵AB=4,
∴(1)1+PE1=1×41,
解得,PE=1,
∴BE=1,
∴PD=1﹣1.
本题考查的是正方形的性质、等腰直角三角形的性质以及勾股定理的应用,正确作出辅助性、掌握正方形的性质是解题的关键.
18、 (1)点B坐标是(3,);(2) A′(O, )、B′(2,)、C′(,0),O′(-,0);(3) 6.
【解析】
分析:(1)根据平行四边形的性质AB=OC=2,由此即可解决问题.
(2)根据向左平移纵坐标不变,横坐标减去即可.
(3)根据平行四边形的面积公式计算即可.
详解:(1)点B坐标是(3,);
(2)向左平移个单位长度后,各点的纵坐标不变,横坐标都减少,
所以A′(O, )、B′(2,)、C′(,0),O′(-,0).
(3)平行四边形的面积为2·=2()2=2×3=6.
点睛:本题考查四边形综合题、坐标与点的位置关系、平行四边形的性质等知识,解题的关键是熟练掌握平行四边形的性质,记住平行四边形的面积等于底乘高,属于中考常考题型.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
根据二次根式有意义的条件:被开方数是非负数,即可求得x的值,进而求得y的值,然后代入求解即可.
【详解】
解:根据题意得:,解得:,
∴,
∴,
故答案为.
考查了二次根式的意义和性质.概念:式子(a≥1)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.同时考查了非负数的性质,几个非负数的和为1,这几个非负数都为1.
20、
【解析】
根据题意,可知点B到直线的距离最短,点C到直线的距离最长,求出两个临界点b的值,即可得到取值范围.
【详解】
解:根据题意,点,
∵直线与(包括边界)相交,
∴点B到直线的距离了最短,点C到直线的距离最长,
当直线经过点B时,有
,
∴;
当直线经过点C时,有
,
∴;
∴的取值范围是:.
本题考查了一次函数的图像和性质,以及一次函数的平移问题,解题的关键是掌握一次函数的性质,一次函数的平移,正确选出临界点进行解题.
21、1或
【解析】
分式方程无解的条件是:去分母后所得整式方程无解,或解这个整式方程得到的解,使原方程的分母等于1.
【详解】
解:两边都乘(x−3),得3−2x+nx−2=−x+3,
解得x=,
n=1时,整式方程无解,分式方程无解;
∴当x=3时分母为1,方程无解,
即=3,
∴n=时,方程无解;
故答案为:1或.
本题考查了分式方程无解的条件,掌握知识点是解题关键.
22、1.
【解析】
试题分析:由第一段函数得出进水速度是20÷4=5升/分,由第二段函数可算出出水速度是(8×5-10)÷(12-4)=20÷8=2.75升/分,利用两点坐标(4,20),(12,20)求出第二段函数解析式为y=x+1,则a点纵坐标是,由第三段图像即出水速度×出水时间=出水量,列方程得:=(24-a)×2.75,解得a=1.
考点:一次函数的实际应用.
23、甲
【解析】
根据方差的定义,方差越小数据越稳定即可求解.
【详解】
解:∵s甲2=1.5,s乙2=2.6,s丙2=3.5,s丁2=3.68,
而1.5<2.6<3.5<3.68,
∴甲的成绩最稳定,
∴派甲去参赛更好,
故答案为甲.
本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
二、解答题(本大题共3个小题,共30分)
24、(1)200;(2)62,0.06,38;(3)见解析;(4)1
【解析】
(1)根据统计图中的数据可以求得此次抽样调查的样本容量;
(2)根据统计图中的数据可以求得a、b、c的值;
(3)根据(2)中a、c的值可以将统计图补充完整;
(4)根据表格中的数据可以求得一等奖的分数线.
【详解】
解:(1)16÷0.08=200,
故答案为:200;
(2)a=200×0.31=62,
b=12÷200=0.06,
c=200-16-62-72-12=38,
故答案为:62,0.06,38;
(3)由(2)知a=62,c=38,
补全的条形统计图如右图所示;
(4)d=38÷200=0.19,
∵b=0.06,0.06+0.19=0.25=25%,
∴一等奖的分数线是1.
根据频数分布直方图、样本容量、频数分布表,解答本题的关键是明确题意,利用数形结合的思想解答.
25、 (1)西瓜瓤的体积是:π(R﹣d)3;整个西瓜的体积是πR3;(2);(3)买大西瓜比买小西瓜合算.
【解析】
(1)根据体积公式求出即可;
(2)根据(1)中的结果得出即可;
(3)求出两体积的比即可.
【详解】
解:(1)西瓜瓤的体积是:π(R﹣d)3;
整个西瓜的体积是πR3;
(2)西瓜瓤与整个西瓜的体积比是 =;
(3)根据球的体积公式,得:
V西瓜瓤=π(R﹣d)3,
则西瓜瓤与整个西瓜的体积比是=,
故买大西瓜比买小西瓜合算.
本题考查球的体积公式的应用,此题能够根据球的体积,得到两个物体的体积比即为它们的半径的立方比是解此题的关键.
26、 (1)l图象见解析;(1)x<﹣1;(3)2.
【解析】
试题分析:(1)先求出直线y1=-1x-3,y1=x+1与x轴和y轴的交点,再画出两函数图象即可;
(1)直线y1=-1x-3的图象落在直线y1=x+1上方的部分对应的x的取值范围就是不等式-1x-3>x+1的解集;
(3)根据三角形的面积公式求解即可.
试题解析:(1)函数y1=﹣1x﹣3与x轴和y轴的交点分别是(﹣1.2,0)和(0,﹣3),
y1=x+1与x轴和y轴的交点分别是(﹣4,0)和(0,1),
其图象如图:
(1)观察图象可知,函数y1=﹣1x﹣3与y1=x+1交于点(﹣1,1),
当x<﹣1时,直线y1=﹣1x﹣3的图象落在直线y1=x+1的上方,即﹣1x﹣3>x+1,
所以不等式﹣1x﹣3>x+1的解集为x<﹣1;
故答案为x<﹣1;
(3)∵y1=﹣1x﹣3与y1=x+1与y轴分别交于点A(0,﹣3),B(0,1),
∴AB=2,
∵y1=﹣1x﹣3与y1=x+1交于点C(﹣1,1),
∴△ABC的边AB上的高为1,
∴S△ABC=×2×1=2.
题号
一
二
三
四
五
总分
得分
相关试卷
这是一份2025届甘肃省兰州市外国语学校数学九上开学经典试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年山东省临沂市兰山区部分学校数学九上开学监测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年山东省济南外国语学校数学九上开学教学质量检测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。