2025届陕西省西安市交大附中九上数学开学教学质量检测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列各组长度的线段(单位:)中,成比例线段的是( )
A.1,2,3,4B.1,2,3,6C.2,3,4,5D.1,3,5,10
2、(4分)如图,四边形的对角线与相交于点,下列条件不能判断四边形是平行四边形的是( )
A.,B.,
C.,D.,
3、(4分)如图,下列哪组条件不能判定四边形ABCD是平行四边形( )
A.AB∥CD,AB=CDB.AB∥CD,AD∥BC
C.OA=OC,OB=ODD.AB∥CD,AD=BC
4、(4分)菱形与矩形都具有的性质是( ).
A.对角相等B.四边相等C.对角线互相垂直D.四角相等
5、(4分)如图所示,在平面直角坐标系中,的顶点坐标是,顶点坐标是、则顶点的坐标是( )
A.B.
C.D.
6、(4分)如图,下列条件中,不能判定△ACD∽△ABC的是( )
A.∠ADC=∠ACBB.∠B=∠ACDC.∠ACD=∠BCDD.
7、(4分)如图,长方形的高为,底面长为 ,宽为,蚂蚁沿长方体表面,从点到(点 见图中黑圆点)的最短距离是( )
A.B.C.D.
8、(4分)一个三角形的三边分别是6、8、10,则它的面积是( )
A.24B.48C.30D.60
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)点A(-1,y1),B(2,y2)均在直线y=-2x+b的图象上,则y1___________y2(选填“>”<”=”)
10、(4分)如图,在中,和分别平分和,过点作,分别交于点,若,则线段的长为_______.
11、(4分)如果在平行四边形ABCD中,两个邻角的大小是5:4,那么其中较小的角等于_____.
12、(4分)要从甲、乙、丙三名学生中选出一名学生参加数学竟赛。对这三名学生进行了10次“数学测试”,经过数据分析,3人的平均成绩均为92分。甲的方差为0.024、乙的方差为0.08、丙的方差为0.015,则这10次测试成绩比较稳定的是_____________.
13、(4分)如图,在矩形ABCD中,DE⊥AC,∠CDE=2∠ADE,那么∠BDC的度数是________.
三、解答题(本大题共5个小题,共48分)
14、(12分)解方程:
(1)2x2﹣x﹣6=0;
(2).
15、(8分)解不等式组:
请结合题意填空,完成本题的解答.
(1)解不等式①,得 ;
(2)解不等式②,得 ;
(3)把不等式①和②的解集在数轴上表示出来:
(4)原不等式组的解集为 .
16、(8分)已知:如图,△OAB,点O为原点,点A、B的坐标分别是(2,1)、(﹣2,4).
(1)若点A、B都在一次函数y=kx+b图象上,求k,b的值;
(2)求△OAB的边AB上的中线的长.
17、(10分)勾股定理是几何学中的明珠,它充满魅力,在现实世界中有着广泛的应用.请你尝试应用勾股定理解决下列问题:一架长的梯子斜靠在一竖直的墙上,这时为,如果梯子的顶端沿墙下滑,那么梯子底端向外移了多少米?(注意:)
18、(10分)类比、转化等数学思想方法,在数学学习和研究中经常用到,如下是一个案例,请补充完整.
已知.
(1)观察发现
如图①,若点是和的角平分线的交点,过点作分别交、于、,填空: 与、的数量关系是________________________________________.
(2)猜想论证
如图②,若点是外角和的角平分线的交点,其他条件不变,填: 与、的数量关系是_____________________________________.
(3)类比探究
如图③,若点是和外角的角平分线的交点.其他条件不变,则(1)中的关系成立吗?若成立,请加以证明;若不成立,请写出关系式,再证明.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知方程=2,如果设=y,那么原方程可以变形为关于y的整式方程是_____.
20、(4分)如图,△ACB和△ECD都是等腰直角三角形,△ACB的顶点A在△ECD的斜边DE上,若,则=___.
21、(4分)一组数据:23,32,18,x,12,它的中位数是20,则这组数据的平均数为______.
22、(4分)若正多边形的一个内角等于,则这个正多边形的边数是_______条.
23、(4分)如图,正方形ABCD的边长为8,点E是BC上的一点,连接AE并延长交射线DC于点F,将△ABE沿直线AE翻折,点B落在点N处,AN的延长线交DC于点M,当AB=2CF时,则NM的长为_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)甲、乙两名运动员进行长跑训练,两人距终点的路程(米)与跑步时间(分)之间的函数关系如图所示,根据图象所提供的信息解答问题:
(1)他们在进行 米的长跑训练,在0<<15的时间内,速度较快的人是 (填“甲”或“乙”);
(2)求乙距终点的路程(米)与跑步时间(分)之间的函数关系式;
(3)当=15时,两人相距多少米?
(4)在15<<20的时间段内,求两人速度之差.
25、(10分)如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE
(1)求证:CE=CF;
(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?
26、(12分)已知,在四边形ABCD中,点E、点F分别为AD、BC的中点,连接EF.
(1)如图1,AB∥CD,连接AF并延长交DC的延长线于点G,则AB、CD、EF之间的数量关系为 ;
(2)如图2,∠B=90°,∠C=150°,求AB、CD、EF之间的数量关系?
(3)如图3,∠ABC=∠BCD=45°,连接AC、BD交于点O,连接OE,若AB=,CD=2,BC=6,则OE= .
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
根据成比例线段的概念,对选项一一分析,排除错误答案.
【详解】
A、1×4≠2×3,故选项错误;
B、1×6=2×3,故选项正确;
C、2×5≠3×4,故选项错误;
D、1×10≠3×5,故选项错误.
故选B.
本题考查成比例线段的概念.对于四条线段,如果其中两条线段的长度的比与另两条线段的长度的比相等,那么,这四条线段叫做成比例线段.注意用最大的和最小的相乘,中间两数相乘.
2、C
【解析】
利用平行四边形的判定方法:(1)两组对边分别平行的四边形是平行四边形.(2)两组对边分别相等的四边形是平行四边形.(3)一组对边平行且相等的四边形是平行四边形.(4)两组对角分别相等的四边形是平行四边形.(5)对角线互相平分的四边形是平行四边形进行分析即可.
【详解】
:A、AB∥DC,AD∥BC可利用两组对边分别平行的四边形是平行四边形判定这个四边形是平行四边形,故此选项不合题意;
B、AB∥DC,AB=DC可利用一组对边平行且相等的四边形是平行四边形判定这个四边形是平行四边形,故此选项不符合题意;
C. ,不能判断四边形是平行四边形,故此选项符合题意;
D. ,可利用对角线互相平分的四边形是平行四边形判定这个四边形是平行四边形,故此选项不合题意.
故选C.
此题主要考查了平行四边形的判定,关键是掌握平行四边形的判定定理.
3、D
【解析】
平行四边形的判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形.
【详解】
根据平行四边形的判定,A、B、C均符合是平行四边形的条件,D则不能判定是平行四边形.
故选D.
此题主要考查了学生对平行四边形的判定的掌握情况.对于判定定理:“一组对边平行且相等的四边形是平行四边形.”应用时要注意必须是“一组”,而“一组对边平行且另一组对边相等”的四边形不一定是平行四边形.
4、A
【解析】
根据矩形、菱形的性质分别判断即可解决问题.
【详解】
A. 对角相等,菱形和矩形都具有的性质,故A正确;
B. 四边相等,菱形的性质,矩形不具有的性质,故B错误;
C. 对角线互相垂直,矩形不具有的性质,故C错误;
D. 四角相等,矩形的性质,菱形不具有的性质,故D错误;
故选:A.
此题考查菱形的性质,矩形的性质,解题关键在于掌握各性质定义.
5、A
【解析】
此题可过P作PE⊥OM,过点N作NF⊥OM,根据勾股定理求出OP的长度,则N点坐标便不难求出.
【详解】
过P作PE⊥OM,过点N作NF⊥OM,
∵顶点P的坐标是(3,4),
∴OE=3,PE=4,
∵四边形ABCD是平行四边形,
∴OE=MF=3,
∵4+3=7,
∴点N的坐标为(7,4).
故选A.
此题考查平行四边形的性质,坐标与图形性质,解题关键在于作辅助线.
6、C
【解析】
根据相似三角形的判定即可求出答案.
【详解】
(A)∵∠A=∠A,∠ADC=∠ACB,
∴△ACD∽△ABC,故A能判定△ACD∽△ABC;
(B)∵∠A=∠A,∠B=∠ACD,
∴△ACD∽△ABC,故B能判定△ACD∽△ABC;
(D)∵= ,∠A=∠A,
∴△ACD∽△ABC,故D能判定△ACD∽△ABC;
故选:C.
本题考查相似三角形,解题的关键是熟练运用相似三角形的判定,本题属于基础题型.
7、D
【解析】
分析:要求蚂蚁爬行的最短距离,需将长方体的侧面展开,进而根据“两点之间线段最短”得出结果.
详解:根据题意可能的最短路线有6条,重复的不算,可以通过三条来计算比较.(见图示)
根据他们相应的展开图分别计算比较:
图①:;
图②:;
图③:.
∵.
故应选D.
点睛:考查了轴对称-最短路线问题,本题是一道趣味题,将长方体展开,根据两点之间线段最短,运用勾股定理解答即可.
8、A
【解析】
先根据勾股定理逆定理证明三角形是直角三角形,再利用面积法代入求解即可.
【详解】
∵,
∴三角形是直角三角形,
∴面积为:.
故选A.
本题考查勾股定理逆定理的应用,关键在于熟悉常用的勾股数.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、>.
【解析】
函数解析式y=-2x+b知k<0,可得y随x的增大而减小,即可求解.
【详解】
y=-2x+b中k<0,
∴y随x的增大而减小,
∵-1<2,
∴y1>y2,
故答案为>.
本题考查一次函数的图象及性质;熟练掌握一次函数的图象及性质是解题的关键.
10、5.
【解析】
由BD为角平分线,利用角平分线的性质得到一对角相等,再由EF与BC平行,利用两直线平行内错角相等得到一对角相等,等量代换可得出∠EBD=∠EDB,利用等角对等边得到EB=ED,同理得到FC=FD,再由EF=ED+DF,等量代换可得证.
【详解】
证明:∵BD为∠ABC的平分线,
∴∠EBD=∠CBD,
又∵EF∥BC,
∴∠EDB=∠CBD,
∴∠EBD=∠EDB,
∴EB=ED,
同理FC=FD,
又∵EF=ED+DF,
∴EF=EB+FC=5.
此题考查等腰三角形的判定与性质,平行线的性质,解题关键在于得出∠EBD=∠EDB
11、80°
【解析】
根据平行四边形的性质得出AB∥CD,推出∠B+∠C=180°,根据∠B:∠C=4:5,求出∠B即可.
【详解】
∵四边形ABCD是平行四边形,
∴AB∥CD,
∴∠B+∠C=180°,
∵∠B:∠C=4:5,
∴∠B=×180°=80°,
故答案为:80°.
本题考查了平行线的性质和平行四边形的性质的应用,能熟练地运用性质进行计算是解此题的关键.
12、丙
【解析】
根据方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定解答即可.
【详解】
解:因为3人的平均成绩均为92分,甲的方差为0.024、乙的方差为0.08、丙的方差为0.015,
丙的方差最小,所以这10次测试成绩比较稳定的是丙,
故答案为:丙
本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
13、30°
【解析】
分析:由矩形的性质得出∠ADC=90°,OA=OD,得出∠ODA=∠DAE,由已知条件求出∠ADE,得出∠DAE、∠ODA,即可得出∠BDC的度数.
详解:∵四边形ABCD是矩形,
∴∠ADC=90°,OA=OD,
∴∠ODA=∠DAE,
∵∠CDE =2∠ADE,
∴∠ADE=90°÷3=30°,
∵DE⊥AC,
∴∠AED=90°,
∴∠DAE=60°,
∴∠ODA=60°,
∴∠BDC=90°-60°=30°;
故答案为:30°.
点睛:本题考查了矩形的性质、等腰三角形的判定与性质;熟练掌握矩形的性质,并能进行推理计算是解决问题的关键.
三、解答题(本大题共5个小题,共48分)
14、 (1) ,;(2) .
【解析】
(1)利用公式法解方程即可;(2)方程两边同乘以x(x-1),把分式方程化为整式方程,解整式方程求得x的值,检验即可求得分式方程的解.
【详解】
(1)2x2﹣x﹣6=0
∵a=2,b=-1,c=-6,
∴△==1+48=49>0,
∴
∴,;
(2).
方程两边同乘以x(x-1)得,
解得x=-,
经检验是原分式方程的解,
∴原分式方程的解为.
本题考查了一元二次方程及分式方程的解法,解一元二次方程时要根据方程的特点选择方法,解分式方程时要注意验根.
15、 (1)x≥1, (2)x≤3,(3)见解析;(4)1≤x≤3
【解析】
试题分析:先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分.不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解.空心圈表示不包含该点,实心点表示包含该点.
解:(1)x≥1 (2)x≤3
(3)如图所示.
(4)1≤x≤3
16、 (1)k=﹣,b=;(2)AB边上的中线长为.
【解析】
(1)由A、B两点的坐标利用待定系数法可求得k、b的值;
(2)由A、B两点到y轴的距离相等可知直线AB与y轴的交点即为线段AB的中点,利用(1)求得的解析式可求得中线的长.
【详解】
(1)∵点A、B都在一次函数y=kx+b图象上,
∴把(2,1)、(﹣2,4)代入可得 ,解得 ,
∴k=﹣,b=;
(2)如图,设直线AB交y轴于点C,
∵A(2,1)、B(﹣2,4),
∴C点为线段AB的中点,
由(1)可知直线AB的解析式为y=﹣x+,
令x=0可得y=,
∴OC=,即AB边上的中线长为.
此题考查一次函数图象上点的坐标特征,解题关键在于利用待定系数法求解
17、梯子底端向外移了0.77米.
【解析】
先根据勾股定理求出的长,再根据梯子的长度不变求出的长,根据即可得出结论.
【详解】
在中,,,
∴
同理,在中,
∵,,
∴,
∴.
答:梯子底端向外移了0.77米.
本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图,领会数形结合的思想的应用.
18、(1);(2);(3)不成立, ,证明详见解析.
【解析】
(1)根据平行线的性质与角平分线的定义得出 ∠EDB=∠EBD , ∠FCD=∠FDC ,从而得出 EF 与 BE 、 CF 的数量关系;
(2)根据平行线的性质与角平分线的定义得出 ∠EDB=∠EBD , ∠FCD=∠FDC ,从而得出 EF 与 BE 、 CF 的数量关系;
(3)根据平行线的性质与角平分线的定义得出 EF 与 BE 、 CF 的数量关系.
【详解】
(1)EF=BE+CF.
∵ 点 D 是 ∠ABC 和 ∠ACB 的角平分线的交点,
∴∠EBD=∠DBC , ∠FCD=∠DCB .
∵EF∥BC ,
∴∠EDB=∠DBC , ∠FDC=∠DCB .
∴ ∠EDB=∠EBD , ∠FCD=∠FDC .
∴EB=ED , DF=CF .
∴EF=BE+CF .
故本题答案为: EF=BE+CF .
(2)EF=BE+CF.
∵D 点是外角 ∠CBE 和 ∠BCF 的角平分线的交点,
∴∠EBD=∠DBC , ∠FCD=∠DCB .
∵EF∥BC ,
∴∠EDB=∠DBC , ∠FDC=∠DCB .
∴ ∠EDB=∠EBD , ∠FCD=∠FDC .
∴EB=ED , DF=CF .
∴EF=BE+CF .
故本题答案为: EF=BE+CF .
(3)不成立; EF=BE−CF ,证明详见解析.
∵ 点 D 是 ∠ABC 和外角 ∠ACM 的角平分线的交点,
∴∠EBD=∠DBC , ∠ACD=∠DCM .
∵EF∥BC ,
∴∠EDB=∠DBC , ∠FDC=∠DCM .
∴∠EBD=∠EDB , ∠FDC=∠FCD .
∴BE=ED , FD=FC .
∵EF=ED−FD ,
∴EF=BE−CF .
本题考查了平行线的性质,等腰三角形的判定,以及角平分线的定义等知识.解决本题的关键突破口是掌握平行线的性质与等腰三角形的概念.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、3y2+6y﹣1=1.
【解析】
根据=y,把原方程变形,再化为整式方程即可.
【详解】
设=y,
原方程变形为:﹣y=2,
化为整式方程为:3y2+6y﹣1=1,
故答案为3y2+6y﹣1=1.
本题考查了用换元法解分式方程,掌握整体思想是解题的关键.
20、
【解析】
根据等边三角形的性质就可以得出△AEC≌△BDC,就可以得出AE=BD,∠E=∠BDC,由等腰直角三角形的性质就可以得出∠ADB=90°,由勾股定理就可以得出:,再设AE=k,则AD=3k,BD=k,求出BC=k,进而得到
的值.
【详解】
∵△ACB与△ECD都是等腰直角三角形,
∴∠ECD=∠ACB=90°,
∠E=∠ADC=∠CAB=45°,EC=DC,AC=BC,
∴,∠ECD−∠ACD=∠ACB−∠ACD,
∴∠ACE=∠BCD.
在△AEC和△BDC中,
,
∴△AEC≌△BDC(SAS),
∴AE=BD,∠E=∠BDC,
∴∠BDC=45°,
∴∠BDC+∠ADC=90°,
即∠ADB=90°.
∴.
∵,
∴可设AE=k,则AD=3k,BD=k,
∴,
∴BC=,
∴.
故答案为:.
此题考查勾股定理、等腰直角三角形、全等三角形的判定与性质,解题关键在于“设k法”列出比例式即可.
21、1
【解析】
根据23,32,18,x,12,它的中位数是20,可求出x的值,再根据平均数的计算方法计算得出结果即可.
【详解】
解:∵23,32,18,x,12,它的中位数是20,
∴x=20,
平均数为:(23+32+18+20+12)÷5=1,
故答案为:1.
本题考查中位数、平均数的意义和求法,将一组数据从小到大排列后处在中间位置的一个数或两个数的平均数是中位数.
22、12
【解析】
首先根据求出外角度数,再利用外角和定理求出边数.
【详解】
∵正多边形的一个内角等于150°,
∴它的外角是:180°−150°=30°,
∴它的边数是:360°÷30°=12.
故答案为:12.
此题考查多边形内角(和)与外角(和),解题关键在于掌握运算公式
23、
【解析】
先根据折叠的性质得∠EAB=∠EAN,AN=AB=8,再根据正方形的性质得AB∥CD,则∠EAB=∠F,所以∠EAN=∠F,得到MA=MF,设CM=x,则AM=MF=4+x,DM=DC-MC=8-x,在Rt△ADM中,根据勾股定理,解得x,然后利用MN=AM-AN求解即可.
【详解】
解:∵△ABE沿直线AE翻折,点B落在点N处,
∴AN=AB=8,∠BAE=∠NAE,
∵正方形对边AB∥CD,
∴∠BAE=∠F,
∴∠NAE=∠F,
∴AM=FM,
设CM=x,∵AB=2CF=8,
∴CF=4,
∴DM=8﹣x,AM=FM=4+x,
在Rt△ADM中,由勾股定理得,AM2=AD2+DM2,
即(4+x)2=82+(8﹣x)2,
解得x=,
所以,AM=4+4=8,
所以,NM=AM﹣AN=8﹣8=.
故答案为:.
本题考查了折叠的性质:折叠是一种对称变换,折叠前后图形的形状和大小不变,对应边和对应角相等,也考查了正方形的性质和勾股定理,熟练掌握正方形的性质及折叠的性质并能正确运用勾股定理是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)5000;甲;(2);(3)750米;(4)150米/分.
【解析】
(1)根据x=0时,y=5000可知,他们在进行5000米的长跑训练,在0<<15的时间内,,所以甲跑的快;
(2)分段求解析式,在0<<15的时间内,由点(0,5000),(15,2000)来求解析式;在15≤≤20的时间内,由点(15,2000),(20,0)来求解析式;
(3)根据题意求得甲的速度为250米/分,然后计算甲距离终点的路程,再计算他们的距离;
(4)在15<<20的时间段内,求得乙的速度,然后计算他们的速度差.
【详解】
(1)根据图象信息可知,他们在进行5000米的长跑训练,
在0
把(0,5000),(15,2000)代入解析式,解得k=-200,b=5000,
所以y=-200x+5000;
②在15≤≤20内,设,
把(15,2000),(20,0)代入解析式,解得,,
所以y=-400x+8000,
所以乙距终点的路程(米)与跑步时间(分)之间的函数关系式为:;
(3)甲的速度为5000÷20=250(米/分),250×15=3750米,距终点5000-3750=1250米,
此时乙距终点2000米,所以他们的距离为2000-1250=750米;
(4)在15<<20的时间段内,乙的速度为2000÷5=400米/分,甲的速度为250米/分,所以他们的速度差为400-250=150米/分.
考点:函数图象;求一次函数解析式.
25、(1)见解析(2)成立
【解析】
试题分析:(1)由DF=BE,四边形ABCD为正方形可证△CEB≌△CFD,从而证出CE=CF.
(2)由(1)得,CE=CF,∠BCE+∠ECD=∠DCF+∠ECD即∠ECF=∠BCD=90°又∠GCE=45°所以可
得∠GCE=∠GCF,故可证得△ECG≌△FCG,即EG=FG=GD+DF.又因为DF=BE,所以可证出GE=BE+GD成立.
试题解析:(1)在正方形ABCD中,
∴△CBE≌△CDF(SAS).
∴CE=CF.
(2)GE=BE+GD成立.
理由是:∵由(1)得:△CBE≌△CDF,
∴∠BCE=∠DCF,
∴∠BCE+∠ECD=∠DCF+∠ECD,即∠ECF=∠BCD=90°,
又∵∠GCE=45°,∴∠GCF=∠GCE=45°. CE=CF
∵∠GCE=∠GCF, GC=GC
∴△ECG≌△FCG(SAS).
∴GE=GF.
∴GE=DF+GD=BE+GD.
考点:1.正方形的性质;2.全等三角形的判定与性质.
26、(1)AB+CD=2EF;(2)4EF2=AB2+CD2+AB•CD,证明详见解析;(3).
【解析】
(1)根据三角形的中位线和全等三角形的判定和性质解答即可;
(2)如图2中,作CK⊥BC,连接AF,延长AF交CK于K.连接DK,作DH⊥CK于H.首先证明△AFB≌△KFC,推出AB=CK,再利用勾股定理,三角形的中位线定理即可解决问题;
(3)如图3中,以点B为原点,BC为x轴,建立平面直角坐标系如图所示.想办法求出点E、O的坐标即可解决问题;
【详解】
解:(1)结论:AB+CD=2EF,
理由:如图1中,
∵点E、点F分别为AD、BC的中点,
∴BF=FC,AE=ED,
∵AB∥CD,
∴∠ABF=∠GCF,
∵∠BFA=∠CFG,
∴△ABF≌△GCF(ASA),
∴AB=CG,AF=FG,
∵AE=ED,AF=FG,
∴2EF=DG=DC+CG=DC+AB;
∴AB+CD=2EF;
(2)如图2中,作CK⊥BC,连接AF,延长AF交CK于K.连接DK,作DH⊥CK于H.
∵∠ABF=∠KCF,BF=FC,∠AFB=∠CFK,
∴△AFB≌△KFC,
∴AB=CK,AF=FK,
∵∠BCD=150°,∠BCK=90°,
∴∠DCK=120°,
∴∠DCH=60°,
∴CH=CD,DH=CD,
在Rt△DKH中,DK2=DH2+KH2=(CD)2+(AB+CD)2=AB2+CD2+AB•CD,
∵AE=ED,AF=FK,
∴EF=DK,
∴4EF2=DK2,
∴4EF2=AB2+CD2+AB•CD.
(3)如图3中,以点B为原点,BC为x轴,建立平面直角坐标系如图所示.
由题意:A(1,1),B(0,0),D(4,2),
∵AE=ED,
∴E(,),
∵AC的解析式为y=-x+,BD的解析式为y=x,
由,解得,
∴O(,),
∴OE==.
故答案为(1)AB+CD=2EF;(2)4EF2=AB2+CD2+AB•CD,证明详见解析;(3).
本题考查四边形综合题、全等三角形的判定和性质、三角形的中位线定理、解直角三角形、平面直角坐标系、一次函数的应用等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会建立平面直角坐标系解决问题,属于中考压轴题.
题号
一
二
三
四
五
总分
得分
2025届陕西省西安市西安交大阳光中学数学九上开学统考试题【含答案】: 这是一份2025届陕西省西安市西安交大阳光中学数学九上开学统考试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届北京交大附中数学九上开学联考试题【含答案】: 这是一份2025届北京交大附中数学九上开学联考试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年陕西西安市交大附中数学九上开学质量检测模拟试题【含答案】: 这是一份2024年陕西西安市交大附中数学九上开学质量检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。