2025届山东省青岛市西海岸新区数学九年级第一学期开学学业质量监测模拟试题【含答案】
展开这是一份2025届山东省青岛市西海岸新区数学九年级第一学期开学学业质量监测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)为了解某公司员工的年工资情况,小王随机调查了10位员工,某年工资(单位:万元)如下:3,3,3,4,5,5,6,6,8,20.下列统计量中,能合理反映该公司员工年工资水平的是( )
A.方差B.众数C.中位数D.平均数
2、(4分)如图所示,四边形OABC是正方形,边长为6,点A、C分别在x轴、y轴的正半轴上,点D在OA上,且D点的坐标为(2,0),P是OB上一动点,则PA+PD的最小值为( )
A.2B.C.4D.6
3、(4分)如图所示,矩形ABCD中,AE平分交BC于E,,则下面的结论:①是等边三角形;②;③;④,其中正确结论有( )
A.1个B.2个C.3个D.4个
4、(4分)如果不等式组有解,那么m的取值范围是 ( )
A.m>5 B.m<5 C.m≥5 D.m≤5
5、(4分)将方程x2+4x+3=0配方后,原方程变形为( )
A.B.C.D.
6、(4分)下列式子是分式的是( ).
A.B.C.D.
7、(4分)为了解2019年泰兴市八年级学生的视力情况,从中随机调查了500名学生的视力情况.下列说法正确的是( )
A.2016年泰兴市八年级学生是总体B.每一名八年级学生是个体
C.500名八年级学生是总体的一个样本D.样本容量是500
8、(4分)下列二次根式中是最简二次根式的为( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图1,边长为a的正方形发生形变后成为边长为a的菱形,如果这个菱形的一组对边之间的距离为h,我们把的值叫做这个菱形的“形变度”.例如,当形变后的菱形是如图2形状(被对角线BD分成2个等边三角形),则这个菱形的“形变度”为2:.如图3,正方形由16个边长为1的小正方形组成,形变后成为菱形,△AEF(A、E、F是格点)同时形变为△A′E′F′,若这个菱形的“形变度”k=,则S△A′E′F′=__
10、(4分)若正多边形的一个内角等于,则这个多边形的边数是__________.
11、(4分)如图,菱形的周长为20,对角线的长为6,则对角线的长为______.
12、(4分)比较大小:_____.
13、(4分)已知函数y=(m﹣1)x|m|+3是一次函数,则m=_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,四边形ABCD中,AD∥BC,∠ABC=90°,AB=BC=1,O为AC的中点,OE⊥OD交AB于点E.若AE=,则DO的长为_____________.
15、(8分)如图,在平行四边形ABCD中,点E.F分别在AB、CD上,AE=CF,连接AF,BF,DE,CE,分别交于H、G.
求证:(1)四边形AECF是平行四边形.(2)EF与GH互相平分.
16、(8分)某商店销售A型和B型两种型号的电脑,销售一台A型电脑可获利120元,销售一台B型电脑可获利140元.该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的3倍.设购进A型电脑x台,这100台电脑的销售总利润为y元.
(1)求y与x的关系式;
(2)该商店购进A型、B型电脑各多少台,才能使销售利润最大?
(3)若限定商店最多购进A型电脑60台,则这100台电脑的销售总利润能否为13600元?若能,请求出此时该商店购进A型电脑的台数;若不能,请求出这100台电脑销售总利润的范围.
17、(10分)某商场计划购进甲、乙两种商品共件,这两种商品的进价、售价如表所示:
设购进甲种商品(,且为整数)件,售完此两种商品总利润为元.
(1)该商场计划最多投入元用于购进这两种商品共件,求至少购进甲种商品多少件?
(2)求与的函数关系式;
(3)若售完这些商品,商场可获得的最大利润是__________元.
18、(10分)按指定的方法解下列一元二次方程:
(1)(配方法) (2)(公式法)
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)方程=-1的根为________
20、(4分)在平面直角坐标系中,直线l:与x轴交于点,如图所示依次作正方形 、正方形 、…、正方形,使得点 …在直线l上,点 …在y轴正半轴上,则点 的横坐标是__________________。
21、(4分)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,点D在AB上,AD=AC,AF⊥CD交CD于点E,交CB于点F,则CF的长是________________.
22、(4分)如图,菱形中,,点是直线上的一点.已知的面积为6,则线段的长是_____.
23、(4分)七边形的内角和是__________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图1,已知四边形ABCD是正方形,对角线AC、BD相交于点E,以点E为顶点作正方形EFGH.
(1)如图1,点A、D分别在EH和EF上,连接BH、AF,直接写出BH和AF的数量关系;
(2)将正方形EFGH绕点E顺时针方向旋转.
①如图2,判断BH和AF的数量关系,并说明理由;
②如果四边形ABDH是平行四边形,请在备用图中补全图形;如果四方形ABCD的边长为,求正方形EFGH的边长.
25、(10分)如图,直线y=x+与x轴相交于点B,与y轴相交于点A.
(1)求∠ABO的度数;
(2)过点A的直线l交x轴的正半轴于点C,且AB=AC,求直线的函数解析式.
26、(12分)解不等式组并把解集在数轴上表示出来
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据中位数的定义求解.
【详解】
解:中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),反映的是一组数据的中间水平.因此能合理反映该公司年工资中等水平的是中位数.
故选C.
2、A
【解析】
试题解析:连接CD,交OB于P.则CD就是PD+PA和的最小值.
∵在直角△OCD中,∠COD=90°,OD=2,OC=6,
∴CD=,
∴PD+PA=PD+PC=CD=2.
∴PD+PA和的最小值是2.
故选A.
3、C
【解析】
根据矩形性质求出OD=OC,根据角求出 ∠DOC = 60°即可得出三角形DOC是等边三角形,求出AC= 2AB, 即可判断②,求出∠BOE= 75°,∠AOB = 60相加即可求出,∠AOE根据等底等高的三角形面积相等得出.
【详解】
∵四边形ABCD是矩形,
∴∠BAD=90°,OA=OC,OD=OB,AC=BD
∴OA=OD=OC=OB
∵AE平分∠BAD,
∴∠DAE=15°.
∴∠CAE=15°,
∴∠DAC=30°.
∵OA=OD,
∴∠ODA=∠DAC=30°.
∴∠DOC=60°.
∵OD=OC,
∴△ODC是等边三角形.
∴①正确;
∵四边形ABCD是矩形,
∴AD∥BC,∠ABC=90°.
∴∠DAC=∠ACB=30°.
∴AC=2AB.
∵AC>BC,
∴2AB>BC.
∴②错误;
∵AD∥BC,
∴∠DBC=∠ADB=30°.
∵AE平分∠DAB,∠DAB=90°,
∴∠DAE=∠BAE=45°.
∵AD∥BC,
∴∠DAE=∠AEB,
∴∠AEB=∠BAE,
∴AB=BE.
∴四边形ABCD是矩形.
∴∠DOC=60°,DC=AB,
∵△DOC是等边三角形,
∴DC=OD.
∴BE=BO.
∴∠BOE=75°,
∵∠AOB=∠DOC=60°,
∴∠AOE=135°.
∴③正确;
∵OA=OC,
∴根据等底等高的三角形面积相等可知S△AOE=S△COE
∴④正确
故正确答案是C.
本题考查了矩形性质,平行线性质,角平分线定义,等边三角形的性质和判定,三角形的内角和定理等知识点的综合运用.
4、B
【解析】
解:∵不等式组有解,∴m≤x<1,∴m<1.故选B.
点睛:本题主要考查了不等式组有解的条件,在解题时要会根据条件列出不等式.
5、A
【解析】
把常数项3移项后,应该在左右两边同时加上一次项系数4的一半的平方.
【详解】
移项得,x2+4x=−3,
配方得,x2+4x+4=−3+4,
即(x+2)2=1.
故答案选A.
本题考查了一元二次方程,解题的关键是根据配方法解一元二次方程.
6、B
【解析】
判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.
【详解】
A、的分母中不含有字母,因此是整式,而不是分式.故本选项错误;
B、分母中含有字母,因此是分式.故本选项正确;
C、分母没有字母是整式,故本选项错误;
D、分母中没有字母,故本选项错误;
故选B.
本题考查的是分式的定义,在解答此题时要注意分式是形式定义,只要是分母中含有未知数的式子即为分式.
7、D
【解析】
总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.
【详解】
A. 2019年泰兴市八年级学生的视力情况是总体,故A错误;
B. 每一名八年级学生的视力情况是个体,故B错误;
C. 从中随机调查了500名学生的视力情况是一个样本,故C错误;
D. 样本容量是500,故D正确;
故选:D.
此题考查总体、个体、样本、样本容量,解题关键在于掌握它们的定义及区别.
8、B
【解析】
根据最简二次根式的定义进行解答即可.
【详解】
解:根据最简二次根式的定义:“满足条件:(1)被开方数中不含开得尽方的因数和因式;(2)被开方数中不含分母.”可知,选项A、C、D中的二次根式都不是最简二次根式,只有B中的二次根式是最简二次根式.
本题考查的是最简二次根式的定义,掌握最简二次根式的定义:“满足条件:(1)被开方数中不含开得尽方的因数和因式;(2)被开方数中不含分母.”是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
求出形变前正方形的面积,形变后菱形的面积,两面积之比=菱形的“形变度”,求△AEF的面积,根据两面积之比=菱形的“形变度”,即可解答.
【详解】
如图,
在图2中,形变前正方形的面积为:a2,形变后的菱形的面积为:
∴菱形形变前的面积与形变后的面积之比:
∵这个菱形的“形变度”为2:,
∴菱形形变前的面积与形变后的面积之比=这个菱形的“形变度”,
∵若这个菱形的“形变度”k=,
∴
即
∴S△A′E′F′=.
故答案为:.
考查菱形的性质,读懂题目中菱形的“形变度”的概念是解题的关键.
10、十
【解析】
根据正多边形的每个内角相等,可得正多边形的内角和,再根据多边形的内角和公式,可得答案.
【详解】
解:设正多边形是n边形,由题意得
(n−2)×180°=144°×n.
解得n=10,
故答案为:十.
本题考查了多边形的内角,利用了正多边形的内角相等,多边形的内角和公式.
11、8
【解析】
利用菱形的性质根据勾股定理求得AO的长,然后求得AC的长即可.
【详解】
如图,
∵四边形ABCD是菱形,
∴AC⊥BD,AO=CO,BO=DO
∵BD=6,
∴BO=3,
∵周长为20,
∴AB=5,
由勾股定理得:AO==4,
∴AC=8,
故答案为:8
本题主要考查了菱形的性质,解题的关键是菱形问题转化为直角三角形问题求解.
12、<
【解析】
先算−、-的倒数值,再比较−、-的值,判断即可.
【详解】
∵,
,
∵+2>+2,
∴-<-,
故答案为<.
本题考查了实数大小比较法则,任意两个实数都可以比较大小.根据两正数比较倒数大的反而小得出是解题关键.
13、﹣1
【解析】
因为y=(m﹣1)x|m|+3是一次函数,所以|m|=1,m﹣1≠0,解答即可.
【详解】
解:一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.
则得到|m|=1,m=±1,
∵m﹣1≠0,
∴m≠1,m=﹣1.
故答案是:m=﹣1.
考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.k≠0是考查的重点.
三、解答题(本大题共5个小题,共48分)
14、
【解析】
求出△DAO≌△EBO,推出OD=OE,AD=BE,求出AD=BE=,由勾股定理得出DE2=DO2+OE2=AD2+AE2,求出即可.
【详解】
连结DE,如图,
∵∠ABC=90°,O为AC的中点,
∴∠CAB=∠ACB=45°,∠ABO=45°,AO=BO=CO,∠AOB=90°,
∵OE⊥OD,
∴∠DOE=∠AOB=90°,
∴∠DOA=∠BOE=90°-∠AOE,
∵AD∥BC,
∴∠DAB=180°-∠ABC=90°,
∴∠DAO=90°-45°=45°,
∴∠DAO=∠OBE,
在△DAO和△EBO中
∴△DAO≌△EBO(ASA),
∴OD=OE,AD=BE,
∵AB=1,AE=,
∴AD=BE=1-=,
在Rt△DAE和Rt△DOE中,由勾股定理得:DE2=DO2+OE2=AD2+AE2,
∴2DO2=()2+()2,
DO=,
故答案为:.
本题考查了等腰直角三角形性质,勾股定理,全等三角形的性质和判定的应用,解此题的关键是求出OD=OE,AD=BE,题目比较好,难度适中.
15、见解析
【解析】
(1)根据四边形ABCD是平行四边形,由平行四边形的性质可得:,,
根据,利用平行四边形的判定定理可得:四边形AECF是平行四边形,
由得四边形AECF是平行四边形,根据平行四边形的性质可得:,
根据,,,可得:,,根据平行四边形的判定定理可得:四边形BFDE是平行四边形,再根据平行四边形的性质可得:,根据平行四边形的判定定理可得:四边形EGFH是平行四边形,由平行四边形的性质可得:
与GH互相平分.
【详解】
四边形ABCD是平行四边形,
,,
,
四边形AECF是平行四边形,
由得:四边形AECF是平行四边形,
,
,,,
,,
四边形BFDE是平行四边形,
,
四边形EGFH是平行四边形,
与GH互相平分.
本题主要考查平行四边形的判定定理和平行四边形的性质,解决本题的关键是要熟练掌握平行四边形的判定定理和平行四边形的性质.
16、(1)y=﹣20x+14000;(2)商店购进25台A型电脑和75台B型电脑的销售利润最大;(3)这100台电脑销售总利润的范围为12800≤y≤13500
【解析】
分析:(1)据题意即可得出
(2)利用不等式求出x的范围,又因为是减函数,所以得出y的最大值,
(3)据题意得, y随x的增大而减小,进行求解.
详解:(1)由题意可得:
(2)据题意得, ,解得
∵
∴y随x的增大而减小,
∵x为正整数,
∴当x=25时,y取最大值,则
即商店购进25台A型电脑和75台B型电脑的销售利润最大;
(3)据题意得, 即 当时,解得x=20,不符合要求
y随x的增大而减小,
∴当x=25时,y取最大值,
即商店购进25台A型电脑和75台B型电脑的销售利润最大,此时y=13500元.
当x=60时,y取得最小值,此时y=12800元.
故这100台电脑销售总利润的范围为12800≤y≤13500.
点睛:考查了一次函数的应用,一元一次不等式的应用,解题的关键是掌握一次函数的性质.
17、(1)50件;(2);(3)795
【解析】
(1)根据表格中的数据和题意列不等式,根据且x为整数即可求出x的取值范围得到答案;
(2)根据题意和表格中的数据即可得到函数关系式;
(3)根据(2)中的函数关系式和一次函数的性质即可求出答案.
【详解】
(1)由题意得15x+25(80-x),
解得x,
∵,且为整数,
∴,且为整数,
∴至少购进甲种商品50件;
(2)由题意得,
∴y与x的函数关系式是;
(3)∵,,且为整数,
∴当x=1时,y有最大值,此时y最大值=795,
故答案为:795.
此题考查一元一次不等式的实际应用,一次函数的实际应用,一次函数的性质求函数的最大值,正确理解题意列不等式或函数解决问题是解题的关键.
18、(1),;(2),
【解析】
(1)先把二次项系数化为1,方程两边加上一次项系数一半的平方,把左边变成完全平方式,然后用直接开平方法解即可;
(2)首先确定a,b,c的值,再计算出b2-4ac的值判断方程方程是否有解,若有解,代入公式即可求解.
【详解】
(1)
∴
解得,,;
(2)
在这里,,b=-2,
∴
解得,,
本题考查了解一元二次方程的方法,求根公式法适用于任何一元二次方程,方程的解为:
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
分式方程去分母转化为整式方程,求出整式方程的解得到的值,经检验即可得到分式方程的解.
【详解】
解:去分母得:,
解得:,
经检验是分式方程的解,
故答案为:
此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.
20、
【解析】
根据一次函数图象上点的坐标特征找出A1、A2、A3、A4的坐标,结合图形即可得所求点Bn是线段CnAn+1的中点,由此即可得出点Bn的坐标.
【详解】
∵观察,发现:A1(1,0),A2(2,1),A3(4,3),A4(8,7),…,
∴An(2n-1,2n-1-1)(n为正整数).
观察图形可知:点Bn是线段CnAn+1的中点,
∴点Bn的坐标是(2n-1,2n-1).
故答案为.
此题考查一次函数图象上点的坐标特征以及规律型中点的坐标的变化,根据点的坐标的变化找出变化规律“An(2n-1,2n-1-1)(n为正整数)”是解题的关键.
21、1.1
【解析】
连接DF,由勾股定理求出AB=1,由等腰三角形的性质得出∠CAF =∠DAF,由SAS证明△ADF≌△ACF,得出CF=DF,∠ADF=∠ACF=∠BDF=90°,设CF=DF=x,则BF=4-x,在Rt△BDF中,由勾股定理得出方程,解方程即可.
【详解】
连接DF,如图所示:
在Rt△ABC中,∠ACB=90°,AC=3,BC=4,由勾股定理求得AB=1,
∵AD=AC=3,AF⊥CD,
∴∠CAF =∠DAF,BD=AB-AD=2,
在△ADF和△ACF中,
∴△ADF≌△ACF(SAS),
∴∠ADF=∠ACF=90°,CF=DF,
∴∠BDF=90°,
设CF=DF=x,则BF=4-x,
在Rt△BDF中,由勾股定理得:DF2+BD2=BF2,
即x2+22=(4-x)2,
解得:x=1.1;
∴CF=1.1;
故答案为1.1.
本题考查了勾股定理、全等三角形的判定与性质、等腰三角形的性质,证明△ADF≌△ACF得到CF=DF,在Rt△BDF中利用勾股定理列方程是解决问题的关键.
22、
【解析】
作于,由菱形的性质得出,,由直角三角形的性质得出,由的面积,即,解得:即可.
【详解】
解:作于,如图所示:
四边形是菱形,
,,
,
,
的面积,
即,
解得:;
故答案为:.
本题考查了菱形的性质、三角形面积公式、含角的直角三角形的性质;熟练掌握菱形的性质,证出与的关系是解题的关键.
23、900°
【解析】
由n边形的内角和是:180°(n−2),将n=7代入即可求得答案.
【详解】
解:七边形的内角和是:180°×(7−2)=900°.
故答案为:900°.
此题考查了多边形的内角和公式.此题比较简单,注意熟记公式:n边形的内角和为180°(n−2)实际此题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)见解析;(2)①BH=AF,理由见解析,②正方形EFGH的边长为.
【解析】
(1)根据正方形的对角线互相垂直平分可得AE=BE,∠BEH=∠AEF=90°,然后利用“边角边”证明△BEH和△AEF全等,根据全等三角形对应边相等即可得证;
(2)①连接EG,根据正方形的性质得到AE=BE,∠BEA=90°,EF=EH,∠HEF=90°,根据全等三角形的性质即可得到结论;
②如备用图,根据平行四边形的性质得到AH∥BD,AH=BD,于是得到∠EAH=∠AEB=90°,根据勾股定理即可得到结论;
【详解】
(1)在正方形ABCD中,AE=BE,∠BEH=∠AEF=90°,
∵四边形EFGH是正方形,
∴EF=EH,
∵在△BEH和△AEF中,
∴△BEH≌△AEF(SAS),
∴BH=AF;
(2)①BH=AF,
理由:连接EG,
∵四边形ABCD是正方形,
∴AE=BE,∠BEA=90°,
∵四边形EFGH是正方形,
∴EF=EH,∠HEF=90°,
∴∠BEA+∠AEH=∠HEF+∠AEH,
即∠BEH=∠AEF,
在△BEH与△AEF中,,
∴△BEH≌△AEF,
∴BH=AF;
②如备用图,∵四边形ABDH是平行四边形,
∴AH∥BD,AH=BD,
∴∠EAH=∠AEB=90°,
∵四方形ABCD的边长为,
∴AE=BE=CE=DE=1,
∴EH===,
∴正方形EFGH的边长为.
本题考查了正方形的性质,旋转的性质,全等三角形的判定和性质,勾股定理,正确作出图形是解题的关键.
25、(1)∠ABO=60°;(2)
【解析】
(1)根据函数解析式求出点A、B的坐标,然后在Rt△ABO中,利用三角函数求出tan∠ABO的值,继而可求出∠ABO的度数;
(2)根据题意可得,AB=AC,AO⊥BC,可得AO为BC的中垂线,根据点B的坐标,得出点C的坐标,然后利用待定系数法求出直线l的函数解析式.
【详解】
解:(1)对于直线y=x+,
令x=0,则y=,
令y=0,则x=﹣1,
故点A的坐标为(0,),点B的坐标为(﹣1,0),
则AO=,BO=1,
在Rt△ABO中,
∵tan∠ABO=,
∴∠ABO=60°;
(2)在△ABC中,
∵AB=AC,AO⊥BC,
∴AO为BC的中垂线,
即BO=CO,
则C点的坐标为(1,0),
设直线l的解析式为:y=kx+b(k,b为常数),
则 ,
解得: ,
即函数解析式为:y=﹣x+.
本题考查了待定系数法求一次函数解析式,涉及了的知识点有:待定系数法确定一次函数解析式,一次函数与坐标轴的交点,坐标与图形性质,熟练掌握待定系数法是解答本题的关键.
26、见解析.
【解析】
先分别求出不等式组中每一个不等式的解集,然后再根据不等式组解集的确定方法确定出不等式组的解集并在数轴上表示出来即可.
【详解】
,
解不等式①得:x≤1,
解不等式②得:x>-4,
所以不等式组的解集为-4
.
本题考查了解一元一次不等式组,熟练掌握解一元一次方程的方法以及解集的确定方法是解题的关键.解集的确定方法:同大取大,同小取小,大小小大中间找,大大小小无解了.
题号
一
二
三
四
五
总分
得分
进价(元/件)
售价(元/件)
甲种商品
乙种商品
相关试卷
这是一份2025届山东省青岛市西海岸新区6中九上数学开学达标测试试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年山东省烟台龙口市数学九年级第一学期开学学业质量监测模拟试题【含答案】,共25页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年重庆市两江新区数学九年级第一学期开学学业质量监测模拟试题【含答案】,共17页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。