![2025届山东省潍坊市寿光市数学九上开学学业质量监测模拟试题【含答案】第1页](http://www.enxinlong.com/img-preview/2/3/16243251/0-1728713534730/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2025届山东省潍坊市寿光市数学九上开学学业质量监测模拟试题【含答案】第2页](http://www.enxinlong.com/img-preview/2/3/16243251/0-1728713534813/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2025届山东省潍坊市寿光市数学九上开学学业质量监测模拟试题【含答案】第3页](http://www.enxinlong.com/img-preview/2/3/16243251/0-1728713534854/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2025届山东省潍坊市寿光市数学九上开学学业质量监测模拟试题【含答案】
展开
这是一份2025届山东省潍坊市寿光市数学九上开学学业质量监测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,等边三角形的边长为4,点是△ABC的中心,,的两边与分别相交于,绕点顺时针旋转时,下列四个结论正确的个数是( )
①;②;③;④周长最小值是9.
A.1个B.2个C.3个D.4个
2、(4分)一次函数的图象如图所示,则不等式的解集是( )
A.B.C.D.
3、(4分)已知关于x的一次函数y=kx+2k-3的图象经过原点,则k的值为( )
A.B.C.D.
4、(4分)目前,世界上能制造出的最小晶体管的长度只有米,将用科学记数法表示为( ).
A.B.C.D.
5、(4分)一个正多边形的内角和为,则这个正多边形的每一个外角的度数是( )
A.B.C.D.
6、(4分)下列方程是一元二次方程的是( )
A.B.C.D.
7、(4分)新定义,若关于x的一元二次方程:与,称为“同族二次方程”.如与是“同族二次方程”.现有关于x的一元二次方程:与是“同族二次方程”.那么代数式能取的最小值是( )
A.2011B.2013C.2018D.2023
8、(4分)甲、乙两人加工同一种服装,乙每天比甲多加工1件,乙加工服装24件所用时间与甲加工服装20件所用时间相同。设甲每天加工服装x件。由题意可得方程( )
A.B.
C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)在重庆八中“青春飞扬”艺术节的钢琴演奏比赛决赛中,参加比赛的10名选手成绩统计如图所示,则这10名学生成绩的中位数是___________.
10、(4分)若设A=,当=4时,记此时A的值为;当=3时,记此时A的值为;……则关于的不等式的解集为______.
11、(4分)如图所示,线段EF过平行四边形ABCD的对角线的交点O,交AD于点E,交BC于点F。已知AB=4,BC=5,EF=3,那么四边形EFCD的周长是_____.
12、(4分)如图,在中,,,,点在上,以为对角线的所有中,的最小值是____.
13、(4分)如图,在RtACB中,∠C=90°,AB=2,以点B为圆心,适当长为半径画弧,分别交边AB,BC于点E,F,再分别以点E,F为圆心,大于EF的长为半径画弧,两弧相交于点P,作射线BP交AC于点D,若CD=1,则ABD的面积为_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)《九章算术》“勾股”章有一题:“今有二人同所立,甲行率七,乙行率三.乙东行,甲南行十步而斜东北与乙会.问甲乙行各几何”.大意是说,已知甲、乙二人同时从同一地
点出发,甲的速度为7,乙的速度为1.乙一直向东走,甲先向南走10步,后又斜向北偏东方向走了一段后与乙相遇.那么相遇时,甲、乙各走了多远?
15、(8分)如图,在梯形中,,,,,
(1)求对角线的长度;
(2)求梯形的面积.
16、(8分)如图,在△ABC中,DE是AC的垂直平分线,AE=5cm,△ABD的周长为17cm,求△ABC
的周长.
17、(10分)三五三七鞋厂为了了解初中学生穿鞋的鞋号情况,对红华中学初二(1)班的20名男生所穿鞋号统计如下表:
(1)写出男生鞋号数据的平均数,中位数,众数;
(2)在平均数,中位数和众数中,鞋厂最感兴趣的是什么?
18、(10分)计算:(2-)×
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)某产品出现次品的概率为0.05,任意抽取这种产品400件,那么大约有_____件次品.
20、(4分)如图,在△ABC中,点D,E分别是边AB,AC的中点,AF⊥BC,垂足为点F,∠ADE=30°,DF=3,则AF的长为_.
21、(4分)一个多边形的内角和是它外角和的1.5倍,那么这个多边形是______边形.
22、(4分)(2011贵州安顺,17,4分)已知:如图,O为坐标原点,四边形OABC为矩形,A(10,0),C(0,4),点D是OA的中点,点P在BC上运动,当△ODP是腰长为5的等腰三角形时,则P点的坐标为 .
23、(4分)分解因式: .
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在△ABC中,∠BAC=90°,AD是中线,E是AD的中点,过点A作AF∥BC交BE的延长线于F,连接CF,求证:四边形ADCF是菱形.
25、(10分)已知:,求的值.
26、(12分)在平面直角坐标系中,的位置如图所示(每个小方格都是边长为1个单位长度的正方形).其中、、.
(1)将沿轴方向向左平移6个单位,画出平移后得到的;
(2)将绕着点顺时针旋转90°,画出旋转后得到的,、、的对应点分别是、、;
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
首先连接OB、OC,如图,利用等边三角形的性质得∠ABO=∠OBC=∠OCB=30°,再证明∠BOD=∠COE,于是可判断△BOD≌△COE,利用全等三角形的对应边相等可对①进行判断;再利用S =S 得到四边形ODBE的面积= S ,则可对③进行判断,然后作OH⊥DE,则DH=EH,计算出S = OE,利用S△ODE随OE的变化而变化和四边形ODBE的面积为定值可对②进行判断,
接下来由△BDE的周长=BC+DE=4+DE=4+OE,结合垂线段最短,当OE⊥BC时,OE最小,△BDE的周长最小,计算出此时OE的长则可对④进行判断.
【详解】
连接OB,OC,如图.
∵△ABC为等边三角形,
∴∠ABC=∠ACB=60°.
∵点O是△ABC的中心,
∴OB=OC,OB. OC分别平分∠ABC和∠ACB,
∴∠ABO=∠OBC=∠OCB=30°,
∴∠BOC=120°,即∠BOE+∠COE=120°,
而∠DOE=120°,即∠BOE+∠BOD=120°,
∴∠BOD=∠COE.
在△BOD和△COE中,∠BOD=∠COE,BO=CO,∠OBD=∠OCE,
∴△BOD≌△COE,
∴BD=CE,OD=OE,所以①正确;
∴S =S ,
∴四边形ODBE的面积=S = S =× ×4 = ,所以③正确;
作OH⊥DE,如图,则DH=EH,
∵∠DOE=120°,
∴∠ODE=∠OEH=30°.
∴OH=OE,HE=OH= OE,
∴DE= OE,
∴S△ODE= ··OE· OE= OE,
即S 随OE的变化而变化,而四边形ODBE的面积为定值,
∴S≠S ,所以②错误;
∵BD=CE,
∴△BDE的周长=BD+BE+DE=CE+BE+DE=BC+DE=4+DE=4+ OE,
当OE⊥BC时,OE最小,△BDE的周长最小,此时OE= ,
∴△BDE周长的最小值=4+2=6,所以④错误.
故选B.
此题考查旋转的性质、等边三角形的性质和全等三角形的判定与性质,解题关键是牢记旋转前、后的图形全等.
2、A
【解析】
根据一次函数与一元一次不等式的关系即可求出答案.
【详解】
解:∵y=kx+b,kx+b<0
∴y<0,
由图象可知:x<-2
故选:A.
本题考查一次函数与一元一次不等式,解题的关键是正确理解一次函数与一元一次不等式的关系,本题属于基础题型.
3、B
【解析】
将原点代入一次函数的解析式中,建立一个关于k的方程,解方程即可得出答案.
【详解】
∵关于x的一次函数y=kx+2k-3的图象经过原点,
∴,
解得 ,
故选:B.
本题主要考查一次函数,掌握一次函数图像上的点符合一次函数的解析式是解题的关键.
4、B
【解析】
根据科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,可得到答案
【详解】
解:∵
∴将用科学记数法表示为
故选B
此题考查科学记数法的表示方法,表示时关键要正确确定a的值以及n的值
5、A
【解析】
根据多边形的内角和公式求出边数,从而求得每一个外角的度数.
【详解】
多边形的内角和为,即
解得:
∴该多边形为正八边形
∴正八边形的每一个外角为:
故选:A
本题考查了多边形的内角和与外角和公式,解题的关键在于根据内角和求出具体的边数.
6、B
【解析】
本题根据一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为1.据此即可判断.
【详解】
解:A、含有2个未知数,不是一元二次方程,故选项不符合题意;
B、只有一个未知数且最高次数为2,是一元二次方程,选项符合题意;
C、不是整式方程,则不是一元二次方程,选项不符合题意;
D、整理后得,最高次数为1,不是二次方程,选项不符合题意;
故选:B.
本题利用了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=1(且a≠1).特别要注意a≠1的条件.这是在做题过程中容易忽视的知识点.
7、B
【解析】
根据同族二次方程的定义,可得出a和b的值,从而解得代数式的最小值.
【详解】
解:与为同族二次方程.
,
,
∴,
解得:.
,
当时,取最小值为2013.
故选:B.
此题主要考查了配方法的应用,解二元一次方程组的方法,理解同族二次方程的定义是解答本题的关键.
8、C
【解析】
根据乙每天比甲多加工1件,乙加工服装24件所用时间与甲加工服装20件所用时间相同,列出相应的方程,本题得以解决.
【详解】
解:由题意可得,,
故选:C.
本题考查由实际问题抽象出分式方程,解答本题的关键是明确题意,列出相应的方程.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、8.5
【解析】
根据图形,这10个学生的分数为:7,7.5,8,8,8.5,8.5,9,9,9,9.5,则中位数为8.5.
故答案:8.5.
10、.
【解析】
先对A化简,然后根据题意求出f(3)+f(4)+...+f(119)的值,然后求不等式的解集即可解答本题.
【详解】
解:A===
f(3)=,…,f(119)=
所以:f(3)+…+f(119)=+…+==
解得:,故答案为.
本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于中等题型.
11、1
【解析】
根据平行四边形的性质,得△AOE≌△COF.根据全等三角形的性质,得OF=OE,CF=AE.再根据平行四边形的对边相等,得CD=AB,AD=BC,故FC+ED=AE+ED=AD,根据所推出相等关系,可求四边形EFCD的周长.
【详解】
解:∵四边形ABCD为平行四边形,
∴AO=OC,AD∥BC,
∴∠EAO=∠FCO,
在△AOE和△COF中,
,
∴△AOE≌△COF,
∴OF=OE=1.5,CF=AE,
根据平行四边形的对边相等,得
CD=AB=4,AD=BC=5,
故四边形EFCD的周长=EF+FC+ED+CD=OE+OF+AE+ED+CD=1.5+1.5+5+4=1.
故答案为:1.
本题考查了平行四边形的性质,解题的关键是能够根据平行四边形的性质发现全等三角形,再根据全等三角形的性质求得相关线段间的关系.
12、6
【解析】
由平行四边形的对角线互相平分、垂线段最短知,当OD⊥BC时,DE线段取最小值.
【详解】
∵四边形ADCE是平行四边形,
∴OD=OE,OA=OC.
∴当OD取最小值时,DE线段最短,此时OD⊥BC.
∴OD是△ABC的中位线,
∴,,
∴,
∵在Rt△ABC中,∠B=90°,
,,
∴,
∴.
故答案为:6.
本题考查了平行四边形的性质,三角形中位线的性质以及垂线段最短的知识.正确理解DE最小的条件是关键.
13、
【解析】
过点D作DH⊥AB于H.利用角平分线的性质定理求出DH,然后根据三角形的面积公式即可解决问题.
【详解】
解:如图,过点D作DH⊥AB于H.
∵DC⊥BC,DH⊥AB,BD平分∠ABC,
∴DH=CD=1,
∴S△ABD=•AB•DH=×2×1=,
故答案为:.
本题主要考查角平分线的尺规作图及性质,掌握角平分线的性质是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、甲走了24.5步,乙走了10.5步
【解析】
试题分析:设经x秒二人在B处相遇,然后利用勾股定理列出方程即可求得甲乙两人走的步数.
试题解析:设经x秒二人在B处相遇,这时乙共行AB=1x,
甲共行AC+BC=7x,
∵AC=10,
∴BC=7x﹣10,
又∵∠A=90°,
∴BC2=AC2+AB2,
∴(7x﹣10)2=102+(1x)2,
∴x=0(舍去)或x=1.5,
∴AB=1x=10.5,
AC+BC=7x=24.5,
答:甲走了24.5步,乙走了10.5步.
15、(1);(2).
【解析】
(1)如图,过A作交CB延长线于E,∵AC⊥DB,AE∥DB,∴AC⊥AE,∠AEC=∠DBC=30°,即△EAC为直角三角形,四边形为平行四边形,根据勾股定理求解;
(2)记梯形ABCD的面积为S,过A作AF⊥BC于F,则△AFE为直角三角形,求出梯形的高AF,根据梯形面积公式即可求解.
【详解】
解;(l)如图,过作交延长线于,
∵,.
∴,,
∴,即为直角三角形,
∴,
∴.
∵且.
∴四边形为平行四边形.
∴;
(2)记梯形的面积为,过作于,则为直角三角形.
∵
∴,即梯形的高,
∵四边形为平行四边形,
∴.
.
本题考查了梯形及勾股定理,难度较大,关键是巧妙地构造辅助线进行求解.
16、27cm.
【解析】
已知DE是AC的垂直平分线,根据线段垂直平分线的性质可得DA=DC,AC=2AE=10cm,再由AB+BD+AD=AB+BD+DC=AB+BC=17cm,由此即可求得△ABC的周长.
【详解】
解:∵DE是AC的垂直平分线,
∴DA=DC,AC=2AE=10cm,
∵△ABD的周长为17cm,
∴AB+BD+AD=AB+BD+DC=AB+BC=17cm,
∴△ABC的周长=AB+BC+AC=27cm.
本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,熟记性质并求出AB+BC=17是解题的关键.
17、(1)平均数是24.11,中位数是24.1,众数是21;(2)厂家最关心的是众数.
【解析】
(1)根据“平均数、中位数和众数的定义及确定方法”结合表中的数据进行分析解答即可;
(2)根据“平均数、中位数和众数的统计意义”进行分析判断即可.
【详解】
解:(1)由题意知:男生鞋号数据的平均数==24.11;
男生鞋号数据的众数为21;
男生鞋号数据的中位数==24.1.
∴平均数是24.11,中位数是24.1,众数是21.
(2)∵在平均数、中位数和众数中,众数代表的是销售量最大的鞋号,
∴厂家最关心的是众数.
本题考查求平均数、众数、中位数.熟知:“平均数、中位数和众数的定义及各自的统计意义”是解答本题的关键.
18、.
【解析】
试题分析:原式利用乘法分配律计算即可得到结果.
试题解析:原式=2
=
=.
考点:二次根式的混合运算.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1.
【解析】
利用总数×出现次品的概率=次品的数量,进而得出答案.
【详解】
解:由题意可得:次品数量大约为400×0.05=1.
故答案为1.
本题考查概率的意义,正确把握概率的定义是解题的关键.
20、1.
【解析】
先利用直角三角形斜边中线性质求出AB,在Rt△ABF中,利用直角三角形10度角所对的直角边等于斜边的一半,求出AF即可解决问题.
【详解】
解:∵AF⊥BC,
∴∠AFB=90°,
在Rt△ABF中,D是AB的中点,DF=1,
∴AB=2DF=6,
又∵E是AC的中点,
∴DE∥BC,
∵∠ADE=10°,
∴∠ABF=∠ADE=10°,
∴AF=AB=1,
故答案为:1.
本题考查三角形中位线性质、含10度角的直角三角形性质、直角三角形斜边上的中线性质,解题的关键是灵活应用这些知识解决问题,属于中考常考题型.
21、五
【解析】
设多边形边数为n.
则360°×1.5=(n−2)⋅180°,
解得n=5.
故选C.
点睛:多边形的外角和是360度,多边形的内角和是它的外角和的1.5倍,则多边形的内角和是540度,根据多边形的内角和可以表示成(n-2)•180°,依此列方程可求解.
22、P(5,5)或(4,5)或(8,5)
【解析】
试题解析:由题意,当△ODP是腰长为4的等腰三角形时,有三种情况:
(5)如图所示,PD=OD=4,点P在点D的左侧.
过点P作PE⊥x轴于点E,则PE=5.
在Rt△PDE中,由勾股定理得:DE=,
∴OE=OD-DE=4-5=4,
∴此时点P坐标为(4,5);
(4)如图所示,OP=OD=4.
过点P作PE⊥x轴于点E,则PE=5.
在Rt△POE中,由勾股定理得: OE=,
∴此时点P坐标为(5,5);
(5)如图所示,PD=OD=4,点P在点D的右侧.
过点P作PE⊥x轴于点E,则PE=5.
在Rt△PDE中,由勾股定理得: DE=,
∴OE=OD+DE=4+5=8,
∴此时点P坐标为(8,5).
综上所述,点P的坐标为:(4,5)或(5,5)或(8,5).
考点:5.矩形的性质;4.坐标与图形性质;5.等腰三角形的性质;5.勾股定理.
23、.
【解析】
先把式子写成x2-22,符合平方差公式的特点,再利用平方差公式分解因式.
【详解】
x2-4=x2-22=(x+2)(x-2).
故答案为.
此题考查的是利用公式法因式分解,因式分解的步骤为:一提公因式;二看公式.
二、解答题(本大题共3个小题,共30分)
24、见解析
【解析】
根据AAS证△AFE≌△DBE,推出AF=BD.结合已知条件,利用“有一组对边平行且相等的四边形是平行四边形”得到ADCF是平行四边形,进而证明ADCF是菱形.
【详解】
证明:∵AF∥BC,
∴∠AFE=∠DBE,
∵E是AD的中点,AD是BC边上的中线,
∴AE=DE,BD=CD,
在△AFE和△DBE中,
,
∴△AFE≌△DBE(AAS);
∴AF=DB.
∵DB=DC,
∴AF=CD.
∵AF∥BC,
∴四边形ADCF是平行四边形,
∵∠BAC=90°,D是BC的中点,E是AD的中点,
∴AD=BC=DC,
∴四边形ADCF是菱形.
本题考查了全等三角形的性质和判定,平行四边形的判定,菱形的判定的应用,解题的关键是正确寻找全等三角形,利用直角三角形的性质解决问题,属于中考常考题型.
25、,
【解析】
解:==
又∵x+y=2,x-y=2
∴原式==
26、(1)的如图所示. 见解析;(2)的如图所示. 见解析.
【解析】
(1)分别画出A、B、C的对应点A1、B1、C1即可;
(2)分别画出A、B、C的对应点A2、B2、C2即可.
【详解】
(1)如图所示,即为所求;
(2)如图所示,即为所示.
考查作图-平移变换,作图-旋转变换等知识,解题的关键是熟练掌握基本知识.
题号
一
二
三
四
五
总分
得分
鞋号
23.5
24
24.5
25
25.5
26
人数
3
4
4
7
1
1
相关试卷
这是一份2024年浙江东阳数学九上开学学业质量监测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年山东省烟台市名校数学九上开学学业质量监测模拟试题【含答案】,共23页。试卷主要包含了选择题,四象限D.当时,随的增大而减小,解答题等内容,欢迎下载使用。
这是一份2024年山东省济宁市汶上县九上数学开学学业质量监测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。