2025届上海市闵行区民办上宝中学数学九年级第一学期开学学业质量监测试题【含答案】
展开
这是一份2025届上海市闵行区民办上宝中学数学九年级第一学期开学学业质量监测试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)数据用小数表示为( )
A.B.C.D.
2、(4分)下列说法:(1) 的立方根是2,(2)的立方根是±5,(3)负数没有平方根,(4)一个数的平方根有两个,它们互为相反数.其中错误的有( )
A.4个B.3个C.2个D.1个
3、(4分)下列调查中,适合用全面调查方法的是( )
A.了解某校数学教师的年龄状况B.了解一批电视机的使用寿命
C.了解我市中学生的近视率D.了解我市居民的年人均收入
4、(4分)计算的正确结果是( )
A.B.1C.D.﹣1
5、(4分)菱形的周长为20cm,两个相邻的内角的度数之比为1:2,则较长的对角线的长度是( )
A.cmB.cmC.cmD.5cm
6、(4分)如图,在矩形ABCD中,AB=8,AD=6,过点D作直线m∥AC,点E、F是直线m上两个动点,在运动过程中EF∥AC且EF=AC,四边形ACFE的面积是( )
A.48B.40C.24D.30
7、(4分)河堤横断面如图所示,斜坡AB的坡度=1:,BC=5米,则AC的长是( )米.
A.B.5C.15D.
8、(4分)某市从2017年开始大力发展“竹文化”旅游产业.据统计,该市2017年“竹文化”旅游收入约为2亿元.预计2019“竹文化”旅游收入达到2.88亿元,据此估计该市2018年、2019年“竹文化”旅游收入的年平均增长率约为( )
A.2%B.4.4%C.20%D.44%
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)方程的解是____.
10、(4分)已知一组数据10,10,x,8的众数与它的平均数相等,则这组数的中位数是____.
11、(4分)关于x的一元二次方程(2m-6)x2+x-m2+9=0的常数项为0,则实数m=_______
12、(4分)已知反比例函数y=的图象位于第一、第三象限,则k的取值范围是_____.
13、(4分)甲、乙两车从A城出发前往B城.在整个行程中,汽车离开A城的距离与时刻的对应关系如图所示,则当乙车到达B城时,甲车离B城的距离为________km.
三、解答题(本大题共5个小题,共48分)
14、(12分)某商店准备进一批季节性小家电,单价40元.经市场预测,销售定价为52元时,可售出180个,定价每增加1元,销售量净减少10个;定价每减少1元,销售量净增加10个.因受库存的影响,每批次进货个数不得超过180个,商店若将准备获利2000元,则应进货多少个?定价为多少元?
15、(8分)如图,矩形纸片ABCD中,AB=8,AD=6,折叠纸片使AD边落在对角线BD上,点A落在点A′处,折痕为DG,求AG的长.
16、(8分)先化简(1+)÷,再选择一个恰当的x值代人并求值.
17、(10分)如图,在中,,从点为圆心,长为半径画弧交线段于点,以点为圆心长为半径画弧交线段于点,连结.
(1)若,求的度数:
(2)设.
①请用含的代数式表示与的长;
②与的长能同时是方程的根吗?说明理由.
18、(10分)如图所示,在平行四边形ABCD中,AD∥BC,过B作BE⊥AD交AD于点E,AB=13cm,BC=21cm,AE=5cm.动点P从点C出发,在线段CB上以每秒1cm的速度向点B运动,动点Q同时从点A出发,在线段AD上以每秒2cm的速度向点D运动,当其中一个动点到达端点时另一个动点也随之停止运动,设运动的时间为t(秒)
(1)当t为何值时,四边形PCDQ是平行四边形?
(2)当t为何值时,△QDP的面积为60cm2?
(3)当t为何值时,PD=PQ?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知实数、满足,则_____.
20、(4分)如图,过矩形ABCD的对角线BD上一点K分别作矩形两边的平行线MN与PQ,那么图中矩形AMKP的面积S1与矩形QCNK的面积S2的大小关系是S1_____S2;(填“>”或“<”或“=”)
21、(4分)如图,有一块菱形纸片ABCD,沿高DE剪下后拼成一个矩形,矩形的长和宽分别是5cm,3cm.EB的长是______.
22、(4分)若把代数式化为的形式,其中、为常数,则______.
23、(4分)已知,如图,矩形ABCD中,E,F分别是AB,AD的中点,若EF=5,则AC=_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)已知:如图,在□ABCD中,对角线AC,BD相交于点O,直线EF过点O,交DA于点E,交BC于点F.求证:OE=OF,AE=CF,DE=BF
25、(10分)已知:如图,点B,C,D在同一直线上,△ABC和△CDE都是等边三角形,BE交AC于点F,AD交CE于点H,
(1)求证:△BCE≌△ACD;
(2)求证:CF=CH;
(3)判断△CFH的形状并说明理由.
26、(12分)如图,正方形网格中的每个小正方形边长都为1,每个小正方形的顶点叫做格点.
(1)以格点为顶点画,使三这长分别为;
(2)若的三边长分别为m、n、d,满足,求三边长,若能画出以格点为顶点的三角形,请画出该格点三角形.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
由题意根据把还原成原数,就是把小数点向左移动4位进行分析即可.
【详解】
解:=.
故选:B.
本题考查写出用科学记数法表示的原数.将科学记数法a×10-n表示的数,“还原”成通常表示的数,就是把a的小数点向左移动n位所得到的数.
2、B
【解析】
①根据立方根的性质即可判定;
②根据立方根的性质即可判定;
③根据平方根的定义即可判定;
④根据平方根的定义即可判定
【详解】
(1)的立方根是2,2的立方根是 ,故①错误;
(2)=-5,-5的立方根是- ,故②错误;
(3)负数没有平方根,原来的说法正确;
(4)一个正数的平方根有两个,它们互为相反数,故④错误.
错误的有3个.
故选:B.
此题考查立方根的性质,平方根的定义,解题关键在于掌握其性质
3、A
【解析】
根据全面调查适用于:调查对象较少,且容易进行,即可选出答案.
【详解】
A.人数不多,容易调查,适合全面调查,正确;
B.数量较多,不容易进行,适合抽查,错误;
C.人数较多,不容易进行,适合抽查,错误;
D.人数较多,不容易全面调查,适合抽查,错误.
故选A.
本题目考查调查方式的选择,难度不大,熟练掌握全面调查的适用条件是顺利解题的关键.
4、A
【解析】
5、B
【解析】
如图所示:
∵菱形的周长为20cm,
∴菱形的边长为5cm,
∵两邻角之比为1:2,
∴较小角为60°,
∴∠ABO=30°,AB=5cm,
∵最长边为BD,BO=AB⋅cs∠ABO=5×= (cm),
∴BD=2BO= (cm).
故选B.
6、A
【解析】
根据题意在运动过程中EF∥AC且EF=AC,所以可得四边形ACFE为平行四边形,因此计算面积即可.
【详解】
根据在运动过程中EF∥AC且EF=AC
四边形ACFE为平行四边形
过D作DM垂直AC于点M
根据等面积法,在中
可得四边形ACFE为平行四边形的高为
故选A
本题主要考查平行四边形的性质,关键在于计算平行四边形的高.
7、A
【解析】
Rt△ABC中,已知坡比是坡面的铅直高度BC与水平宽度AC之比,通过解直角三角形即可求出水平宽度AC的长.
【详解】
解:Rt△ABC中,BC=5米,tanA=1:,
∴tanA=,
∴AC=BC÷tanA=5÷=米,
故选:A.
此题主要考查学生对坡度坡角的掌握及三角函数的运用能力,解题的关键是熟练掌握坡度的定义,此题难度不大.
8、C
【解析】
分析:设该市2018年、2019年“竹文化”旅游收入的年平均增长率为x,根据2017年及2019年“竹文化”旅游收入总额,即可得出关于x的一元二次方程,解之取其正值即可得出结论.
详解:设该市2018年、2019年“竹文化”旅游收入的年平均增长率为x,
根据题意得:2(1+x)2=2.88,
解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).
答:该市2018年、2019年“竹文化”旅游收入的年平均增长率约为20%.
故选C.
点睛:本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
根据解无理方程的方法可以解答此方程,注意无理方程要检验.
【详解】
∵,
∴,
∴1-2x=x2,
∴x2+2x-1=0,
∴(x+1)(x-1)=0,
解得,x1=-1,x2=1,
经检验,当x=1时,原方程无意义,当x=1时,原方程有意义,
故原方程的根是x=-1,
故答案为:x=-1.
本题考查无理方程,解答本题的关键是明确解无理方程的方法.
10、10
【解析】
试题分析:由题意可知这组数据的众数为10,再根据平均数公式即可求得x的值,最后根据中位数的求解方法求解即可.
解:由题意得这组数据的众数为10
∵数据10,10,x,8的众数与它的平均数相等
∴,解得
∴这组数据为12,10,10,8
∴这组数的中位数是10.
考点:统计的应用
点评:统计的应用是初中数学的重点,是中考必考题,熟练掌握各种统计量的计算方法是解题的关键.
11、-3
【解析】
分析:根据常数项为0,且二次项系数不为0列式求解即可.
详解:由题意得,
,
解之得,
m=-3.
故答案为:-3.
点睛:本题考查了一元二次方程的定义,本题的易错点是有些同学只考虑常数项为0这一条件,而忽视了二次项系数不为0这一隐含的条件.
12、.
【解析】
分析:
根据“反比例函数的图象所处象限与的关系”进行解答即可.
详解:
∵反比例函数的图象在第一、三象限内,
∴,解得:.
故答案为.
点睛:熟记“反比例函数的图象所处象限与的关系:(1)当时,反比例函数的图象在第一、三象限;(2)当时,反比例函数的图象在第二、四象限.”是正确解答本题的关键.
13、1
【解析】
由图示知:A,B两城相距300km,甲车从5:00出发,乙车从6:00出发;甲车10:00到达B城,乙车9:00到达B城;计算出乙车的平均速度为:300÷(9-6)=100(km/h),当乙车7:30时,乙车离A的距离为:100×1.5=150(km),得到点A(7.5,150)点B(5,0),设甲的函数解析式为:y=kt+b,把点A(7.5,150),B(5,0)代入解析式,求出甲的解析式,当t=9时,y=1×9-300=240,所以9点时,甲距离开A的距离为240km,则当乙车到达B城时,甲车离B城的距离为:300-240=1km.
【详解】
解:由图示知:A,B两城相距300km,甲车从5:00出发,乙车从6:00出发;
甲车10:00到达B城,乙车9:00到达B城;
乙车的平均速度为:300÷(9-6)=100(km/h),
当乙车7:30时,乙车离A的距离为:100×1.5=150(km),
∴点A(7.5,150),
由图可知点B(5,0),
设甲的函数解析式为:y=kt+b,
把点A(7.5,150),B(5,0)代入y=kt+b得:
,
解得:,
∴甲的函数解析式为:y=1t-300,
当t=9时,y=1×9-300=240,
∴9点时,甲距离开A的距离为240km,
∴则当乙车到达B城时,甲车离B城的距离为:300-240=1km.
故答案为:1.
本题考查了一次函数的应用,解决本题的关键是求甲的函数解析式,即可解答.
三、解答题(本大题共5个小题,共48分)
14、该商品每个定价为1元,进货100个.
【解析】
利用销售利润=售价﹣进价,根据题中条件可以列出利润与x的关系式,求出即可.
解:设每个商品的定价是x元,
由题意,得(x﹣40)[180﹣10(x﹣52)]=2000,
整理,得x2﹣110x+3000=0,
解得x1=50,x2=1.
当x=50时,进货180﹣10(50﹣52)=200个>180个,不符合题意,舍去;
当x=1时,进货180﹣10(1﹣52)=100个<180个,符合题意.
答:当该商品每个定价为1元时,进货100个.
15、AG=1.
【解析】
由折叠的性质得∠BA′G=∠DA′G=∠A=90°,A′D=6,由勾股定理得BD=10,得出A′B=4,设AG=A′G=x,则GB=8-x,由勾股定理得出方程,解方程即可得出结果.
【详解】
∵矩形ABCD折叠后AD边落在BD上,
∴∠BA′G=∠DA′G=∠A=90°,
∵AB=8,AD=6,
∴A′D=6,BD===10,
∴A′B=4,
设AG=A′G=x,则GB=8-x,
由勾股定理得:x2+42=(8-x)2,解得:x=1,
∴AG=1.
本题主要考查折叠的性质、矩形的性质、勾股定理,熟练掌握折叠的性质、勾股定理是解题的关键.
16、x+1 当x=2时,原式=3
【解析】
根据分式化简的方法首先将括号里面的进行通分,然后利用分式的除法法则进行计算.选择x的值时不能取1、0和-1,其他的值随便可以自己选择.
【详解】
解:原式=
=
=x+1
当x=2时,
原式=x+1=2+1=3.
本题考查分式的化简求值,注意分式的分母不能为0.
17、(1);(2)①,;②是,理由见解析
【解析】
(1)根据直角三角形、等腰三角形的性质,判断出△DBC是等边三角形,即可得到结论;
(2)①根据线段的和差即可得到结论;
②根据方程的解得定义,判断AD是方程的解,则当AD=BE时,同时是方程的解,即可得到结论.
【详解】
解:(1)∵,
,
又,
是等边三角形.
.
(2)①∵
又,
.
②∵
∴线段的长是方程的一个根.
若与的长同时是方程的根,则,
即,
,
,
∴当时,与的长同时是方程的根.
本题考查了勾股定理,一元二次方程的解;熟练掌握直角三角形和等腰三角形的性质求边与角的方法,掌握判断一元二次方程的解得方法是解题的关键.
18、 (1)当t=7时,四边形PCDQ是平行四边形;(2)当t=时,△QDP的面积为60cm2;(3)当t=时,PD=PQ.
【解析】
(1)根据题意用t表示出CP=t,AQ=2t,根据平行四边形的判定定理列出方程,解方程即可;
(2)根据三角形的面积公式列方程,解方程得到答案;
(3)根据等腰三角形的三线合一得到DH=DQ,列方程计算即可.
【详解】
(1)由题意得,CP=t,AQ=2t,
∴QD=21﹣2t,
∵AD∥BC,
∴当DQ=PC时,四边形PCDQ是平行四边形,
则21﹣2t=t,
解得,t=7,
∴当t=7时,四边形PCDQ是平行四边形;
(2)在Rt△ABE中,BE==12,
由题意得,×(21﹣2t)×12=60,
解得,t=,
∴当t=时,△QDP的面积为60cm2;
(3)作PH⊥DQ于H,DG⊥BC于G,则四边形HPGD为矩形,
∴PG=HD,
由题意得,CG=AE=5,
∴PG=t﹣5,
当PD=PQ,PH⊥DQ时,DH=DQ,即t﹣5=(21﹣2t),
解得,t=,
则当t=时,PD=PQ.
本题考查的是平行四边形的性质和判定、等腰三角形的性质,掌握平行四边形的判定定理和性质定理是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、3
【解析】
根据分式的运算法则即可求出答案.
【详解】
解:等式的右边==等式的左边,
∴,
解得:
,
∴A+B=3,
故答案为:3
本题考查分式的运算,解题的关键是熟练掌握分式的运算法则以及二元一次方程组的解法.
20、=
【解析】
利用矩形的性质可得△ABD的面积=△CDB的面积,△MBK的面积=△QKB的面积,△PKD的面积=△NDK的面积,进而求出答案.
【详解】
解:∵四边形ABCD是矩形,四边形MBQK是矩形,四边形PKND是矩形,
∴△ABD的面积=△CDB的面积,△MBK的面积=△QKB的面积,△PKD的面积=△NDK的面积,
∴△ABD的面积﹣△MBK的面积﹣△PKD的面积=△CDB的面积﹣△QKB的面积=△NDK的面积,
∴S1=S1.
故答案为:=.
本题考查了矩形的性质,熟练掌握矩形的性质定理是解题关键.
21、1cm
【解析】
根据菱形的四边相等,可得AB=BC=CD=AD=5,在Rt△AED中,求出AE即可解决问题.
【详解】
解:∵四边形ABCD是菱形,
∴AB=BC=CD=AD=5(cm),
∵DE⊥AB,DE=3(cm),
在Rt△ADE中,AE==4,
∴BE=AB−AE=5−4=1(cm),
故答案为1cm.
本题考查了菱形的性质、勾股定理等知识,解题的关键是理解题意,灵活运用所学知识解决问题,试题难度不大.
22、-7
【解析】
利用配方法把变形为(x-2)-9,则可得到m和k的值,然后计算m+k的值.
【详解】
x−4x−5=x−4x+4−4−5
=(x−2) −9,
所以m=2,k=−9,
所以m+k=2−9=−7.
故答案为:-7
此题考查配方法的应用,解题关键在于掌握运算法则.
23、1.
【解析】
连接BD,由三角形中位线的性质可得到BD的长,然后依据矩形的性质可得到AC=BD.
【详解】
如图所示:连接BD.
∵E,F分别是AB,AD的中点,EF=5,
∴BD=2EF=1.
∵ABCD为矩形,
∴AC=BD=1.
故答案为:1.
本题主要考查的是矩形的性质、三角形的中位线定理的应用,求得BD的长是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、证明见解析
【解析】
根据平行四边形的性质和平行线性质得出OA=OC,∠OAE=∠OCF,证△AOE≌△COF,推出OE=OF,AE=CF,DE=BF.
【详解】
证明:∵四边形ABCD是平行四边形,且对角线AC与BD相交于点O,AD∥BC,
∴OA=OC,∠EAO=∠FCO.
又∵∠AOE=∠COF,∴△AOE≌△COF. ∴OE=OF,AE=CF.
又∵AD=CB,∴DE=AD-AE=CB-CF=BF.
本题考查平行四边形的性质,全等三角形的判定和性质,解题关键是利用平行四边形的性质结合三角形全等来解决有关线段相等的证明.
25、(1)证明见解析;(2)证明见解析;(3)△CFH是等边三角形,理由见解析.
【解析】
(1)利用等边三角形的性质得出条件,可证明:△BCE≌△ACD;
(2)利用△BCE≌△ACD得出∠CBF=∠CAH,再运用平角定义得出∠BCF=∠ACH进而得出△BCF≌△ACH因此CF=CH.
(3)由CF=CH和∠ACH=60°根据“有一个角是60°的三角形是等边三角形可得△CFH是等边三角形.
【详解】
解:(1)∵∠BCA=∠DCE=60°,
∴∠BCE=∠ACD.
又BC=AC、CE=CD,
∴△BCE≌△ACD.
(2)∵△BCE≌△ACD,
∴∠CBF=∠CAH.
∵∠ACB=∠DCE=60°,
∴∠ACH=60°.
∴∠BCF=∠ACH.
又BC=AC,
∴△BCF≌△ACH.
∴CF=CH.
(3)∵CF=CH,∠ACH=60°,
∴△CFH是等边三角形.
本题考查了三角形全等的判定和性质及等边三角形的性质;普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS.同时还要结合等边三角形的性质,创造条件证明三角形全等是正确解答本题的关键.
26、(1)见解析如图(1);(2)三边分别为,3,2是格点三角形.图见解析.
【解析】
(1)根据勾股定理画出图形即可.
(2)先将等式变形,根据算术平方根和平方的非负性可得m和n的值,计算d的值,画出格点三角形即可.
【详解】
(1)如图(1)所示:
(2)∵,
∴,
解得:m=3,n=2,
∴三边长为3,2,或,3,2,
如图(2)所示:,3,2是格点三角形.
本题考查的是勾股定理,格点三角形、算术平方根和平方的非负性,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.
题号
一
二
三
四
五
总分
得分
相关试卷
这是一份2025届上海市民办张江集团中学数学九年级第一学期开学综合测试试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届上海市民办和衷中学数学九年级第一学期开学监测试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年上海市民办新竹园中学数学九上开学质量跟踪监视模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。