2025届山西省大同市名校数学九上开学统考试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,∠C=90°,AB=12,BC=3,CD=1.若∠ABD=90°,则AD的长为( )
A.10B.13C.8D.11
2、(4分)下列各式中,能用完全平方公式分解的个数为( )
①;②;③;④;⑤.
A.1个B.2个C.3个D.4个
3、(4分)如图4,在中,,点为斜边上一动点,过点作于点 , 于点 ,连结 ,则线段的最小值为
A.1.2B.2.4C.2.5D.4.8
4、(4分)小华用火柴棒摆直角三角形,已知他摆两条直角边分别用了6根和8根火柴棒,则他摆完这个直角三角形共用火柴棒( )
A.25根B.24根C.23根D.22根
5、(4分)下列二次根式是最简二次根式的是
A.B.C.D.
6、(4分)如图,将一个边长为4和8的长方形纸片ABCD折叠,使C点与A点重合,则折痕EF的长是( )
A.B.C.D.
7、(4分)炎炎夏日,甲安装队为A小区安装60台空调,乙安装队为B小区安装50台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装2台.设乙队每天安装x台,根据题意,下面所列方程中正确的是
A.B.C.D.
8、(4分)如图,△ABC顶点C的坐标是(1,-3),过点C作AB边上的高线CD,则垂足D点坐标为( )
A.(1,0)B.(0,1)
C.(-3,0)D.(0,-3)
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,P是反比例函数图象上的一点,轴于A,点B,C在y轴上,四边形PABC是平行四边形,则▱PABC的面积是______.
10、(4分)在一个不透明的盒子中装有2个白球和3个红球这些球除了颜色外无其他差别现从这个盒子中任意摸出1个球,那么摸到1个红球的概率是_________.
11、(4分)已知x、y为直角三角形两边的长,满足,则第三边的长为________.
12、(4分)如图,已知四边形ABCD是正方形,直线l经过点D,分别过点A和点C作AE⊥l和CF⊥l,垂足分别为E和F,若DE=1,则图中阴影部分的面积为_____.
13、(4分)若一个直角三角形的两直角边长分别是1、2,则第三边长为____________。
三、解答题(本大题共5个小题,共48分)
14、(12分)(1)已知点A(2,0)在函数y=kx+3的图象上,求该函数的表达式并画出图形;
(2)求该函数图象与坐标轴围成的三角形的面积.
15、(8分)如图,,平分,交于点,平分,交于点,连接.求证:四边形是菱形.
16、(8分)如图,点A在的边ON上,于点B,,于点E,,于点C.
求证:四边形ABCD是矩形.
17、(10分)有一块田地的形状和尺寸如图所示,求它的面积.
18、(10分)如图,四边形是正方形,点是上的任意一点,于点,交于点.求证:
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)若分式的值为正数,则x的取值范围_____.
20、(4分)一组正整数2,4,5,从小到大排列,已知这组数据的中位数和平均数相等,那么的值是______.
21、(4分)甲、乙、丙、丁四人进行100m短跑训练,统计近期10次测试的平均成绩都是13.2s,10次测试成绩的方差如下表:则这四人中发挥最稳定的是_________.
22、(4分)若二次根式有意义,则实数m的取值范围是_________.
23、(4分)一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,两车的距离与慢车行驶的时间之间的函数关系如图所示,则快车的速度为__________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在平行四边形中,点,分别在边,的延长线上,且,分别与,交于点,.
求证:.
25、(10分)甲、乙两车从A城出发匀速行驶至B城,在整个行驶过程中,甲、乙两车离开A城的距离y(km)与行驶的时间t(h)之间的函数关系如图所示.
(1)求乙车离开A城的距离y关于t的函数解析式;
(2)求乙车的速度.
26、(12分)如图,在正方形网络中,△ABC的三个顶点都在格点上,点A、B、C的坐标分别为A(-2,4)、B(-2,0)、C(-4,1),结合所给的平面直角坐标系解答下列问题:
(1)画出△ABC关于原点O中心对称图形△A1B1C1.
(2)平移△ABC,使点A移动到点A2(0,2),画出平移后的△A2B2C2并写出点B2、C2的坐标.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
试题分析:在Rt△BCD中,因为BC=3,CD=1,∠C=90°,所以由勾股定理可得:BD=.
在Rt△ABD中,BA=12,BD=5,∠ABD=90°,由勾股定理可得:AD=.故选B
考点:勾股定理.
2、B
【解析】
分别利用完全平方公式分解因式得出即可
【详解】
①=,符合题意;
②;不能用完全平方公式分解,不符合题意
③;不能用完全平方公式分解,不符合题意
④=-,符合题意;
⑤,不可以用完全平方公式分解,不符合题意
故选:B.
本题考查因式分解,熟练掌握运算法则是解题关键.
3、B
【解析】
连接PC,证明四边形PECF是矩形,从而有EF=CP,当CP⊥AB时,PC最小,利用三角形面积解答即可.
【详解】
解:连接PC,
∵PE⊥AC,PF⊥BC,
∴∠PEC=∠PFC=∠C=90°,
∴四边形ECFP是矩形,
∴EF=PC,
∴当PC最小时,EF也最小,
即当CP⊥AB时,PC最小,
∵AC=1,BC=3,
∴AB=5,
∴PC的最小值为:
∴线段EF长的最小值为2.1.
故选B.
本题考查的是矩形的判定与性质,关键是根据矩形的性质和三角形的面积公式解答.
4、B
【解析】
根据勾股定理即可求得斜边需要的火柴棒的数量.再由三角形的周长公式来求摆完这个直角三角形共用火柴棒的数量
【详解】
∵两直角边分别用了6根、8根长度相同的火柴棒
∴由勾股定理,得到斜边需用:(根),
∴他摆完这个直角三角形共用火柴棒是:6+8+10=24(根).
故选B.
本题考查勾股定理的应用,是基础知识比较简单.
5、B
【解析】
化简得到结果,即可作出判断.
【详解】
A. 被开方数含分母,故错误;
B. 正确;
C. 被开方数含分母,故错误;
D. = ,故错误;
故选:B.
此题考查最简二次根式,解题关键在于检查最简二次根式的两个条件是否同时满足
6、D
【解析】
根据折叠的性质知,四边形AFEB与四边形FDCE全等,有EC=AF=AE,
由勾股定理得,AB2+BE2=AE2即42+(8﹣AE)2=AE2,解得,AE=AF=5,BE=3,
作EG⊥AF于点G,则四边形AGEB是矩形,有AG=3,GF=2,GE=AB=4,由勾股定理得EF=.
故选D.
7、D
【解析】
试题分析:由乙队每天安装x台,则甲队每天安装x+2台,则根据关键描述语:“两队同时开工且恰好同时完工”,找出等量关系为:甲队所用时间=乙队所用时间,据此列出分式方程:.故选D.
8、A
【解析】
根据在同一平面内,垂直于同一直线的两直线平行可得CD∥y轴,再根据平行于y轴上的点的横坐标相同解答.
【详解】
如图,
∵CD⊥x轴,
∴CD∥y轴,
∵点C的坐标是(1,-3),
∴点D的横坐标为1,
∵点D在x轴上,
∴点D的纵坐标为0,
∴点D的坐标为(1,0).
故选:A.
本题考查了坐标与图形性质,比较简单,作出图形更形象直观.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、6
【解析】
作PD⊥BC,所以,设P(x,y). 由,得平行四边形面积=BC•PD=xy.
【详解】
作PD⊥BC,
所以,设P(x,y).
由,
得平行四边形面积=BC•PD=xy=6.
故答案为:6
本题考核知识点:反比例函数意义. 解题关键点:熟记反比例函数的意义.
10、
【解析】
用红球的个数除以总球的个数即可得出答案.
【详解】
解:∵不透明的盒子中装有2个白球和3个红球,共有5个球,
∴这个盒子中任意模出1个球、那么摸到1个红球的概率是;
故答案为:.
本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.
11、、或.
【解析】
试题分析:∵|x2-4|≥0,,
∴x2-4=0,y2-5y+6=0,
∴x=2或-2(舍去),y=2或3,
①当两直角边是2时,三角形是直角三角形,则斜边的长为:;
②当2,3均为直角边时,斜边为;
③当2为一直角边,3为斜边时,则第三边是直角,长是.
考点:1.解一元二次方程-因式分解法;2.算术平方根;3.勾股定理.
12、
【解析】
证明△ADE≌△DCF,得到FC=DE=1,阴影部分为△EDC面积可求.
【详解】
∵四边形ABCD是正方形,
∴∠ADC=90°,AD=CD.
∵∠EAD+∠ADE=90°,∠CDF+∠ADE=90°,
∴∠EAD=∠CDF.
又∠AED=∠DFC=90°,
∴△ADE≌△DCF(AAS).
∴FC=DE=1.
∴阴影部分△EDC面积=ED×CF=×1×1=.
故答案为.
本题主要考查了正方形的性质、全等三角形的判定和性质,解决这类问题线段的等量转化要借助全等三角形实现.
13、
【解析】
根据勾股定理计算即可.
【详解】
由勾股定理得,第三边长=,
故答案为:.
本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a1+b1=c1.
三、解答题(本大题共5个小题,共48分)
14、(1) ,画图形见解析;(2)
【解析】
(1)将点代入,运用待定系数法求解即可;
(2)求出与x轴及y轴的交点坐标,然后根据面积公式求解即可.
【详解】
解:(1)∵点A(2,0)在函数y=kx+3的图象上,
∴2k+3=0,解得k=,
函数解析式为,
图像如下图所示:
(2)在中,令y=0,即,解得x=2,
令x=0,即,解得y=3,
∴函数图象与x轴、y轴分别交于点B(2,0)和A(0,3),
∴该函数图象与坐标轴围成的三角形的面积即为三角形AOB的面积,
∴.
本题考查待定系数法求函数解析式及三角形的面积的知识,难度不大,关键是正确得出函数解析式及坐标与线段长度的转化.
15、详见解析
【解析】
由角平分线和平行线的性质先证出,,从而有,得到四边形是平行四边形,又因为,所以四边形是菱形.
【详解】
证明:∵平分,
∴,
∵,
∴,
∴,
∴,
同理.
∴,
∵,
∴且,
∴四边形是平行四边形,
∵,
∴四边形是菱形.
本题考查了菱形,熟练掌握菱形的判定方法是解题的关键.
16、详见解析
【解析】
根据全等三角形的判定和性质以及矩形的判定解答即可;
【详解】
证明:(证法不唯一)∵于点B,于点E,
∴.
在与中,
∵
∴.
∴,
∴.
又∵,,
∴.
∴四边形ABCD是平行四边形.
∵,
∴四边形ABCD是矩形.
此题考查了矩形的判定与性质以及勾股定理.
17、面积为1.
【解析】
在直角△ACD中,已知AD,CD,根据勾股定理可以求得AC,根据AC,BC,AB的关系可以判定△ABC为直角三角形,根据直角三角形面积计算公式即可计算四边形ABCD的面积.
【详解】
解:连接AC,
在Rt△ACD中,AC为斜边,
已知AD=4,CD=3,
则AC==5,
∵AC2+BC2=AB2,
∴△ABC为直角三角形,
∴S四边形ABCD=S△ABC﹣S△ACD=AC•CB﹣AD•DC=1,
答:面积为1.
本题考查了勾股定理及其逆定理在实际生活中的运用,考查了直角三角形面积的计算,本题中正确的判定△ABC为直角三角形是解题的关键.
18、见详解.
【解析】
结合正方形的性质利用AAS可证,由全等三角形对应边相等的性质易证结论.
【详解】
证明:四边形ABCD是正方形
在和中,
本题主要考查了全等三角形的判定与性质,灵活的利用正方形的性质及平行线的性质确定全等的条件是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、x>1
【解析】
试题解析:由题意得:
>0,
∵-6<0,
∴1-x<0,
∴x>1.
20、1
【解析】
根据这组数据的中位数和平均数相等,得出(4+5)÷2=(2+4+5+x)÷4,求出x的值即可.
【详解】
∵这组数据的中位数和平均数相等,
∴(4+5)÷2=(2+4+5+x)÷4,
解得:x=1.
故答案为:1.
此题考查了中位数和平均数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,关键是根据中位数和平均数相等列出方程.
21、乙
【解析】
方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.
【详解】
解:∵,
方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.
∴乙最稳定.
故答案为:乙.
本题考查了方差,正确理解方差的意义是解题的关键.
22、m≤3
【解析】
由二次根式的定义可得被开方数是非负数,即可得答案.
【详解】
解:由题意得:解得: ,故答案为:.
本题考查了二次根式有意义的条件,利用被开方数是非负数得出不等式是解题关键.
23、150km/h
【解析】
假设快车的速度为a(km/h),慢车的速度为b(km/h).当两车相遇时,两车各自所走的路程之和就是甲乙两地的距离,由此列式4a+4b=900①,另外,由于快车到达乙地的时间比慢车到达甲地的时间要短,图中的(12,900)这个点表示慢车刚到达甲地,这时的两车距离等于两地距离,而x=12就是慢车正好到达甲地的时间,所以,12b=900②,①和②可以求出快车的速度.
【详解】
解:设快车的速度为a(km/h),慢车的速度为b(km/h),
∴4(a+b)=900,
∵慢车到达甲地的时间为12小时,
∴12b=900,
b=75,
∴4(a+75)=900,
解得:a=150;
∴快车的速度为150km/h.
故答案为:150km/h.
此题主要考查了一次函数的应用,解题的关键是首先正确理解题意,然后根据题目的数量关系得出b的值.
二、解答题(本大题共3个小题,共30分)
24、见详解
【解析】
利用平行四边形的性质,结合条件可得出AF=EC,再利用全等三角形的判定与性质定理,即可得到结论.
【详解】
∵在平行四边形中,
∴AD=BC,∠A=∠C,AD∥BC,
∴∠E=∠F,
∵,
∴AF=EC,
在∆AGF与∆CHE中,
∵,
∴∆AGF≅ ∆CHE(ASA),
∴AG=CH.
本题主要考查平行四边形的性质定理以及三角形全等的判定和性质定理,掌握平行四边形的性质以及ASA证三角形全等,是解题的关键.
25、(1)乙车离开A城的距离y关于t的函数解析式y=100t-100;(2)乙车的速度为100km/h.
【解析】
(1)根据题意和函数图象中的数据可以求得甲、乙相遇点的坐标,从而可以求出车离开A城的距离y关于t的函数解析式
(2)根据(1)中的函数解析式,可以得出乙车到达终点时的时间,从而求乙车的速度。
【详解】
(1)由图象可得,
甲车的速度为:300÷5=60km/h,
当甲车行驶150km时,用的时间为:150÷60=2.5,
则乙车的函数图象过点(1,0),(2.5,150),
设乙车离开A城的距离y关于t的函数解析式y=kt+b,
,得,
即乙车离开A城的距离y关于t的函数解析式y=100t-100;
(2)令y=300,
则100t-100=300,
解得,t=4
则乙车的速度为:300÷(4-1)=100km/h.
本题考查了一次函数的应用,利用一次函数的性质和数形结合的思想进行解答。
26、 (1)见解析;(2)图形见解析,点B2、C2的坐标分别为(0,-2),(-2,-1)
【解析】
(1)先作出点A、B、C关于原点的对称点,A1,B1,C1,顺次连接各点即可;
(2)平移△ABC,使点A移动到点A2(0,2),画出平移后的△A2B2C2,由点B2、C2在坐标系中的位置得出各点坐标即可.
【详解】
(1)△ABC关于原点O对称的△A1B1C1如图所示:
(2)平移后的△A2B2C2如图所示:点B2、C2的坐标分别为(0,-2),(-2,-1).
本题考查了作图﹣旋转变换,熟知图形旋转的性质是解答此题的关键.
题号
一
二
三
四
五
总分
得分
选手
甲
乙
丙
丁
方差(S2)
0.020
0.019
0.021
0.022
2025届山西省大同市矿区数学九上开学复习检测试题【含答案】: 这是一份2025届山西省大同市矿区数学九上开学复习检测试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届广西省来宾市名校九上数学开学统考试题【含答案】: 这是一份2025届广西省来宾市名校九上数学开学统考试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届北京市昌平区名校数学九上开学统考试题【含答案】: 这是一份2025届北京市昌平区名校数学九上开学统考试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。