2025届山东省泰安市肥城市九上数学开学达标测试试题【含答案】
展开这是一份2025届山东省泰安市肥城市九上数学开学达标测试试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,在四边形中,,分别是的中点,则四边形一定是( )
A.平行四边形B.矩形C.菱形D.正方形
2、(4分)如图,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P的距离为30海里的A处,轮船沿正南方向航行一段时间后,到达位于灯塔P的南偏东30°方向上的B处,则此时轮船所在位置B与灯塔P之间的距离为( )
A.60海里B.45海里C.20海里D.30海里
3、(4分)如图,将△ABC绕点A旋转至△ADE的位置,使点E落在BC边上,则对于结论:①DE=BC;②∠EAC=∠DAB;③EA平分∠DEC;④若DE∥AC,则∠DEB=60°;其中正确结论的个数是( )
A.4B.3C.2D.1
4、(4分)下列各图中a、b、c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC全等的是( )
A.甲和乙B.乙和丙C.甲和丙D.只有丙
5、(4分)下列多项式中,可以提取公因式的是( )
A.ab+cdB.mn+m2
C.x2-y2D.x2+2xy+y2
6、(4分)点P(-4,2)关于原点对称点的坐标P’(-2,-2)则等于 ( )
A.6B.-6C.2D.-2
7、(4分)一次函数y=ax+b,b>0,且y随x的增大而减小,则其图象可能是( )
A.B.C.D.
8、(4分)在平面直角坐标系中,点P(﹣3,4)关于y轴对称点的坐标为( )
A.(﹣3,4)B.(3,4)C.(3,﹣4)D.(﹣3,﹣4)
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,直线为和的交点是,过点分别作轴、轴的垂线,则不等式的解集为__________.
10、(4分)若函数的图象经过A(1,)、B(-1,)、C(-2,)三点,则,,的大小关系是__________________.
11、(4分)已知平行四边形的周长是24,相邻两边的长度相差4,那么相邻两边的长分别是_____.
12、(4分)袋中装有除颜色外其余均相同的5个红球和3个白球.从袋中任意摸出一个球,则摸出的球是红球的概率为________.
13、(4分)若三角形的周长为28cm,则它的三条中位线组成的三角形的周长是______.
三、解答题(本大题共5个小题,共48分)
14、(12分)解方程:(1);(2);(3)x3290
15、(8分)某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如下表
若日销售量y是销售价x的一次函数.
(1)求出日销售量y(件)与销售价x(元)的函数关系式;
(2)求销售价定为30元时,每日的销售利润.
16、(8分)某工人为一客户制作一长方形防盗窗,为了牢固和美观,设计如图所示,中间为三个菱形,其中左右为两个全等的大菱形,中间为一个小菱形,竖着的铁棍的间距是相等的,尺寸如图所示(单位:m),工人师傅要做这样的一个防盗窗,总共需要多长的铁棍(不计损耗?)
17、(10分)受益于国家支持新能源汽车发展和“一带一路”倡议,某市汽车零部件生产企业的利润逐年提高,据统计,2017年的利润为2亿元,2019 年的利润为2.88亿元.
(1)求该企业从2017年到2019年年利润的平均增长率?
(2)若年利润的平均增长率不变,则该企业2020年的利润能后超过3.5亿元?
18、(10分)如图,点是边上的中点,,垂足分别是点.
(1)若,求证:;
(2)若,求证:四边形是矩形.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)某病毒的直径为0.00000016m,用科学计数法表示为______________.
20、(4分)如图,三个边长均为1的正方形按如图所示的方式摆放,A1,A2分别是正方形对角线的交点,则重叠部分的面积和为______.
21、(4分)如图,是将绕点顺时针旋转得到的.若点,,在同一条直线上,则的度数是______.
22、(4分)平面直角坐标系中,点A在函数 (x>0)的图象上,点B在 (x<0)的图象上,设A的横坐标为a,B的横坐标为b,当|a|=|b|=5时,求△OAB的面积为____;
23、(4分)已知正比例函数y=kx的图象经过点A(﹣1,2),则正比例函数的解析式为 .
二、解答题(本大题共3个小题,共30分)
24、(8分)近年,教育部多次明确表示,今后中小学生参加体育活动情况、学生体质健康状况和运动技能等级纳入初中、高中学业水平考试,纳入学生综合素质评价体系.为更好掌握学生体育水平,制定合适的学生体育课内容,某初级中学对本校初一,初二两个年级的学生进行了体育水平检测.为了解情况,现从两个年级抽样调查了部分学生的检测成绩,过程如下:
(收集数据)从初一、初二年级分别随机抽取了20名学生的水平检测分数,数据如下:
(整理数据)按如下分段整理样本数据:
(分析数据)对样本数据边行如下统计:
(得出结论)
(1)根据统计,表格中a、b、c、d的值分别是 、 、 、 .
(2)若该校初一、初二年级的学生人数分别为800人和1000人,则估计在这次考试中,初一、初二成绩90分以上(含90分)的人数共有 人.
(3)根据以上数据,你认为 (填“初一“或“初二”)学生的体育整体水平较高.请说明理由(一条理由即可).
25、(10分)已知,如图甲,在△ABC中,AE平分∠BAC(∠C>∠B),F为AE上一点,且FD⊥BC于D.
(1)试说明:∠EFD=(∠C﹣∠B);
(2)当F在AE的延长线上时,如图乙,其余条件不变,(1)中的结论还成立吗?请说明理由.
26、(12分)已知一次函数的图象经过点,且与正比例函数的图象相交于点
(1)求a的值;
(2)求出一次函数的解析式;
(3)求的面积.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
根据三角形中位线定理,平行四边形的判定定理得到四边形EFGH为平行四边形,证明∠FGH=90°,根据矩形的判定定理证明.
【详解】
∵E,F分别是边AB,BC的中点,
∴EF=AC,EF∥AC,
同理,HG=AC,HG∥AC,
∴EF=HG,EF∥HG,
∴四边形EFGH为平行四边形,
∵F,G分别是边BC,CD的中点,
∴FG∥BD,
∵
∴∠FGH=90°,
∴平行四边形EFGH为矩形,
故选B.
本题考查的是中点四边形,掌握三角形中位线定理,矩形的判定定理是解题的关键.
2、D
【解析】
根据题意得出:∠B=30°,AP=30海里,∠APB=90°,再利用勾股定理得出BP的长,求出答案.
【详解】
解:由题意可得:∠B=30°,AP=30海里,∠APB=90°,
故AB=2AP=60(海里),
则此时轮船所在位置B处与灯塔P之间的距离为:BP=(海里)
故选:D.
此题主要考查了勾股定理的应用以及方向角,正确应用勾股定理是解题关键.
3、A
【解析】
由旋转的性质可知,△ABC≌△ADE,DE=BC,可得①正确;∠CAE=∠CAB﹣∠BAE,∠DAB=∠DAE﹣∠BAE,可得∠EAC=∠DAB,可判定②正确;AE=AC,则∠AEC=∠C,再由∠C=∠AED,可得∠AEC=∠AED;可判定③正确;根据平行线的性质可得可得∠C=∠BED,∠AEC=∠AED=∠C,根据平角的定义可得∠DEB=60°;综上即可得答案.
【详解】
∵将△ABC绕点A旋转至△ADE的位置,使点E落在BC边上,
∴△ABC≌△ADE,
∴DE=BC,AE=AC,∠BAC=∠DAE,∠C=∠AED,故①正确;
∴∠CAE=∠CAB﹣∠BAE,∠DAB=∠DAE﹣∠BAE,
∴∠EAC=∠DAB;故②正确;
∵AE=AC,
∴∠AEC=∠C,
∴∠AEC=∠AED,
∴EA平分∠DEC;故③正确;
∵DE∥AC,
∴∠C=∠BED,
∵∠AEC=∠AED=∠C,
∴∠DEB=∠AEC=∠AED =60°,故④正确;
综上所述:正确的结论是①②③④,共4个,
故选:A.
本题考查旋转的性质,旋转前、后的两个图形全等,对应边、对应角相等,对应点与旋转中心所连线段的夹角等于旋转角.
4、B
【解析】
分析:根据三角形全等的判定方法得出乙和丙与△ABC全等,甲与△ABC不全等.
详解:乙和△ABC全等;理由如下:
在△ABC和图乙的三角形中,满足三角形全等的判定方法:SAS,
所以乙和△ABC全等;
在△ABC和图丙的三角形中,满足三角形全等的判定方法:AAS,
所以丙和△ABC全等;
不能判定甲与△ABC全等;
故选B.
点睛:本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
5、B
【解析】
直接利用提取公因式法分解因式的步骤分析得出答案.
【详解】
解:A.ab+cd,没有公因式,故此选项错误;
B.mn+m2=m(n+m),故此选项正确;
C.x2﹣y2,没有公因式,故此选项错误;
D.x2+2xy+y2,没有公因式,故此选项错误.
故选B.
本题主要考查了提取公因式法分解因式,正确找出公因式是解题的关键.
6、A
【解析】
根据关于原点对称的点的坐标特点进行求解.
【详解】
解:∵点P(a-4,2)关于原点对称的点的坐标P′(-2,-2),
∴a-4=2,
∴a=6,
故选:A.
本题考查了关于原点对称的点的坐标特点,关键是熟记关于原点对称的点的横纵坐标都变为相反数.
7、C
【解析】
根据题意,判断a<0,b>0,由一次函数图象的性质可得到直线的大概位置.
【详解】
因为,一次函数y=ax+b,b>0,且y随x的增大而减小,
所以,a<0,
所以,直线经过第一、二、四象限.
故选:C
本题考核知识点:一次函数的图象. 解题关键点:熟记一次函数的图象.
8、B
【解析】
根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答.
【详解】
解:点P(﹣3,4)关于y轴对称点的坐标为(3,4).
故选:B.
本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:
(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;
(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;
(3)关于原点对称的点,横坐标与纵坐标都互为相反数.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、.
【解析】
根据一元一次函数和一元一次不等式的关系,从图上直接可以找到答案.
【详解】
解:由,即函数的图像位于的图像的上方,所对应的自变量x的取值范围,即不等式的解集,解集为.
本题考查了一次函数与不等式的关系,因此数形结合成为本题解答的关键.
10、<<
【解析】
分别计算自变量为1,-1,-2对应的函数值即可得到,,的大小关系.
【详解】
解:当x=1时,=-2×1=-2;
当x=-1时,=-2×(-1)=2;
当x=-2时,=-2×(-2)=4;
∵-2<2<4
∴<<
故答案为:<<.
本题考查了正比例函数图象上点的坐标特征:正比例函数图象上点的坐标满足其解析式.
11、4和1
【解析】
设短边为x,则长边为x+4,再利用周长为24作等量关系,即可列方程求解.
【详解】
∵平行四边形周长为24,
∴相邻两边的和为12,
∵相邻两边的差是4,
设短边为x,则长边为x+4
∴x+4+x=12
∴x=4
∴两边的长分别为:4,1.
故答案为:4和1;
主要考查了平行四边形的性质,即平行四边形的对边相等这一性质,并建立适当的方程是解题的关键.
12、
【解析】
直接利用概率公式求解.
【详解】
从袋中任意摸出一个球,则摸出的球是红球的概率=.
故答案为.
本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.
13、14cm
【解析】
根据三角形中位线定理得到EF=BC,DF=AB,DE=AC,根据三角形的周长公式计算即可.
【详解】
解:∵△ABC的周长为28,
∴AB+AC+BC=28cm,
∵点D、E、F分别是BC、AB、AC的中点,
∴EF=BC,DF=AB,DE=AC,
∴△DEF的周长=DE+EF+DF=(AC+BC+AB)=14(cm),
故答案为:14cm.
本题考查的是三角形中位线定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1);(2);(3)x1=0,x2=6.
【解析】
(1)先对中的分母通分,再进行移项,系数化为1,即可得到答案;
(2)先将变为,再进行加减运算,系数化为1,即可得到答案;
(3)先对x3290进行去括号运算,再进行减法运算,移项即可得到答案.
【详解】
(1)
经检验为原分式方程的根;
(2)
经检验为原方程的根;
(3)x3290
x26x+990
x26x=0
x(x-6)=0,
x1=0,x2=6.
本题考查分式方程,因式分解法解一元二次方程,解题的关键是掌握分式方程和一元二次方程的基本解题步骤,注意解分式方程要检验.
15、(1)一次函数解析式为y=-x+1;(2)每日所获利润为200元.
【解析】
分析:(1)已知日销售量y是销售价x的一次函数,可设函数关系式为y=kx+b(k,b为常数,且k≠0),代入两组对应值求k、b,确定函数关系式.
(2)把x=30代入函数式求y,根据:(售价﹣进价)×销售量=利润,求解.
详解:(1)设此一次函数解析式为y=kx+b(k,b为常数,且k≠0).
则.
解得:k=﹣1,b=1.
即一次函数解析式为y=﹣x+1.
(2)当x=30时,每日的销售量为y=﹣30+1=10(件),
每日所获销售利润为(30﹣10)×10=200(元).
点睛:本题主要考查用待定系数法求一次函数关系式,并会用一次函数研究实际问题.
16、需要m的铁棍.
【解析】
根据图中的几何关系,然后由菱形的四边相等可以求出答案.
【详解】
由题意,知两个大菱形的边长为: (m) .
小菱形的边长为: (m) .
所以三个菱形的周长的和为:(m) .
所以所需铁棍的总长为:1.8×9+2.4×2+2=m .
答:需要m的铁棍.
本题考查了菱形的性质及勾股定理在计算中的应用,明确菱形的性质及根据勾股定理构建方程是解题的关键.
17、(1)这两年该企业年利润平均增长率为20%;(2)该企业2020年的利润不能超过3.5亿元.
【解析】
(1)设年利润平均增长率为x,根据“2017年的利润为2亿元,2019年的利润为2.88亿元”,列出关于x的一元二次方程,解之,根据实际情况,即可得到答案,
(2)结合(1)的结果,列式计算,求出2020年的利润,即可得到答案.
【详解】
(1)设年利润平均增长率为x,得:
2(1+x)2=2.88,
解得 x1 =0.2,x2 =-2.2 (舍去),
答:这两年该企业年利润平均增长率为20%;
(2)2.88(1+20%)=3.456,
3.456<3.5,
答:该企业2020年的利润不能超过3.5亿元.
本题考查了一元二次方程的应用,正确找出等量关系,列出一元二次方程是解题的关键.
18、 (1)证明见解析;(2)证明见解析.
【解析】
(1)由“SAS”可证△BFD≌△CED;
(2)由三角形内角和定理可得∠A=90°,由三个角是直角的四边形是矩形可判定四边形AEDF是矩形.
【详解】
证明:(1)∵点D是△ABC边BC上的中点
∴BD=CD
又∵DE⊥AC,DF⊥AB,垂足分别是点E、F
∴∠BFD=∠DEC=90°
∵BD=CD,∠BFD=∠DEC,∠B=∠C
∴△BFD≌△CED (AAS)
(2)∵∠B+∠C=90°,∠A+∠B+∠C=180°
∴∠A=90°
∵∠BFD=∠DEC=90°
∴∠A=∠BFD=∠DEC=90°
∴四边形AEDF是矩形
本题考查了矩形的判定,全等三角形的判定和性质,熟练运用矩形的判定是本题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1.6×10-7m.
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
解:0.00000016m=1.6×10-7m.
此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
20、
【解析】
过点A1分别作正方形两边的垂线A1D与A1E,根据正方形的性质可得A1D=A1E,再根据同角的余角相等求出∠BA1D=∠CA1E,然后利用“角边角”证明△A1BD和△A1CE全等,根据全等三角形的面积相等求出阴影部分的面积等于正方形面积的,即可求解.
【详解】
如图,过点A1分别作正方形两边的垂线A1D与A1E,
∵点A1是正方形的中心,
∴A1D=A1E,
∵∠BA1D+∠BA1E=90°,∠CA1E+∠BA1E=90°,
∴∠BA1D=∠CA1E,A1D=A1E,∠A1DB=∠A1EC=90°,
∴△A1BD≌△A1CE(ASA),
∴△A1BD的面积=△A1CE的面积,
∴两个正方形的重合面积=正方形面积=,
∴重叠部分的面积和为×2=.
故答案是:.
考查了全等三角形的判定与性质,正方形的性质,作辅助线构造出全等三角形求出阴影部分的面积是正方形的面积的是解题的关键.
21、
【解析】
根据旋转的性质,即可求出的度数.
【详解】
旋转,
,,
,
.
故答案为:.
本题考查了三角形的旋转问题,掌握旋转的性质是解题的关键.
22、2
【解析】
根据已知条件可以得到点A、B的横坐标,则由反比例函数图象上点的坐标特征易求点O到直线AB的距离,所以根据三角形的面积公式进行解答即可;
【详解】
)∵a>0,b<0,当|a|=|b|=5时,
可得A(5, ),B(−5, ),
∴S△OAB=×10×=2;
此题考查反比例函数,解题关键在于得到点A、B的横坐标
23、y=﹣1x
【解析】
试题分析:根据点在直线上点的坐标满足方程的关系,把点A的坐标代入函数解析式求出k值即可得解:
∵正比例函数y=kx的图象经过点A(﹣1,1),
∴﹣k=1,即k=﹣1.
∴正比例函数的解析式为y=﹣1x.
二、解答题(本大题共3个小题,共30分)
24、(1)3、6、84.5、85;(2)490;(3) “初二”,理由详见解析.
【解析】
(1)根据给出的统计表求出a、b,根据中位数和众数的概念求出c、d;
(2)用样本估计总体,得到答案;
(3)根据平均数的性质解答.
【详解】
解:(1)由统计表中的数据可知,a=3,b=6,c==84.5,d=85,
故答案为:3;6;84.5;85;
(2)初一成绩90分以上(含90分)的人数共有:800×=240(人),
初二成绩90分以上(含90分)的人数共有1000×=250(人),
240+250=490(人),
故答案为:490;
(3)“初二”学生的体育整体水平较高,
原因是:初二年级的平均数大于初一年级的平均数,
故答案为:“初二”.
本题考查了数据的统计与分析,熟知平均数、中位数、众数、方差等的实际意义是解题的关键.
25、(1)见详解;(2)成立,证明见详解.
【解析】
(1) 根据三角形内角和定理以及角平分线的定义得到∠BAE=∠BAC=(180°﹣∠B﹣∠C)=90°﹣(∠B+∠C),然后根据三角形的外角的性质可以得到∠FEC=∠B+∠BAE,求得∠FEC,再根据直角三角形的两个锐角互余即可求得结论;
(2)根据(1)可以得到∠AEC=90°+(∠B﹣∠C),根据对顶角相等即可求得∠DEF,然后利用直角三角形的两个锐角互余即可求解.
【详解】
解:(1)∵AE平分∠BAC,
∴∠BAE=∠BAC=(180°﹣∠B﹣∠C)
=90°﹣(∠B+∠C),
∵∠FEC=∠B+∠BAE,
则∠FEC=∠B+90°﹣(∠B+∠C)
=90°+(∠B﹣∠C),
∵FD⊥EC,
∴∠EFD=90°﹣∠FEC,
则∠EFD=90°﹣[90°+(∠B﹣∠C)]
=(∠C﹣∠B);
(2)成立.
证明:同(1)可证:∠AEC=90°+(∠B﹣∠C),
∴∠DEF=∠AEC=90°+(∠B﹣∠C),
∴∠EFD=90°﹣[90°+(∠B﹣∠C)]
=(∠C﹣∠B).
此题主要考查了角平分线的性质、三角形内角和定理和直角三角形的性质,命题时经常将多个知识点联系在一起进行考查,这样更能训练学生的解题能力.
26、(1)1(2)(3)
【解析】
(1)将点B代入正比例函数即可求出a的值;
(2)将点A、B代入一次函数,用待定系数法确定k,b的值即可;
(3)可将分割成两个三角形求其面积和即可.
【详解】
(1)依题意,点在正比例函数的图象上,
所以,
(2)依题意,点A、B在一次函数图象上,
所以,,解得:,.
一次函数的解析式为:,
(3)直线AB与y轴交点为,
的面积为:
本题考查了一次函数与反比例函数的综合,待定系数法求一次函数解析式是解题的关键,对于一般的三角形不易直接求面积时,可将其分割成多个易求面积的三角形.
题号
一
二
三
四
五
总分
得分
批阅人
售价x(元)
15
20
25
・・・・・・
日销售量y(件)
25
20
15
・・・・・・
初一年级
88
58
44
90
71
88
95
63
70
90
81
92
84
84
95
31
90
85
76
85
初二年级
75
82
85
85
76
87
69
93
63
84
90
85
64
85
91
96
68
97
57
88
分段
年级
0≤x<60
60≤x<70
70≤x<80
80≤x<90
90≤x≤100
初一年级
a
1
3
7
b
初二年级
1
4
2
8
5
统计量
年级
平均数
中位数
众数
方差
初一年级
78
c
90
284.6
初二年级
81
85
d
126.4
相关试卷
这是一份2025届山东省青岛5中数学九上开学达标检测试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届山东省聊城市莘县数学九上开学达标测试试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届山东省莱芜市名校数学九上开学达标测试试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。