2025届陕西省宝鸡市高新区九年级数学第一学期开学教学质量检测试题【含答案】
展开这是一份2025届陕西省宝鸡市高新区九年级数学第一学期开学教学质量检测试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)《九章算术》是我国古代的数学名著,书中的“折竹抵地”问题:今有竹高一丈,末折抵地,去本三尺.问折者高几何?意思是:一根竹子,原高一丈(一丈=10尺),一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部3尺远,问折断处离地面的高度是多少?设折断后离地面的高度为x尺,则可列方程为( )
A.x2–3=(10–x)2B.x2–32=(10–x)2C.x2+3=(10–x)2D.x2+32=(10–x)2
2、(4分)在一个直角三角形中,已知两直角边分别为6cm,8cm,则下列结论不正确的是( )
A.斜边长为10cmB.周长为25cm
C.面积为24cm2D.斜边上的中线长为5cm
3、(4分)如图,∠1,∠2,∠3,∠4,∠5是五边形ABCDE的外角,且∠1=∠2=∠3=∠4=75°,则∠AED的度数是( )
A.120°B.110°C.115°D.100°
4、(4分)某市一周日最高气温如图所示,则该市这周的日最高气温的众数是( )
A.25B.26C.27D.28
5、(4分)在平面直角坐标系中,二次函数的图象如图所示,点,是该二次函数图象上的两点,其中,则下列结论正确的是( )
A.B.C.函数的最小值是D.函数的最小值是
6、(4分)年一季度,华为某销公营收入比年同期增长,年第一季度营收入比年同期增长,年和年第一季度营收入的平均增长率为,则可列方程( )
A.B.
C.D.
7、(4分)从﹣4,﹣3,﹣2,﹣1,0,1,3,4,5这九个数中,随机抽取一个数,记为a,则数a使关于x的不等式组至少有四个整数解,且关于x的分式方程=1有非负整数解的概率是( )
A.B.C.D.
8、(4分)已知:以a,b,c为边的三角形满足(a﹣b)(b﹣c)=0,则这个三角形是( )
A.等腰三角形B.直角三角形
C.等边三角形D.等腰直角三角形
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)若方程有增根,则m的值为___________;
10、(4分)如图,AO=OC,BD=16cm,则当OB=___cm时,四边形ABCD是平行四边形.
11、(4分)在矩形ABCD中,∠BAD的角平分线交于BC点E,且将BC分成1:3的两部分,若AB=2,那么BC=______
12、(4分)如图P(3,4)是直角坐标系中一点,则P到原点的距离是________.
13、(4分)如图矩形ABCD中,AD=,F是DA延长线上一点,G是CF上一点,∠ACG=∠AGC,∠GAF=∠F=20°,则AB=__.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(4,﹣1).
①把△ABC向上平移5个单位后得到对应的△A1B1C1,画出△A1B1C1;
②以原点O为对称中心,再画出与△ABC关于原点对称的△A2B2C2,并写出点C2的坐标.
15、(8分)为了节约能源,某城市开展了节约水电活动,已知该城市共有10000户家庭,活动前,某调查小组随机抽取了部分家庭每月的水电费的开支(单位:元),结果如左图所示频数直方图(每一组含前一个边界值,不含后一个边界值);活动后,再次调查这些家庭每月的水电费的开支,结果如表所示:
(1)求所抽取的样本的容量;
(2)如以每月水电费开支在225元以下(不含)为达到节约标准,请问通过本次活动,该城市大约增加了多少户家庭达到节约标准?
(3)活动后,这些样本家庭每月水电费开支的总额能否低于6000元?
(4)请选择一个适当的统计量分析活动前后的相关数据,并评价节约水电活动的效果.
16、(8分)先化简,再求值:,其中的值从不等式组的整数解中选取.
17、(10分)计算:6﹣5﹣+3.
18、(10分)如图1,在矩形ABCD中,对角线AC与BD相交于点O,过点O作直线EF⊥BD,且交AC于点E,交BC于点F,连接BE、DF,且BE平分∠ABD.
(1)①求证:四边形BFDE是菱形;②求∠EBF的度数.
(2)把(1)中菱形BFDE进行分离研究,如图2,G,I分别在BF,BE边上,且BG=BI,连接GD,H为GD的中点,连接FH,并延长FH交ED于点J,连接IJ,IH,IF,IG.试探究线段IH与FH之间满足的数量关系,并说明理由;
(3)把(1)中矩形ABCD进行特殊化探究,如图3,矩形ABCD满足AB=AD时,点E是对角线AC上一点,连接DE,作EF⊥DE,垂足为点E,交AB于点F,连接DF,交AC于点G.请直接写出线段AG,GE,EC三者之间满足的数量关系.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,已知矩形,,,点为中点,在上取一点,使的面积等于,则的长度为_______.
20、(4分)方程x4-8=0的根是______
21、(4分)已知为分式方程,有增根,则_____.
22、(4分)分解因式:____.
23、(4分)反比例函数y=图象上有两个点(x1,y1),(x2,y2),其中0<x1<x2,则y1,y2的大小关系是_____(用“<“连接).
二、解答题(本大题共3个小题,共30分)
24、(8分)在“2019慈善一日捐”活动中,某校八年级(1)班40名同学的捐款情况如下表:
根据表中提供的信息回答下列问题:
(1)x的值为________ ,捐款金额的众数为________元,中位数为________元.
(2)已知全班平均每人捐款57元,求a的值.
25、(10分)某花卉基地出售文竹和发财树两种盆栽,其单价为:文竹盆栽12元/盆,发财树盆栽15元/盆。如果同一客户所购文竹盆栽的数量大于800盆,那么每盆文竹可降价2元.某花卉销售店向花卉基地采购文竹400盆~900盆,发财树若干盆,此销售店本次用于采购文竹和发财树恰好花去12000元.然后再以文竹15元,发财树20元的单价实卖出.若设采购文竹x盆,发财树y盆,毛利润为W元.
(1)当时,y与x的数量关系是_______,W与x的函数解析式是_________;
当时,y与x的数量关系是___________,W与x的函数解析式是________;
(2)此花卉销售店应如何采购这两种盆栽才能使获得毛利润最大?
26、(12分)在平面直角坐标系中,的位置如图所示(每个小方格都是边长1个单位长度的正方形).
(1)将沿轴方向向左平移6个单位,画出平移后得到的.
(2)将绕着点顺时针旋转,画出旋转后得到的;直接写出点的坐标.
(3)作出关于原点成中心对称的,并直接写出的坐标.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
竹子折断后刚好构成一直角三角形,设竹子折断处离地面x尺,则斜边为(10-x)尺,利用勾股定理解题即可.
【详解】
设竹子折断处离地面x尺,则斜边为(10-x)尺,
根据勾股定理得:x1+31=(10-x)1.
故选D.
此题考查了勾股定理的应用,解题的关键是利用题目信息构造直角三角形,从而运用勾股定理解题.
2、B
【解析】
试题解析:∵在一个直角三角形中,已知两直角边分别为6cm,8cm,
∴直角三角形的面积=×6×8=24cm2,故选项C不符合题意;
∴斜边 故选项A不符合题意;
∴斜边上的中线长为5cm,故选项D不符合题意;
∵三边长分别为6cm,8cm,10cm,
∴三角形的周长=24cm,故选项B符合题意,
故选B.
点睛:直角三角形斜边的中线等于斜边的一半.
3、A
【解析】
根据多边形的外角和求出∠5的度数,然后根据邻补角的和等于180°列式求解即可.
详
【详解】
解:∵∠1=∠2=∠3=∠4=75°,
∴∠5=360°﹣75°×4=360°﹣300°=60°,
∴∠AED=180°﹣∠5=180°﹣60°=120°.
故选A.
本题考查了多边形的外角和等于360°的性质以及邻补角的和等于180°的性质,是基础题,比较简单.
4、A
【解析】
分析:根据众数是一组数据中出现次数最多的那个数求解即可.
详解: ∵25出现了3次,出现的次数最多,
∴周的日最高气温的众数是25.
故选A.
点睛:本题考查了众数的定义,熟练掌握一组数据中出现次数最多的那个数是众数是解答本题的关键. 众数可能没有,可能有1个,也可能有多个.
5、D
【解析】
根据抛物线解析式求得抛物线的顶点坐标,结合函数图象的增减性进行解答.
【详解】
=(x+3)(x−1),
则该抛物线与x轴的两交点横坐标分别是−3、1.
又=,
∴该抛物线的顶点坐标是(−1,−4),对称轴为x=-1.
A. 无法确定点A. B离对称轴x=−1的远近,故无法判断y与y的大小,故本选项错误;
B. 无法确定点A. B离对称轴x=−1的远近,故无法判断y与y的大小,故本选项错误;
C. y的最小值是−4,故本选项错误;
D. y的最小值是−4,故本选项正确。
故选:D.
本题考查二次函数的最值,根据抛物线解析式求得抛物线的顶点坐标是解题关键
6、D
【解析】
利用两种方法算出2019年第一季度的收入,因所得结果是一致的,进而得出等式即可.
【详解】
解:如果2017年第一季度收入为a,则根据题意2019年第一季度的收入为:a(1+22%)(1+30%),设2018年和2019年第一季度营收入的平均增长率为x,根据题意又可得2019年第一季度收入为:,此2种方式结果一样,可得:
a(1+22%)(1+30%)=,即,
故选择:D.
此题主要考查了根据实际问题抽象出一元二次方程,求平均变化率的方法为:若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.
7、C
【解析】
先解出不等式组,找出满足条件的a的值,然后解分式方程,找出满足非负整数解的a的值,然后利用同时满足不等式和分式方程的a的个数除以总数即可求出概率.
【详解】
解不等式组得: ,
由不等式组至少有四个整数解,得到a≥﹣3,
∴a的值可能为:﹣3,﹣2,﹣1,0,1,3,4,5,
分式方程去分母得:﹣a﹣x+2=x﹣3,
解得:x= ,
∵分式方程有非负整数解,
∴a=5、3、1、﹣3,
则这9个数中所有满足条件的a的值有4个,
∴P=
故选:C.
本题主要考查解一元一次不等式组,分式方程的非负整数解,随机事件的概率,掌握概率公式是解题的关键.
8、A
【解析】
根据题意得到a-b=0或b-c=0,从而得到a=b或b=c,得到该三角形为等腰三角形.
【详解】
解:因为以a,b,c为边的三角形满足(a﹣b)(b﹣c)=0,
所以a﹣b=0或b﹣c=0,
得到a=b或b=c,
所以三角形为等腰三角形,
故选:A.
本题考查等腰三角形,解题的关键是掌握等腰三角形的性质.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、-4或6
【解析】
方程两边同乘最简公分母(x-2)(x+2),化为整式方程,然后根据方程有增根,求得x的值,代入整式方程即可求得答案.
【详解】
方程两边同乘(x-2)(x+2),
得2(x+2)+mx=3(x-2)
∵原方程有增根,
∴最简公分母(x+2)(x-2)=0,
解得x=-2或2,
当x=-2时,m=6,
当x=2时,m=-4,
故答案为:-4或6.
本题考查了分式方程增根问题;增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.
10、1
【解析】
根据对角线互相平分的四边形是平行四边形可得OB=1cm时,四边形ABCD是平行四边形.
【详解】
当OB=1cm时,四边形ABCD是平行四边形,
∵BD=16cm,OB=1cm,
∴BO=DO,
又∵AO=OC,
∴四边形ABCD是平行四边形,
故答案为1.
本题考查了平行四边形的判定,熟练掌握平行四边形的判定方法是解题的关键.
11、8或
【解析】
分CE:BE=1:3和BE:CE=1:3两种情况分别讨论.
【详解】
解:(1)当CE:BE=1:3时,如图:
∵四边形ABCD是矩形,
∴∠BAD=∠B=90º,
∴∠BAE=∠BEA=45º,
∴BE=AB=2,
∵CE:BE=1:3,
∴CE=,
∴BC=2+=;
(2)当BE:CE=1:3时,如图:
同(1)可求出BE=2,
∵BE:CE=1:3,
∴CE=6,
∴BC=2+6=8.
故答案为8或.
本题考查了矩形的性质.
12、5
【解析】
根据勾股定理,可得答案.
【详解】
解: PO==5,
故选: C.
本题考查了点的坐标,利用勾股定理是解题关键.
13、
【解析】
试题分析:根据三角形的一个外角等于与它不相邻的两个内角的和可得∠AGC=∠GAF+∠F=40°,再根据等腰三角形的性质求出∠CAG,然后求出∠CAF=120°,再根据∠BAC=∠CAF-∠BAF求出∠BAC=30°,再根据直角三角形30°角所对的直角边等于斜边的一半可得AC=2BC=2AD,然后利用勾股定理列式计算即可得解.
试题解析:由三角形的外角性质得,∠AGC=∠GAF+∠F=20°+20°=40°,
∵∠ACG=∠AGC,
∴∠CAG=180°-∠ACG-∠AGC=180°-2×40°=100°,
∴∠CAF=∠CAG+∠GAF=100°+20°=120°,
∴∠BAC=∠CAF-∠BAF=30°,
在Rt△ABC中,AC=2BC=2AD=2,
由勾股定理,AB=.
【考点】1.矩形的性质;2.等腰三角形的判定与性质;3.含30度角的直角三角形;4.直角三角形斜边上的中线;5.勾股定理.
三、解答题(本大题共5个小题,共48分)
14、①见解析;②见解析,点C2坐标为(﹣4,1).
【解析】
①根据平移规律得出对应点位置即可;
②利用关于原点对称点的坐标性质得出对应点位置进而得出答案.
【详解】
①如图所示,△A1B1C1即为所求.
②如图所示,△A2B2C2即为所求,点C2坐标为(﹣4,1).
此题主要考查了平移变换以及旋转变换和三角形面积等知识,根据题意得出对应点位置是解题关键.
15、(1)40;(2)1250户;(3)活动后,这些样本家庭每月水电费开支的总额不低于6000元.(4)开支在225以下的户数上可以看出节约水电活动的效果还不错.
【解析】
(1)将频数分布直方图各分组频数相加即可得样本容量;
(2)分别计算出活动前、后达到节约标准的家庭数,相减即可得;
(3)取各分组的组中值,再分别乘以各分组的频数,相加即可得;
(4)根据统计图中的数据可以解答本题,本题答案不唯一,只要合理即可..
【详解】
解:(1)所抽取的样本的容量为6+12+11+7+3+1=40;
(2)活动前达到节约标准的家庭数为10000×=7250(户),
活动后达到节约标准的家庭数为10000×=8500(户),
85007250=1250(户),
∴该城市大约增加了1250户家庭达到节约标准;
(3)这40户家庭每月水电费开支总额为:
7×100+13×150+14×200+4×250+2×300=7050(元),
∴活动后,这些样本家庭每月水电费开支的总额不低于6000元.
(4)根据题意可知,开支在225以下的户数上可以看出节约水电活动的效果还不错.
本题考查的是频数分布直方图的运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.频数分布直方图能清楚地表示出每个项目的数据.
16、,-2
【解析】
先根据分式的混合运算顺序和运算法则化简原式,再解不等式组求得x的范围,据此得出x的整数值,继而根据分式有意义的条件得出x的值,代入计算可得.
【详解】
解:,
解不等式组得,-1≤x≤,∴不等式组的整数解为-1,0,1,2,
∵x≠±1且x≠0,
∴x=2,
将x=2代入得,
原式=.
本题主要考查了分式的化简求值以及解不等式组,解题的关键是掌握基本运算法则,并注意选取代入的数值一定要使原分式有意义.
17、2
【解析】
把同类二次根式分别合并即可.
【详解】
6﹣5﹣+3
=(6﹣5)+(﹣1+3)
=+2.
考查二次根式的加减法,二次根式加减法一般过程为:先把各个二次根式化成最简二次根式,再把同类二次根式分别合并.
18、(1)①证明见解析;②;(2);(3).
【解析】
(1)①由,推出,,推出四边形是平行四边形,再证明即可.
②先证明,推出,延长即可解决问题.
(2).只要证明是等边三角形即可.
(3)结论:.如图3中,将绕点逆时针旋转得到,先证明,再证明是直角三角形即可解决问题.
【详解】
(1)①证明:如图1中,
四边形是矩形,
,,
,
在和中,
,
,
,,
四边形是平行四边形,
,,
,
四边形是菱形.
②平分,
,
,
,
,
,
,,
,
.
(2)结论:.
理由:如图2中,延长到,使得,连接.
四边形是菱形,,
,,
,
在和中,
,
,
,,
,
,
,
是等边三角形,
,
在和中,
,
,
,,,
,
,
,
,
是等边三角形,
在中,,,
,
.
(3)结论:.
理由:如图3中,将绕点逆时针旋转得到,
,
四点共圆,
,,
,
,
,
在和中,
,
,
,
,,
,
,,
.
本题考查四边形综合题、矩形的性质、正方形的性质、菱形的判定和性质,等边三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形,学会转化的思想思考问题,属于中考压轴题.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
设DP=x,根据,列出方程即可解决问题.
【详解】
解:设DP=x
∵, AD=BC=6,AB=CD=8,
又∵点为中点
∴BQ=CQ=3,
∴18=48− ⋅x⋅6− (8−x)⋅3−⋅8⋅3,
∴x=4,
∴DP=4
故答案为4cm
本题考查了利用矩形的性质来列方程求线段长度,正确列出方程是解题的关键.
20、±2
【解析】
因为(±2)4=16,所以16的四次方根是±2.
【详解】
解:∵x4-8=0,∴x4=16,
∵(±2)4=16,∴x=±2.
故答案为:±2.
本题考查的是四次方根的概念,解答此类题目时要注意一个正数的偶次方根有两个,这两个数互为相反数.
21、
【解析】
去分母得,根据有增根即可求出k的值.
【详解】
去分母得,
,
当时,
为增根,
故答案为:1.
本题考查了分式方程的问题,掌握解分式方程的方法是解题的关键.
22、(3x+1)2
【解析】
原式利用完全平方公式分解即可.
【详解】
解:原式=(3x+1)2,
故答案为:(3x+1)2
此题考查了因式分解−运用公式法,熟练掌握完全平方公式是解本题的关键.
23、.
【解析】
根据反比例函数的k确定图象在哪两个象限,再根据(x1,y1),(x2,y2),其中,确定这两个点均在第一象限,根据在第一象限内y随x的增大而减小的性质做出判断.
【详解】
解:反比例函数y=图象在一、三象限,
(x1,y1),(x2,y2)在反比例函数y=图象上,且,
因此(x1,y1),(x2,y2)在第一象限,
∵反比例函数y=在第一象限y随x的增大而减小,
∴,
故答案为:.
本题考查了反比例函数的增减性,熟悉反比例函数的图象与性质是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)3;50;50 (2)1
【解析】
(1)总人数为40人,所以x为总人数减去已知人数;根据众数的定义,一组数据中出现次数最多的数叫众数,捐款金额50元人数最多则为众数;中位数的定义是将一组数据从大到小的顺序排列,处于最中间位置的数是中位数,如果这组数据的个数是偶数,则是中间两个数据的平均数.
(2)根据平均数的定义求解,本题应是总捐款金额=平均数×总人数.
【详解】
解:(1)x=40-2-8-16-4-7=3;
在几种捐款金额中,捐款金额50元有16人,人数最多,∴捐款金额的众数为50;
将捐款金额按从小到大顺序排列,处于最中间位置的为50和50,所以中位数=(50+50)÷2=50.
(2)由题意得, 20×2+30×8+50×16+3a+80×4+100×7=57×40,解得a=1.
本题考查了平均数、中位数和众数,熟练掌握三者的定义及求解方法是解题的关键.
25、(1)当时,(或填),;当时, (或填),;(2)采购文竹900盆,发财树200盆,毛利润最大为5500元
【解析】
(1)根据题意,可直接列出关系式;
(2)根据题意,分情况进行分析,进而得出采购文竹900盆,发财树200盆,毛利润最大为5500元.
【详解】
(1)根据题意,可得
当时,
(或填),
即;
当时,
(或填),
即;
(2)当时,
∵,W随着x的增大而减小
∴当x取400时,,W有最大值3600,
当时,
∵,W随着x的增大而增大
∴当x取900时,,W有最大值5500,
综上所述,采购文竹900盆,发财树200盆,毛利润最大为5500元
此题主要考查一次函数的实际应用,熟练掌握,即可解题.
26、(1)见解析;(2)见解析;;(3)见解析;.
【解析】
(1)图形的平移时,我们只需要把三个顶点ABC,按照点的平移方式,平移得到新点,然后顺次连接各点即为平移后的.
(2)首先只需要画出B,C旋转后的对应点,,然后顺次连接各点即为旋转过后的,然后写出坐标即可;
(3)首先依次画出点ABC关于原点成中心对称的对应点,然后顺次连接各点即可得到,然后写出坐标即可.
【详解】
解:(1)如图所示;
(2)如图所示,由图可知;
(3)如图所示,由图可知.
本题的解题关键是:根据图形平移、旋转、中心对称的性质,找到对应点位置,顺次连接对应点即是变化后的图形;这里需要注意的是运用点的平移时,横坐标满足“左(移)减右(移)加”,纵坐标满足“下(移)减上(移)加;旋转时找准旋转中心和旋转角度,再进行画图.
题号
一
二
三
四
五
总分
得分
捐款金额(元)
20
30
50
a
80
100
人数(人)
2
8
16
x
4
7
相关试卷
这是一份2025届陕西省师范大附属中学九年级数学第一学期开学教学质量检测模拟试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年陕西省宝鸡市扶风县九年级数学第一学期开学检测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年陕西省榆林高新区第一中学数学九年级第一学期开学质量检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。